
PHYSICAL REVIEW A 108, 013702 (2023)

Controlling frequency-domain Hong-Ou-Mandel interference via electromagnetically
induced transparency

Zi-Yu Liu ,1,2 Jiun-Shiuan Shiu,1,2 Chin-Yao Cheng,1,2 and Yong-Fan Chen 1,2,3,*

1Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
2Center for Quantum Frontiers of Research & Technology, Tainan 70101, Taiwan

3Center for Quantum Technology, Hsinchu 30013, Taiwan

(Received 10 March 2023; accepted 23 June 2023; published 6 July 2023)

Hong-Ou-Mandel (HOM) interference is a compelling quantum phenomenon that demonstrates the nonclas-
sical nature of single photons. In this study, we investigate an electromagnetically induced transparency-based
double-� four-wave mixing system from the perspective of quantized light fields. The system can be used to
realize efficient HOM interference in the frequency domain. By using the reduced density operator theory, we
demonstrate that although the double-� medium does not exhibit phase-dependent properties for the closed-loop
case of two incident single photons, frequency-domain HOM two-photon interference occurs. For experimentally
achievable optical depth conditions, our theory indicates that this double-� scheme can perform high-fidelity
Hadamard gate operations on frequency-encoded single-photon qubits, and thereby generate HOM two-photon
NOON states with a fidelity greater than 0.99. Furthermore, we demonstrate that this scheme can be used to
realize arbitrary single-qubit gates and two-qubit SWAP gates by simply controlling the laser detuning and phase,
exhibiting its multifunctional properties and providing a different route to scalable optical quantum computing.
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I. INTRODUCTION

Hong-Ou-Mandel (HOM) interference [1–3], a well-
known quantum effect without a classical counterpart, has
played a key role in optical quantum information process-
ing [4–7] and quantum metrology [8–11]. Instead of passive
devices, such as spatial or polarizing beam splitters, recent
studies have used frequency converters to transfer HOM in-
terference from the spatial to the spectral domain; this method
facilitates quantum frequency multiplexing and engineering
[12–15]. Studies of frequency-domain HOM interference for
single photons have relied on linear optics, which involve the
use of electro-optic phase modulators [16–19], or the nonlin-
ear effects of solid materials [20–23]. Both schemes operate
under far-detuned interaction conditions, thus typically requir-
ing the use of high-voltage amplifiers or strong pump light,
which leads to the generation of adjacent sidebands or para-
metric noise photons. Herein, we propose another promising
scheme based on near-resonant nonlinear optics that enables
frequency-domain HOM interference with high visibility. The
proposed scheme leverages the closed-loop four-wave mix-
ing (FWM) effect in a double-� electromagnetically induced
transparency (EIT) system [24]. Because of the EIT effect,
this near-resonant FWM scheme can substantially suppress
vacuum field noise at low light levels, thereby effectively
preventing photon dissipation and avoiding the generation
of noise photons [25]. Such properties enable this double-
� scheme to generate frequency-domain HOM two-photon
NOON states with extremely high fidelity.
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To study frequency-domain HOM interference in a closed-
loop double-� medium, we constructed a quantum model
based on the reduced density operator theory [26]. Unlike
semiclassical approaches, the proposed model quantizes two
incident weak light fields. No discussion of such closed-loop
FWM systems from the perspective of quantized light fields
was found in a literature review. Previous semiclassical mod-
els have demonstrated that the respective transmittances of
the two incident light fields through a closed-loop double-�
medium are affected by the relative phases of the applied
light fields; this is known as the phase-dependent prop-
erty [27–29]. However, our quantum model revealed that
the phase-dependent property of a closed-loop double-�
medium depends on the quantum states of the two inci-
dent weak light fields. If both incident weak light fields
are in coherent states, the double-� medium exhibits phase-
dependent properties, which is consistent with the predictions
of a semiclassical model and has been experimentally con-
firmed [30–32]. By contrast, if both incident weak light
fields are single photons, this phase-dependent property is
no longer present. Although the double-� medium does not
have phase-dependent properties in the case of two inci-
dent single photons, frequency-domain HOM interference of
the two-photon state occurs. Our theory shows that such a
double-� scheme can perform high-fidelity Hadamard gate
operations on frequency-encoded single-photon qubits. For
experimentally achievable optical depth (OD) conditions,
HOM two-photon NOON states with a fidelity of 0.99 can
be generated. Furthermore, we demonstrate that this scheme
can be used to implement arbitrary single-qubit gates and
high-fidelity two-qubit SWAP gates, revealing its advantages
in fabricating multifunctional photonic logic gates.
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FIG. 1. Diagram of the four-level double-� EIT system. (a) The
corresponding transitions for the four applied light fields. All light
fields are assumed to propagate in the same direction to eliminate
the Doppler shift in the atomic medium. (b) Both the input probe
and signal fields are in coherent states. In this case, the two coherent
fields |βp〉 and |βs〉 interfere in the double-� medium, and the output
of the two coherent fields depends on the relative phase of the applied
light fields. (c) Input probe and signal fields are two single photons
(i.e., |1p1s〉). In this case, although the phase-dependent property of
the double-� medium is no longer present, HOM interference of the
two-photon state occurs. The frequency-domain two-photon NOON
state can be generated simply by optimizing the OD and �.

The paper is organized as follows. Section II introduces
the model of the double-� EIT system, which incorporates
quantized weak input fields. The quantum states of the output
fields are derived using the reduced density operator theory.
In Sec. III, we explore the input state consisting of two co-
herent fields and compare the results with the semiclassical
model. Section IV investigates the utilization of a single-
photon qubit and discusses the conditions for implementing
the color Hadamard gate within the current system. The condi-
tions for frequency-domain HOM interference with two input
single photons are discussed in Sec. V. Furthermore, Sec. VI
proposes and demonstrates the capability of the double-�
EIT system to generate two-qubit SWAP gates. Finally, the
conclusions are presented in Sec. VII.

II. THEORETICAL MODEL

We consider a medium comprising double-� four-level
atoms with two metastable ground states and two excited
states [Fig. 1(a)]. The weak probe field âp driving the |1〉↔|3〉
transition and the weak signal field âs driving the |1〉 ↔ |4〉
transition can both be described by quantum operators obey-
ing the bosonic commutation relation. High-intensity coherent
coupling and driving fields, described by the semiclassi-
cal Rabi frequency �c(d ) = |�c(d )|eiφc(d ) with a well-defined
phase φc(d ), drive |2〉 ↔ |3〉 and |2〉 ↔ |4〉 transitions, respec-
tively, forming a closed-loop double-� EIT system together
with the probe and signal fields. The parameters γ31 and γ41

represent the total coherence decay rates of the excited states
|3〉 and |4〉, respectively. γ21 is the dephasing rate between
the ground states |1〉 and |2〉. We consider the case in which
the signal field and the driving field satisfy the two-photon

resonance condition, but a one-photon detuning, denoted as
�, exists. By using the collective atomic operator approach
and ignoring interactions between atoms, the interaction
Hamiltonian Ĥ of the double-� system can be expressed as
follows:

Ĥ = − h̄N

2L

∫ L

0
[2gpσ̂31(z, t )âp(z, t ) + 2gsσ̂41(z, t )âs(z, t )

+�cσ̂32(z, t ) + �d σ̂42(z, t ) + �σ̂44(z, t ) + H.c.]dz,

(1)

where N and L are the total number of atoms and the atomic
medium length, respectively. gp = d31εp

h̄ denotes the coupling
constant between the probe field and the single atom, where
d31 is the dipole moment of the corresponding |3〉 ↔ |1〉
transition and εp =

√
h̄ωp

2ε0V is the electric field of the single

probe photon. Similarly, there are gs = d41εs
h̄ and εs =

√
h̄ωs

2ε0V

parameters for the signal field. σ̂ jk (z, t ) represents a collective
atomic operator in the slowly varying amplitude approxi-
mation [33] that obeys the following Heisenberg-Langevin
equation (HLE) between states | j〉 and |k〉:

∂

∂t
σ̂ jk = i

h̄
[Ĥ , σ̂ jk] − γ jk

2
σ̂ jk + γ

sp
jk + F̂jk, (2)

where γ
sp
jk is the parameter related to the spontaneous decay

process, and F̂jk denotes the associated Langevin noise opera-
tor. In the context of the double-� EIT system, the probe and
signal fields can be considered as perturbation fields due to
their significantly weaker strengths compared to the coupling
and driving fields. Therefore, we can solve the first-order
atomic operators by substituting the zero-order perturbation
results into the relevant first-order HLEs as follows:

∂

∂t
σ̂

(1)
21 (z, t ) = F̂21(z, t ) − 1

2
γ21σ̂

(1)
21 (z, t )

− i

[
�c

2
σ̂

(1)
31 (z, t ) + �d

2
σ̂

(1)
41 (z, t )

]
, (3)

∂

∂t
σ̂

(1)
31 (z, t ) = F̂31(z, t ) − 1

2
γ31σ̂

(1)
31 (z, t )

− i

[
gpâ†

p(z, t ) + �∗
c

2
σ̂

(1)
21 (z, t )

]
, (4)

∂

∂t
σ̂

(1)
41 (z, t ) = F̂41(z, t ) − 1

2
γ41σ̂

(1)
41 (z, t )

− i

[
gsâ

†
s (z, t ) + �∗

d

2
σ̂

(1)
21 (z, t ) + �σ̂

(1)
41 (z, t )

]
.

(5)

To investigate the behavior of the probe and signal
fields propagating in the double-� medium, the solutions
of σ̂

(1)
31 (z, t ) and σ̂

(1)
41 (z, t ) from the first-order HLEs are

incorporated into the following Maxwell-Schrödinger equa-
tions (MSEs):(

∂

∂t
+ c

∂

∂z

)
â†

p(z, t ) = −igpN σ̂
(1)
31 (z, t ), (6)(

∂

∂t
+ c

∂

∂z

)
â†

s (z, t ) = −igsN σ̂
(1)
41 (z, t ), (7)
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where c is the speed of light. Subsequently, through the
Fourier transform from the time domain to the frequency
domain, the coupled equations of ã†

p(z, ω) and ã†
s (z, ω) can

be derived as follows:
∂

∂z
ã†

p + �pã†
p + κpei(−φc+φd )ã†

s =
∑

jk

ζ
p
jk f̃ jk, (8)

∂

∂z
ã†

s + �sã
†
s + κse

−i(−φc+φd )ã†
p =

∑
jk

ζ s
jk f̃ jk, (9)

where �p(s) and κp(s) are the EIT dispersion coefficient and
coupling constant of the probe (signal) transition, respectively

[34]. f̃ jk ≡
√

N
c F̃jk is the renormalized Langevin noise op-

erator, where jk ∈ {21, 31, 41} denotes the subscript of the
atomic operator σ̃ jk . ζ

p
jk and ζ s

jk are the coefficients of the
Langevin noise operators of interest. For simplicity, we con-
sider the steady-state case of ω = 0 and assume that |�c| =
|�d | ≡ |�|, gp = gs ≡ g, γ31 = γ41 ≡ �, and γ21 = 0. Under
these conditions, the general solution of the aforementioned
coupled equations can be obtained as follows:[

ã†
p,L

ã†
s,L

]
= e−ML

[
ã†

p,0

ã†
s,0

]
+

∑
jk

∫ L

0
e−M(L−z)

[
ζ

p
jk

ζ s
jk

]
f̃ jkdz, (10)

where ã†
p(s),L and ã†

p(s),0 are abbreviations for ã†
p(s)(L, 0) and

ã†
p(s)(0, 0), respectively. All the coefficients of the general

solution can be found in Appendix A. The term e−ML char-
acterizes the parametric evolution of the double-� medium.
Its matrix form is

e−ML = exp

(
−

[
�p κpei(−φc+φd )

κse−i(−φc+φd ) �s

]
L

)

≡
[

A B
C D

]
. (11)

The second term on the right-hand side of Eq. (10) describes
the quantum fluctuation effect induced by the vacuum field
reservoir. To enable correspondence with more commonly
used parameters, we use the substitution α�

4L = g2N
c , where α

denotes the OD of the atomic medium. Therefore, the matrix
elements in Eq. (11) are obtained as

A = 1
2 [1 + eiα�/2(�−i�)], (12)

B = 1
2 [1 − eiα�/2(�−i�)]e−i(φc−φd ), (13)

C = 1
2 [1 − eiα�/2(�−i�)]ei(φc−φd ), (14)

D = 1
2 [1 + eiα�/2(�−i�)]. (15)

In Eq. (10), A and C (D and B) represent the mode-preserved
and mode-converted coefficients, respectively, of the probe
(signal) field propagating in the double-� medium. These
coefficients are similar to the transmission and reflection co-
efficients of light passing through a spatial beam splitter.

To investigate the response of the double-� medium to
different input photon quantum states, the density matrix of
the output state, ρ f = ŨρiŨ †, is constructed in accordance
with the density matrix of the input state ρi and the evolution
operator Ũ of the combined system in the frequency domain,
where ρi = ρPS (z = 0, ω) ⊗ ρR is in the product form of the

incident probe and signal fields ρPS and the reservoir ρR. Ac-
cording to the reduced density operator approach employed in
our previous works [25,35], under the steady-state condition,
the matrix element of the output probe and signal fields in the
Fock-state basis can be expressed as

ρPS
mpmsnpns

(L, 0) = Tr{ρ̃mpmsnpns (L, 0)ρi}, (16)

where ρ̃mpmsnpns (L, 0) = Ũ †(|npns〉〈mpms| ⊗ IR)Ũ is the oper-
ator for the matrix element of the output probe and signal
fields. If Eq. (10) is applied and the vacuum density ma-
trix with annihilation and creation operators is rewritten as
|0〉〈0| = ∑∞

l=0
(−1)l

l! (ã†)l (ã)l [36], the operator ρ̃mpmsnpns can
be derived as

ρ̃mpmsnpns (L, 0)

=
∞∑

lp,ls=0

χmnl (Aã†
p,0 + Bã†

s,0)lp+np (Cã†
p,0 + Dã†

s,0)ls+ns

× (A∗ãp,0 + B∗ãs,0)lp+mp (C∗ãp,0 + D∗ãs,0)ls+ms , (17)

where χmnl = 1√
mp!ms!np!ns!

(−1)lp+ls

lp!ls!
. In the derivation of

Eq. (17), the normal-ordered noise caused by the Langevin
operator f̃ jk is proportional to the atomic population of the ex-
cited state [37]; hence, it can be ignored under the perturbation
condition of the weak probe and signal fields (see Appendix B
for more details).

III. TWO COHERENT FIELDS

We first consider the case of two coherent fields passing
through the double-� medium. As indicated in Fig. 1(b),
the two coherent states with probe and signal frequency
modes, respectively, are the initial states |ψPS

i 〉 = |βp〉 ⊗ |βs〉.
If Eqs. (16) and (17) are calculated, the matrix element of the
the output probe and signal fields can be obtained as

ρPS
mpmsnpns

(L, 0)

=
∞∑

lp,ls=0

χmnl (Aβ∗
p + Bβ∗

s )lp+np (Cβ∗
p + Dβ∗

s )ls+ns

× (A∗βp + B∗βs)lp+mp (C∗βp + D∗βs)ls+ms

= e−|A∗βp+B∗βs|2 (A∗βp + B∗βs)mp (Aβ∗
p + Bβ∗

s )np√
mp!np!

× e−|C∗βp+D∗βs|2 (C∗βp + D∗βs)ms (Cβ∗
p + Dβ∗

s )ns

√
ms!ns!

,

(18)

by which the output state of the probe and signal fields be-
comes ∣∣ψPS

f

〉 = |A∗βp + B∗βs〉 ⊗ |C∗βp + D∗βs〉
≡ |β ′

p〉 ⊗ |β ′
s〉, (19)

where both the output probe |β ′
p〉 and signal |β ′

s〉 fields remain
in coherent states, indicating that the double-� medium only
coherently redistributes the incident probe and signal ampli-
tudes through the EIT-based FWM process without changing
the photon statistics of these two coherent fields or entangling
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FIG. 2. The closed-loop case of two incident weak coherent
fields. (a) Transmission and (b) phase shift of the probe (blue) and
signal (red) coherent fields versus φr plotted using the quantum
(solid) and semiclassical (dotted) models under conditions of |βp| =
|βs|, � = 13�, and OD = 50.

them [38]. This makes the case of two coherent fields un-
able to produce HOM two-photon interference. Furthermore,
Eq. (19) reveals that the amplitude and phase changes of the
output probe and signal fields depend on the relative phase of
the applied light fields. The transmittances and phase shifts of
the probe and signal fields through the double-� medium are
given by

Tp =
∣∣∣∣∣β

′
p

βp

∣∣∣∣∣
2

= |A∗ + uβB′∗e−iφr |2, (20)

�φp = arg

[
β ′

p

βp

]
= arg[A∗ + uβB′∗e−iφr ], (21)

Ts =
∣∣∣∣β ′

s

βs

∣∣∣∣
2

= ∣∣u−1
β C′∗eiφr + D∗∣∣2

, (22)

�φs = arg

[
β ′

s

βs

]
= arg

[
u−1

β C′∗eiφr + D∗], (23)

where B′∗ ≡ B∗e−i(φc−φd ), C′∗ ≡ C∗ei(φc−φd ), uβ ≡ |βs|/|βp| is
the ratio of the probe and signal amplitudes, and φr ≡ (φp −
φs) − (φc − φd ) is the relative phase of the applied light fields.
Figure 2 reveals that the theoretical curves of transmittance
and phase shift, as a function of the relative phase φr for the
probe and signal fields obtained from the current quantum
model (solid lines), are identical to those of the semiclassical
model (dotted lines) in Ref. [30]. If the input light fields are all
in coherent states, this closed-loop double-� medium exhibits
phase-dependent properties, which have been experimentally
investigated in atomic ensembles [30–32].

IV. HADAMARD GATES

We next consider a single-photon qubit case in which an in-
cident single photon has entangled probe and signal frequency
modes, namely,∣∣ψPS

i

〉 = 1√
1 + u2

(|1p0s〉 + ue−iφu |0p1s〉), (24)

where u is a parameter indicating the amplitude ratio be-
tween the probe and signal frequency modes, and φu denotes
the relative phase between the two modes. A single photon
with a superposition state of two frequency modes is also
called a frequency-encoded photonic qubit or two-color qubit
[39]. Here, φu is similar to the role of the relative phase
(φp − φs) between the two coherent fields mentioned in the

FIG. 3. Hadamard gates for single-photon two-color qubits.
(a) Probability that the two-color qubit with u = 1 and φu = 0 is
in the probe frequency mode (P1p0s, solid blue) and the signal fre-
quency mode (P0p1s, dashed red) versus OD under the conditions
of φr = π/2 and � = (200/π )�. Inset: For � = (OD/π )�, the
maximum probability approaches 1 as OD increases. (b) Theoretical
� curves for maximizing the probabilities of |1p0s〉 (solid blue) and
|0p1s〉 (dashed red) as a function of u for OD = 200. The two curves
intersect at u = 1 where � = (200/π )�, which is the condition in
(a).

previous section. Therefore, in the case of a single-photon
two-color qubit, the double-� medium can also be expected
to exhibit phase-dependent properties. To confirm this, the
probability that the output single photon is in the probe and
signal frequency modes, respectively, can be determined using
Eqs. (16) and (17) as follows:

P1p0s = ρPS
1010 = 1

1 + u2
|A∗ + uB′∗e−iφr |2, (25)

P0p1s = ρPS
0101 = 1

1 + u2
|C′∗eiφr + uD∗|2, (26)

where φr = φu − (φc − φd ) is equivalent to the relative phase
in the previous case of two coherent fields with φu = φp − φs.
As expected, these results verify the dependence of the out-
put state of the single-photon qubit on the relative phase of
the applied light fields in the double-� medium. Figure 3(a)
plots the theoretical curves of P1p0s and P0p1s as a function
of OD under the conditions of φr = π/2 and � = (200/π )�
for single-photon qubits with equal-amplitude and in-phase
modes, namely, u = 1 and φu = 0. The theoretical curves
reveal that P1p0s increases as OD increases and reaches a
maximum value close to 1 at OD = 200, whereas P0p1s de-
creases to almost zero. In other words, under these conditions,
the two-color single photon entering the double-� medium is
converted into a single photon carrying only one color, which
is equivalent to the Hadamard gate, and its operation fidelity
can reach 0.99 at OD = 200.

The physical mechanism behind this frequency-domain
Hadamard gate can be described as follows. Because of the
large detuning condition of � = (OD/π )�, the amplitudes
of the mode-preserved coefficient and mode-converted coeffi-
cient of the double-� medium are almost equal; that is, |A| ≈
|C| ≈ 0.5 and |D| ≈ |B| ≈ 0.5 [Eqs. (12)–(15)]. In this case,
when φr = π/2, the probe mode-preserved coefficient A∗ and
the signal mode-converted coefficient B′∗e−iπ/2 in Eq. (25)
are almost in phase, resulting in constructive interference,
which causes the output photon to be converted into the probe
frequency mode (i.e., P1p0s ≈ 1). However, if φr is 3π/2, the
two aforementioned coefficients have out-of-phase destructive
interference, causing the theoretical curves in Fig. 3(a) to
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become interchanged, and the output photon is converted to
the signal frequency mode, resulting in P0p1s ≈ 1. In addition,
it is worth noting that under the condition of a sufficiently
large OD and the specific detuning mentioned above, we
can derive the unitary matrix of the gate operation using
Eqs. (12)–(15). By introducing a π -phase plate at the output of
the signal field, the derived unitary matrix can be transformed
into the unitary matrix representation of the Hadamard gate.
Such results also indicate that the current scheme is applicable
to any input state of a single-photon qubit.

For the input single-photon qubits with arbitrary u values,
the output of |1p0s〉 can be achieved by using a specific
detuning value � that satisfies the |A∗| = |uB′∗| condition.
In this case, constructive interference in the probe frequency
mode occurs if φr = π/2. By contrast, the output of |0p1s〉
can be achieved by simply setting the relative phase φr to
3π/2 and adjusting � to satisfy the condition |C′∗| = |uD∗|.
This suggests that the double-� scheme can be used as a
single-qubit gate with x and y rotation. Therefore, arbitrary
single-qubit gates can be realized by concatenating the x-
and y-rotation gates based on this scheme [40]. Figure 3(b)
presents plots of two theoretical curves of � as a function of
u required to achieve the maximum probabilities of |1p0s〉 and
|0p1s〉 for OD = 200. The two curves intersect at u = 1 and
� = (200/π )�, corresponding to the condition OD = 200
of Fig. 3(a). For one-color input single photons (u = 0), the
double-� medium does not have phase-dependent properties
because no interference occurs [Eqs. (25) and (26)]. This
system is also known as an open-loop FWM system and can
be used as an efficient frequency converter [41–45].

V. HOM INTERFERENCE

We now consider the case in which the two input sin-
gle photons carry the probe and signal frequency modes,
respectively. This is a two-photon state with no correlation
between the modes, as depicted by |1p〉 ⊗ |1s〉 in Fig. 1(c).
As previously stated, under the ideal conditions of an ex-
tremely large OD value, the double-� medium causes little
photon dissipation. Therefore, the output photons only have
the following three possible quantum states with correspond-
ing probabilities: (1) state |2p0s〉, both photons exit under
the probe frequency mode with P2p0s; (2) state |0p2s〉, both
photons exit under the signal frequency mode with P0p2s; (3)
state |1p1s〉, photons exit with disparate colors with P1p1s.
These three probabilities are obtained as

P2p0s = ρPS
2020 = 2|A∗B∗|2, (27)

P0p2s = ρPS
0202 = 2|C∗D∗|2, (28)

P1p1s = ρPS
1111 = |A∗D∗ + B∗C∗|2. (29)

Unlike the previous case of the input two-color qubit, the
probabilities of the output states in this case are not affected
by the relative phase of the applied light fields; they are phase
independent. This phenomenon is ascribed to the quantum
uncertainty of the relative phase between the two input single
photons, which prevents them from interfering with each other
in the double-� medium. However, quantum interference of
the two-photon state occurs [Eqs. (27)–(29)].

FIG. 4. HOM interference and color swap for two input single
photons. (a) Theoretical curves for the probabilities P2p0s (solid blue),
P0p2s (dashed red), and P1p1s (dotted black) versus � at OD = 200.
HOM interference and two-photon swap occur at � = (200/π )�
and � = (100/π )�, respectively. (b) At � = (OD/π )�, the max-
imum probabilities of P2p0s and P0p2s tend to approach 1 as OD
increases. (c) The fidelity of the HOM two-photon NOON state
versus OD.

Figure 4(a) presents plots of the probabilities P2p0s, P0p2s,
and P1p1s versus � at OD = 200. These theoretical curves
reveal that if � = (200/π )�, both P2p0s and P0p2s are close to
0.5, whereas P1p1s approaches 0. That is, the input two-photon
state |1p1s〉 is almost completely suppressed by the double-�
medium, and the two single photons tend to have the same
color, exhibiting HOM interference in the frequency domain.
This phenomenon of two-photon state interference is caused
by the operation of the Hadamard gate. If � = (OD/π )�,
the magnitudes of the coefficients for mode preservation and
mode conversion are almost equal (approximately 0.5), which
is the Hadamard gate operation and causes the transition am-
plitudes A∗D∗ (describing the two photons preserved in their
respective modes) and B∗C∗ (indicating that the modes of the
two photons mutually swap) to have the same magnitude but
be out of phase (i.e., A∗D∗ ≈ −B∗C∗). Therefore, destructive
interference between the two transition amplitudes in Eq. (29)
occurs, resulting in P1p1s ≈ 0.

When the laser is detuned as (100/π )� in Fig. 4(a), the two
single photons exit with disparate colors; the state is |1p1s〉. In
contrast with the two-photon HOM interference produced in
the Hadamard gate operation, the mode-converted coefficients
B∗ and C∗ are both approximately 1 in this case, whereas the
mode-preserved coefficients A∗ and D∗ approach 0, result-
ing in P1p1s ≈ 1 and P2p0s ≈ P0p2s ≈ 0. Thus, the two single
photons mutually swap colors in a near-perfect frequency
conversion process and end up in the same state |1p1s〉, which
also shows that whether the output photons generate HOM
interference or swap colors can be controlled in this double-�
scheme by simply adjusting the laser detuning conditions.

Figure 4(b) plots the theoretical curves of P2p0s and P0p2s

versus OD under the HOM interference condition of � =
(OD/π )�. The theoretical results indicate that increasing OD
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FIG. 5. Performance of the color SWAP gate. (a) Average (solid
line) and standard deviation (gray area) of the SWAP gate fidelity
plotted against the OD obtained from the density matrices of the
output results according to the four computational input states. The
vertical dashed lines denote the OD of around 500 and 1000 for
fidelities reaching 0.98 and 0.99, respectively. (b) Truth table of the
SWAP process according to the output probabilities using the four
inputs when OD = 1000 in (a). Under this condition, the average
success rate per gate operation is around 0.98.

can suppress the loss of output photons due to spontaneous
emission. Therefore, if the OD value is large, the loss of output
photons can be neglected, and its quantum state is obtained as∣∣ψPS

f

〉 = 1√
2

[|2p0s〉 + e−2i(φc−φd )|0p2s〉], (30)

which is a two-photon NOON state in the frequency domain
that has practical applications in photonic quantum metrology
for its ability to conduct precision phase measurements if
used in optical interferometers [46]. Although the amplitude
of the two-photon NOON state is independent of the phases
of the applied light fields, the relative phase between modes
|2p0s〉 and |0p2s〉 can be controlled by varying φc and φd .
Furthermore, for actual cases of finite OD, the two input single
photons in the double-� medium will be slightly dissipated,
which not only causes the output photons to become a mixed
state but also reduces the fidelity of the two-photon NOON
state, as displayed in Fig. 4(c). The theoretical curve reveals
that the fidelity approaches 1 as the OD increases owing to
the proportional suppression of photon loss due to sponta-
neous emission in the double-� EIT medium. If OD = 500,
the fidelity can reach 0.99, which is a condition that can
currently be achieved experimentally [47–49]. Hence, HOM
interference based on the double-� scheme is applicable for
generating high-purity two-photon NOON states in the fre-
quency domain.

VI. SWAP GATES

In the previous section, we have shown that when the
condition � = (OD/2π )� is satisfied, the colors of two input
single photons are exchanged in the double-� medium [see
Fig. 4(a)]. Next, we demonstrate that this double-� scheme
can be used as a high-fidelity two-qubit SWAP gate under this
condition, which is essential for scalable quantum networks
[50,51]. Figure 5(a) presents the average (curve) and standard
deviation (gray area) of the SWAP gate fidelity according
to the four computational input states (i.e., |0p0s〉, |1p0s〉,
|0p1s〉, and |1p1s〉) versus OD. The theoretical curve shows
that the average fidelity approaches 1 as the OD increases.

By contrast, the standard deviation of fidelity decreases with
increasing OD. When OD = 500, the fidelity of the SWAP
gate can reach 0.98. For the region of OD exceeding 1000,
the SWAP gate achieves a high fidelity of F = 0.99 with a
low standard deviation of 0.01. The truth table of the SWAP
process when OD = 1000 is shown in Fig. 5(b). Under this
condition, the average success probability per gate operation
reaches 0.98, corresponding to an error rate of 0.02 for a single
SWAP operation.

VII. CONCLUSION

We have investigated a double-� FWM system based on
EIT for achieving efficient HOM interference in the frequency
domain. Our study from the perspective of quantized light
fields has provided a deeper understanding of the quantum
properties of the double-� medium. Our findings indicate that
this scheme can perform high-fidelity Hadamard gate opera-
tions on frequency-encoded single-photon qubits and generate
HOM two-photon NOON states with a fidelity greater than
0.99 at OD = 500. The proposed scheme offers high visibility
and practical applications in photonic quantum metrology.
Moreover, we have shown that the scheme can be used to real-
ize arbitrary single-qubit gates and two-qubit SWAP gates by
controlling the laser detuning and phase, which highlights its
multifunctional properties. These photonic gates can be eas-
ily integrated with various EIT-related quantum technologies,
such as quantum memories [52–57] and quantum repeaters
[58–64], enabling the development of quantum networks and
scalable quantum information processing [65–69]. Overall,
our results demonstrate that the proposed double-� FWM
system is a promising platform for frequency-domain HOM
interference with high fidelity and multifunctional capabili-
ties. Further experimental investigations and applications of
this scheme in various quantum information processing tasks
are warranted.
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APPENDIX A: COEFFICIENTS OF COUPLED EQUATIONS

In Sec. II, we derive the frequency-domain coupled equa-
tions between the probe field and the signal field, as shown in
Eqs. (8) and (9). All coefficients in Eq. (10) can be obtained
as follows:

�p = �s = α�

4L

(
1

� + i�

)
, (A1)

κp = κs = −α�

4L

(
1

� + i�

)
, (A2)

ζ
p

21 = i

√
α�

4L

[
i� − 2�

(� + i�)|�|
]

e−iφc , (A3)

ζ
p

31 = −i

√
α�

4L

(
1

� + i�

)
, (A4)
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ζ
p

41 = i

√
α�

4L

(
1

� + i�

)
e−i(φc−φd ), (A5)

ζ s
21 = i

√
α�

4L

[
i�

(� + i�)|�|
]

e−iφd , (A6)

ζ s
31 = i

√
α�

4L

(
1

� + i�

)
ei(φc−φd ), (A7)

ζ s
41 = −i

√
α�

4L

(
1

� + i�

)
. (A8)

APPENDIX B: NOISE CORRELATIONS
AND DIFFUSION COEFFICIENTS

In the derivation of Eq. (17), we assume that the Langevin
noise operator satisfies the delta correlation as follows:

〈 f̃ jk (z, ω) f̃k′ j′ (z
′, ω′)〉 = L

2πc
Djk,k′ j′δ(z − z′)δ(ω − ω′),

(B1)

where Djk,k′ j′ is the diffusion coefficient, which can be ob-
tained using the Einstein relation [70] as follows:

Djk,k′ j′ = ∂

∂t
〈σ̂ jk σ̂k′ j′ 〉 −

〈(
∂

∂t
σ̂ jk − F̂jk

)
σ̂k′ j′

〉

−
〈
σ̂ jk

(
∂

∂t
σ̂k′ j′ − F̂k′ j′

)〉
. (B2)

For the case of γ21 = 0 considered in the main text, we can
obtain the diffusion coefficient of the double-� atomic system
through Eq. (B2). Its matrix form is

Djk,k′ j′ =
⎡
⎣D2112 D2113 D2114

D3112 D3113 D3114

D4112 D4113 D4114

⎤
⎦

=
⎡
⎣�

2 (〈σ̂33〉 + 〈σ̂44〉) 0 0
0 0 0
0 0 0

⎤
⎦. (B3)

Under the condition of the weak probe and signal fields,
〈σ̂33〉 ≈ 〈σ̂44〉 ≈ 0, that is, all the normal-ordered noise cor-
relations 〈 f̃ jk f̃k′ j′ 〉 are close to zero. According to Eq. (10),
the normal-ordered noise correlations contribute additional
photons to the probe and signal fields, i.e., 〈ã†

p,Lãp,L〉 and

〈ã†
s,Lãs,L〉, which can be regarded as the spontaneous-emitted

noise photons induced by the vacuum field reservoir. Ad-
ditionally, we calculate the anti-normal-ordered noise terms
〈 f̃k′ j′ f̃ jk〉. Under the same conditions, the corresponding dif-
fusion coefficient matrix is

Dk′ j′, jk =
⎡
⎣D1221 D1231 D1241

D1321 D1331 D1341

D1421 D1431 D1441

⎤
⎦

≈
⎡
⎣0 0 0

0 �〈σ̂11〉 0
0 0 �〈σ̂11〉

⎤
⎦. (B4)

Unlike the normal-ordered noise terms, Eq. (B4) indicates that
the anti-normal-ordered noise correlations in this double-�
system do not disappear even in the case of weak probe

and signal fields. In Appendix C, we will show that the
anti-normal-ordered noise terms lead to the dissipation of the
incident light fields.

APPENDIX C: COMMUTATION RELATIONS
OF FIELD OPERATORS

The frequency-domain commutation relation of the cre-
ation and annihilation operators for the probe field can be
expressed as

[ãp(z, ω), ã†
p(z, ω′)] = L

2πc
δ(ω − ω′). (C1)

We use Eq. (10) in Sec. II to calculate the communication
relation of the probe field propagating through the double-�
atomic medium as follows:

〈ã†
p,Lãp,L〉 = |A∗|2〈ã†

p,0ãp,0〉 + |B∗|2〈ã†
s,0ãs,0〉

+ L

2πc

∑
jk

∑
j′k′

∫ L

0
P jkD jk,k′ j′P∗

j′k′dz, (C2)

〈ãp,Lã†
p,L〉 = |A∗|2〈ãp,0ã†

p,0〉 + |B∗|2〈ãs,0ã†
s,0〉

+ L

2πc

∑
jk

∑
j′k′

∫ L

0
P∗

j′k′Dk′ j′, jkP jkdz. (C3)

Substituting Eqs. (C2) and (C3) into Eq. (C1), and combining
the results of Eqs. (B3) and (B4), the expectation value of the
commutator of the output probe field is derived as

〈[ãp,L, ã†
p,L]〉 = L

2πc

(|A∗|2 + |B∗|2)
+ L

2πc

∫ L

0
(P∗

31D1331P31 + P∗
41D1441P41)dz.

(C4)

Based on Eqs. (C1) and (C4), we obtain

∫ L

0
(P∗

31D1331P31 + P∗
41D1441P41)dz = 1 − |A∗|2 − |B∗|2.

(C5)

The left-hand side of Eq. (C5) comes from the contribution
of anti-normal-ordered noise correlations. This indicates that
once the output probe field is dissipated, i.e., |A∗|2+|B∗|2 < 1,
it must be caused by the anti-normal-ordered noise correla-
tions. However, for a double-� medium with a sufficiently
large OD, |A∗|2 + |B∗|2 ≈ 1, that is, the contribution of anti-
normal-ordered noise terms approaches to zero, indicating
that the vacuum field reservoir is unable to disturb the loss-
less system through quantum fluctuations. Additionally, the
formula for the output signal field has also been derived

013702-7



LIU, SHIU, CHENG, AND CHEN PHYSICAL REVIEW A 108, 013702 (2023)

as follows: ∫ L

0
(Q∗

31D1331Q31 + Q∗
41D1441Q41)dz

= 1 − |C∗|2 − |D∗|2. (C6)

Note that in the above derivations, the coefficients P jk and
Q jk are in the form of[

P jk

Q jk

]
= e−M(L−z)

[
ζ

p
jk

ζ s
jk

]
, (C7)

where ζ
p
jk and ζ s

jk can be obtained from Eqs. (A3)–(A8).
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