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Walk-off-induced dissipative breathers and dissipative breather gas in microresonators
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Dissipative solitons in optical microcavities have attracted significant attention in recent years due to their
direct association with the generation of optical frequency combs. Here, we address the problem of dissipative
soliton breathers in a microresonator with second-order nonlinearity, operating at the exact phase matching
for efficient second-harmonic generation. We elucidate the vital role played by the group-velocity difference
between the first- and second-harmonic pulses for the breather existence. We report the dissipative-breather-gas
phenomenon, in which multiple breathers propagate randomly in the resonator and collide nearly elastically.
Finally, when the breather gas reaches an out-of-equilibrium statistical stationarity, we show how the velocity
locking between first and second harmonics is still preserved, naming such phenomena turbulence locking.

DOI: 10.1103/PhysRevA.108.013520

I. INTRODUCTION

Ultrahigh Q-factor optical cavities, such as whispering-
gallery-mode (WGM) microresonators, offer a compact and
power-efficient platform for generating various types of spec-
trally broadband wave forms, including dissipative Kerr
solitons [1,2], Turing patterns [3], soliton molecules [4], and
soliton crystals [5]. The spectra of these wave forms are as-
sociated with optical frequency combs. Recent developments
have shown that a similar range of effects happens in mi-
croresonators with the second-order, χ (2), nonlinearity [6–10].
Coherent and equidistant microresonator combs can be used
for various applications such as precision spectroscopy, opti-
cal clocks, and the search for exoplanets [11–13].

One of the prerequisites for efficient operation of a soliton-
based microresonator device is the stability of dissipative
solitons. Hence, accurate knowledge of the parameters re-
sponsible for instabilities is a fundamental problem relevant
to technological applications. On the other hand, understand-
ing soliton instabilities enables the experimental realization
of breather combs [14–16] and also opens up the possibil-
ity of using microresonators as a platform to investigate the
interplay between dissipative solitons, multimode chaos, and
turbulence [17–19]. The study of dissipative breathers in χ (2)

microresonators has so far been restricted to the regime of op-
tical parametric down-conversion [20,21], where dissipative
solitons become Hopf unstable, leading to the breather for-
mation. This work will investigate whether this scenario takes
place as well in a χ (2) microresonator set for second-harmonic
generation (SHG).
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Assuming that the second harmonic is far from the phase-
matching conditions, the nonlinear interactions resemble
four-wave mixing (cascading regime), and one can expect the
existence of dissipative breathers similar to those observed
in Kerr microresonators. However, it remains an open ques-
tion whether dissipative breathers can also exist for exact
phase matching (SHG breathers). This question is not limited
to microresonators; it also extends to bulk crystals. Recent
studies demonstrated breather solutions only in the cascading
regime and brought up close analogies with the Akhmediev
and Kuznetsov-Ma breathers [22–25]. In this work, we show
that dissipative solitons at the phase-matching point (SHG
solitons) are linearly stable, provided that the group-velocity
walk-off is zero and, therefore, SHG breathers do not exist.
Inducing a nonzero walk-off, which is practically unavoidable
in experiments, opens up a window of instability not only
for the continuous-wave (cw) solution [26] but also for the
solitons and, consequently, triggers SHG breathers. In ad-
dition, our findings give evidence that the walk-off-induced
instability can also lead to the generation of multiple randomly
moving and quasielastically interacting dissipative breathers.
We refer to such a state as a SHG dissipative breather gas,
and we compare it with its SHG dissipative-soliton-gas coun-
terpart. Furthermore, we find that when the light inside the
resonator reaches a statistically stationary turbulent state, the
locking between the first- and second-harmonic components
of the chaotically moving, disappearing, and emerging pulses
remains intact. We refer to this phenomenon as the turbulence-
locking regime.

II. MODEL

In this work, we consider a WGM LiNbO3 ring microres-
onator like the one recently used to experimentally generate a
second-harmonic frequency comb [7]. By pumping ordinary
polarized light with a cw laser at 1065 nm, it is possible to
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achieve natural phase matching and generate extraordinary
polarized second-harmonic light. Dispersion relations around
the first-harmonic cavity mode mp and second-harmonic cav-
ity mode ms = 2mp are defined as

ωe
μ = ωmp + μD1p + 1

2μ2D2p, (1)

ωo
μ = ωms + μD1s + 1

2μ2D2s. (2)

Here, ωmp and ωms denote the cold-cavity resonant frequen-
cies, while μ = 0,±1,±2, . . . represents the mode number
offset with respect to mp,s. The group-velocity dispersion co-
efficients D2p/2π = −100 kHz and D2s/2π = −200 kHz are
both normal, while the repetition rate is D1p/2π = 21 GHz.
The walk-off parameter U = (D1p − D1s) is of the order of
1 GHz at the phase-matching point, 2ωmp = ωms . Throughout
this work we treat the walk-off as a free parameter. The
equations governing the evolution of the first- and second-
harmonic envelopes ψp,s are given by

i∂tψp =
(

δp − iD1p∂θ−1

2
D2p∂

2
θ

)
ψp − i

κp

2
ψp+h − γpψsψ

∗
p ,

(3)

i∂tψs =
(

δs − iD1s∂θ − 1

2
D2s∂

2
θ

)
ψs − i

κs

2
ψs − γsψ

2
p ; (4)

a formal derivation can be found in [27]. Here, δp = ωmp − �

represents the detuning of the cw pump laser frequency �

from the cold-cavity resonance frequency ωp. Similarly, δs =
ωms − 2� denotes the detuning of the second harmonic. From
the detuning definitions it is possible to rewrite the second-
harmonic detuning as δs = 2δp − ε, where ε = 2ωmp − ωms

is the frequency-mismatching parameter. The linewidths are
given by κp/2π = 1 MHz and κs/2π = 4 MHz, setting res-
onator finesse F = D1p/κp ∼ 104. The nonlinear coefficients
are defined as γp,s/2π = 300 MHz W−1/2. The power of
the cw laser W is related to the pump parameter h =
iκp/2

√
η/πFW , where η is the coupling coefficient, η = 0.5.

III. QUADRATIC DISSIPATIVE SOLITONS
AND WALK-OFF-INDUCED INSTABILITY

One of the main effects that the walk-off has on dissipative
quadratic solitons is the fact that localized structures cannot
travel with linear group velocity, and their velocity is selected
by the dissipative effects. The value of the velocity at which
the first- and second-harmonic solitons are locked together is
such that the linear momentum M is conserved in time, i.e.,

d

dt
M = −(κpMp + κsMs) = 0, (5)

where

M = Mp + Ms, (6)

Mp = γs/i
∫ π

−π

(ψ∗
p∂θψp − c.c.)dθ, (7)

Ms = γp/(2i)
∫ π

−π

(ψ∗
s ∂θψs − c.c.)dθ. (8)

The functional form of (7) and (8) is such that Mp + Ms is
conserved in time in the Hamiltonian limit, κp,s = 0 (see [28]).

Note that the momentum is not, in general, a conserved quan-
tity, given the presence of dissipation; however, the system can
support traveling-wave solutions moving with the common
velocity V if the right-hand side (rhs) of Eq. (5) vanishes.

A natural question that arises is how to estimate the value
of this velocity. In order to answer this, it is instructive to
consider the case when κp,s = 0. At such a Hamiltonian limit,
soliton solutions are not limited to a single value of velocity
locking, and V can span a continuous range of values [28].
Since an analytical solution for second-harmonic χ2 cavity
solitons does not exist to our knowledge, it is useful to start
identifying the range of possible velocities at which a solitary
traveling wave can propagate in a microresonator. To do so,
one can rely on the so-called band-gap analysis already intro-
duced in [29].

The idea behind the band-gap analysis is as follows: a
localized or solitary wave moving with velocity V in an optical
cavity can exist on top of a homogeneous cw solution ψ0

p,s
only if the condition

V �= ωμ

μ
(9)

is true for each μ in the cavity, where ωμ represents the
dispersion relation for weakly nonlinear waves propagating on
top of the cw solution. Such a dispersion relation can be found
by performing a standard Bogoliubov–de Gennes analysis. In
order to emphasize the role of the walk-off parameter, we
work in a frame of reference moving with angular velocity
D1p. We can now substitute the ansatz

ψp,s = ψ0
p,s + up,se

iμθ+λt + v∗
p,se

−iμθ+λ∗t , (10)

with λ ∈ C, in Eqs. (3) and (4) and solve the eigenvalue
problem

MA = λA (11)

arising after linearizing with respect to the low-amplitude
perturbations |up,s| and |vp,s|, where A = (up, vp, us, vs)T and

M=

⎡
⎢⎢⎢⎢⎢⎣

Lp − iκp −γpψ
0
s γp

(
ψ0

p

)∗
0

γp

(
ψ0

s

)∗ −L∗
p − iκp 0 γpψ

0

−2gsψ
0 0 Ls − iκs 0

0 2gs

(
ψ0

p

)∗
0 −L∗

s − iκs

⎤
⎥⎥⎥⎥⎥⎦

,

(12)

with κp,s = 0 and the following definitions: Lp ≡ (δp +
1/2D2pμ

2) and Ls ≡ (δs + 1/2d2sμ
2 + Uk). Figure 1 shows

the four phase-speed branches ωμ/μ for low-amplitude waves
numerically computed in the frame of reference moving with
angular velocity D1p. Note that ωμ corresponds to Im(λ).
Dashed lines in the plot highlight a band gap: a range of
velocities such that low-amplitude waves cannot propagate
and, hence, it is possible to prevent energy transferring from
solitonic solutions to low-amplitude waves.

We can now focus on the role of the walk-off parameter in
the band-gap analysis. One of the main effects of the walk-off
is presented in Fig. 1(b), which shows how nonzero walk-off
in the system modifies the dispersion of linear waves, leading
to the narrowing of the band gap. As we increase the walk-off
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FIG. 1. Numerically evaluated phase speed for low-amplitude
waves on the top lower branch cw solution obtained for the following
parameters: δp/2π = −26.64 MHz, δs = 2δp, and W = 260 mW. In
(a) the walk-off parameter U is zero, while in (b) U/2π = −5 MHz.

parameter beyond a critical value Uc, the band gap completely
closes, thereby impeding the existence of soliton solutions.

The presence of walk-off also has a significant impact on
the behavior of SHG solitons, specifically with respect to the
velocity at which the first- and second-harmonic solitons be-
come locked together. As already mentioned, by reintroducing
losses in the system, first- and second-harmonic solitons will
travel at a speed such that the rhs of Eq. (5) vanishes. This
value will be, in general, selected by the values of dissipation
parameters κp,s, as discussed in the Appendix, and it will
lie within the range estimated using band-gap analysis. The
specific value of velocity locking can be evaluated numeri-
cally, with a velocity-selective Newton-Raphson method (see
red circles in Fig. 9 in the Appendix). Alternatively, it can
be analytically shown that for small values of walk-off, the
locking velocity V depends linearly on U :

V = αU . (13)

A derivation of the α coefficient can be found in the
Appendix [see Eq. (A6)], where a comparison between the
velocity-locking values obtained numerically and analytically
is shown in Fig. 10(b).

IV. QUADRATIC DISSIPATIVE BREATHERS

After presenting the influence of the walk-off on the ve-
locity and the existence of SHG soliton solutions, we now
examine its impact on their stability and how it contributes
to the transition from solitons to breathers. It is well known
that breather solutions can exist in the integrable 1D Non-
linear Schrödinger equation (NLS) in the form of time-
[23,24] and space- [25] periodic solutions. In the case of
quadratic nonlinearity, similar solutions have been found only
in the cascading regime limit, where four-wave mixing is
dominant [22]. In our work, such a limit would correspond to
the case with δs � δp. For Kerr optical cavities, where driving
and dissipations are added to the standard NLS equation (also
known as the Lugiato-Lefever equation [30]), breathers can
exist when solitons undergo a Hopf instability [20]. Numerical
and experimental results concerning dissipative breathers can
be found in [16,31]. The main problem concerning finding
SHG breathers in the phase-matching regime is related to the
stability of SHG solitons. In order to study the linear stability

FIG. 2. Existence region for soliton solutions for different values
of detuning and cw-laser input power (a) in the absence of walk-off
and (b) in the presence of walk-of. The existence region is studied up
to −30 MHz, although it can extend beyond that value. The stability
and instability regions are denoted in green and orange, respectively.
The bistability line denotes where the homogeneous cw solution
becomes multivalued.

of soliton solutions, one can modify Eq. (12) by substituting
the soliton profile instead of the cw background solution;
considering low-amplitude perturbations to be generic func-
tions of θ , up,s(θ ), and vp,s(θ ); and redefining Lp ≡ (δp −
1/2D2p∂

2
θ − iV∂θ ) and Ls ≡ [δs − 1/2D2s∂

2
θ − i(V − U )∂θ ].

Different from dissipative solitons in the Kerr case, SHG
solitons appear to be stable for all values of detuning and/or
driving power [see the green region in Fig. 2(a)], as long as
the walk-off parameter is neglected. Note that moving away
from the ideal scenario of perfect group-velocity matching
(zero walk-off) makes it harder to find SHG solitons due to
the closure of the band gap. Only recently has the existence of
quadratic dissipative solitons (DSs) with large walk-off been
proven, but they are limited to the cascading regime [10].
However, it is possible to alter the stability of SHG solitons by
considering a value of the walk-off parameter large enough to
trigger a Hopf instability [see the orange region in Fig. 2(b)]
but less than the critical value Uc responsible for the closure
of the existence gap. By selecting detuning or cw input power
within the orange region in Fig. 2(b), one can investigate the
effects of such instability in the dynamical evolution of the
SHG soliton. Figure 3(a) shows how the instability is respon-
sible for the soliton-breather transition. The plot shows the
dynamics of the first-harmonic component of the SHG soliton
in a comoving frame of reference. This choice was made to
emphasize how, after a few thousand round-trip times, the
soliton starts radiating dispersive waves and stabilizes at a new
velocity. The system reaches a metastable state characterized
by random velocity shifts, as highlighted by the white circle in
Fig. 3(a). Metastability has been tested numerically for up to
4 × 106 round-trip times. Given the finite size of the system,
the emitted dispersive waves cannot escape, and they keep
traveling within the cavity. We stress that this is not a numeri-
cal artifact, but an intrinsic property of microresonators. This
process will trigger a continuous emission and reabsorption of
the waves causing the breathing of the soliton [32]. The coher-
ence of such a state can be observed in the space-time Fourier
analysis of the dynamics. Specifically, from Fig. 3(b) it is
possible to see how the dissipative breather is formed by the
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FIG. 3. (a) Dynamical evolution of the unstable soliton solution. The detuning parameters and cw-laser power are δp/2π = −26.64 MHz,
δs = 2δp, W = 870 mW, and V = −1.62 MHz. (b) Space-time Fourier transform of breather dynamics within the time interval [2.5, 2.6] × 106

round-trip times. The weakly nonlinear dispersion relation is superimposed by the white dashed lines. (c) rf spectrum for the first harmonic.
The inset in (c) shows the first- and second-harmonic spectra (black and orange lines, respectively) of the dissipative breathers after 2.6 × 106

round-trip times.

superposition of several coherent structures, all moving with
the same velocity. The crossing of the breather signal with
the weakly nonlinear dispersion [see the white dashed lines
in Fig. 3(b)] causes the resonant emission of dispersive waves
with characteristic wave number μr ∼ 22 [see the white circle
in Fig. 3(b)]. Note that the weakly nonlinear dispersion is the
same as that plotted in Fig. 1(b) but in a frame of reference
comoving with the soliton. Spectra evaluated after 2.6 × 106

round-trip times are shown in the inset of Fig. 3(c) for both
first and second harmonics. In the first-harmonic spectrum, in
addition to the main peak associated with the cw pumping,
a smaller secondary peak is also present at μ = 22. In order
to evaluate the oscillation period of the SHG breather, one
can evaluate the dominant frequency in the system through
the so-called rf spectrum, evaluated as Ft [〈ψ |ψ〉θ ], where
Ft represents the Fourier transform with respect to time and
〈ψ |ψ〉θ = ∫ |ψ |2dθ . Such a plot is shown in Fig. 3(c), where a
peak is observed at 0.01 GHz. This value is remarkably close
to half of the gap size, as pointed out in a recent study on
dissipative Kerr breathers [33].

V. DISSIPATIVE BREATHER GAS

The effects of the walk-off-induced instability on soliton
dynamics can be further studied by examining the transition
from a SHG soliton to a turbulent state This transition can be
achieved by increasing the growth rate Re(λ) of the linearly
unstable eigenstates responsible for the soliton instability, for
instance, by maintaining the same detuning as shown in Fig. 3
while increasing the input cw power W . Figure 4(a) displays
the time evolution of the first-harmonic component of an
unstable SHG soliton inside the resonator. Due to the walk-
off-induced instability, the soliton first transforms into an
SHG breather, then into a state characterized by an increasing

number of breathers, before finally settling into a turbulent
state similar to the Kerr spatiotemporal chaos observed in [5].
This state is referred to as SHG dissipative breather gas, a
term adopted from the integrable-turbulence community [34].
Unlike integrable systems in which solitons or breathers can
interact only elastically with each other, our system can reach
an out-of-equilibrium stationarity characterized by a multi-
tude of pulses continuously emitting dispersive waves. The
loss of coherence typical of a turbulent state is evident in both
Figs. 4(b) and 4(c), where there is no longer a clear signal
associated with a coherent structure or a well-defined peak in
the rf spectrum.

A question that arises naturally concerns the difference
between the SHG dissipative breather and soliton gas. As
already pointed out, different from dissipative solitons in the
Kerr case, SHG solitons are not affected by Hopf-type insta-
bility; as long as the walk-off parameter is negligible, this
result is independent of the detuning value and the initial
power. Therefore, we can exploit this feature to generate a
gas of SHG dissipative solitons. To engineer such a state, we
start by considering an initial condition characterized by 15
solitons in both harmonics, which we will refer to as a soliton
crystal. Figures 5(a) and 5(b) display a portion of the crys-
tal obtained numerically using the Newton-Raphson method.
These plots allow for a visual comparison between the crystal
(see the black line) and the single-soliton solution (see the
orange line) for the first-harmonic component. Figure 5(c)
demonstrates that the velocity locking of the crystal remains
consistent with that of the single-SHG-soliton solution for dif-
ferent values of the walk-off parameter. Additionally, Fig. 5(c)
confirms the linear trend as predicted in Eq. (13). A substantial
difference between the crystal and the single-SHG-soliton
solution concerns their linear stability. In Fig. 5(d) we plot
the dimensionless value of the total momentum for the system

013520-4



WALK-OFF-INDUCED DISSIPATIVE BREATHERS AND … PHYSICAL REVIEW A 108, 013520 (2023)

FIG. 4. (a) Dynamical evolution of the unstable soliton solution. The detuning parameters and cw-laser power are δp/2π = −26.64 MHz,
δs = 2δp, W = 910 mW, and V = −1.63 MHz. (b) Space-time Fourier transform within the time interval [3, 5] × 104 round-trip times. (c) rf
spectrum evaluated as in Fig. 3(c).

with respect to different values of walk-off. Despite hav-
ing the same velocity, the crystal exhibits higher momentum
due to its higher power intensity. Dashed and solid lines in
Fig. 5(d) denote unstable and stable solutions, respectively.
More specifically, the crystal is unstable for small walk-off
values, different from the single soliton (see the black and
orange lines, respectively). By increasing the walk-off value,
the crystal stabilizes and then destabilizes again, experienc-
ing the same type of walk-off-induced instability experienced
by the single SHG soliton which led to the formation of a SHG
breather, as discussed in the previous section. The different

natures of the two instabilities affecting the crystal can be
understood by considering the spectrum associated with the
most linearly unstable eigenstates of the crystal [see Figs. 5(e)
and 5(f)]. In the case of a small walk-off, the instability leads
to the formation of a secondary comb with a different period-
icity, while for large walk-off values, the instability leads to
the creation of sidebands around the primary comb. As a final
remark, the instability for small values of walk-off appears in
the form of a single positive real eigenvalue λ, while for large
walk-off it appears in the form of a pair of complex*conjugate
eigenvalues with positive real parts [35].

FIG. 5. Space profile of the stationary DS solution and soliton crystal (orange and black lines, respectively) in the case of (a) zero
walk-off and (b) U/2π = −5 MHz. (c) Plot of velocity locking for both a single DS and soliton crystal versus walk-off. (d) Total linear
momentum in dimensionless units versus walk-off. Dashed lines highlight unstable solutions. Fourier spectrum of the soliton crystal (black
lines) superimposed on the Fourier spectrum of unstable crystal eigenstates (green lines) for (e) zero walk-off and (f) higher walk-off,
|U |/2π = 5 MHz. For each panel detuning and cw input power are the same as those used in Fig. 4.
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FIG. 6. (a) Collection of spectra from the dynamical evolution of stationary crystal states for different values of the walk-off parameter.
Each spectrum is measured after 5 × 105 round-trip times. Time evolutions of the soliton crystal for (b) |U |/2π = 1 MHz and (c) |U |/2π =
5 MHz. For each panel detuning and cw input power are the same as those used in Fig. 4.

We will now study the long-term effects of these two
different types of instability on the temporal dynamics of the
crystal. Figure 6(a) shows the first-harmonic component of a
collection of spectra obtained from the dynamical evolution
of stationary crystal states for different values of the walk-off
parameter. Each spectrum is measured after 5 × 105 round-
trip times. As predicted from the linear-stability analysis [see
dashed lines in Fig. 5(d)], the crystals exhibit instabilities
in two separate walk-off regions, denoted by I and II in
Fig. 6(a). The boundaries of these regions are highlighted by
white dashed lines. Examples of the dynamical evolution of
the first-harmonic component of the crystal for each unstable
region are presented in Figs. 6(b) and 6(c). The instability
present in region I causes the breaking of the crystal into its
individual constituents, which are, however, stable according
to the linear stability analysis presented in Fig. 2(a). For this
reason, in Fig. 6(a) it is still possible to identify the trajectories
of the individual solitons and their interaction. This type of
dynamics is, in contrast, not present in the dynamics asso-
ciated with region II, where the crystal seems to transition
into a state similar to the one already reported in Fig. 4(a).
For this reason, we are led to identify the type of turbulence
characterizing region I as a SHG dissipative soliton gas, while
the one characterizing region II is a SHG dissipative breather
gas. To compare these two different types of dissipative gases
in a more quantitative way, it is possible to study the proba-
bility distribution function (PDF) for the field amplitudes. To
do this, we repeat the simulations presented in Figs. 6(b) and
6(c) while considering the same initial conditions but different
random noises.

To construct a PDF, we follow a process that involves
generating a histogram. In this histogram, each bin value,
denoted as vi, is determined using the formula vi = ciN/wi,
where ci represents the number of elements within the bin,
N denotes the total number of data points in the histogram,
and wi represents the bin width, which is set at 1 mW. From

the PDF associated with region I, plotted in Fig. 7(a), one
can see how the first harmonic has a peak around 0.05 W,
while the second harmonic has a peak around 0.03 W (see
the dark gray and light gray histograms, respectively). Such
peaks correspond to the amplitude of the single-SHG-soliton
solution [see Fig. 5(a)], justifying the assumption of a SHG
dissipative soliton gas. Note the presence of a peak for low

FIG. 7. Probability density function or the wave amplitude for
many realizations of (a) the dissipative soliton gas when walk-off is
zero and (b) the dissipative breather gas when walk-off is U/2π =
−5 MHz. Dark gray and light gray histograms are associated with
the first and second harmonics, respectively. (c) Ensemble average of
time evolution of first-harmonic peak counts higher than 0.04 W.
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FIG. 8. Plot of the ratio between ensemble average of the linear
momentum for first and second harmonic over different times. tch

stand for the time when the system fully transits into a turbulent
state. tRT denotes the round trip time defined as the inverse of the
free spectral range of the resonator.

power too, which can be associated with the homogeneous cw
background on which the solitons lie. In contrast, the PDF
for region II, plotted in Fig. 7(b), appears to be flat for both
harmonics. The absence of well-defined peaks is due to the
multitude of low-amplitude dispersive waves constantly emit-
ted by the breathing mechanism and by the fact that each SHG
breather has an amplitude which oscillates between |ψp|2 ∈
[0.2, 0.8] W and |ψs|2 ∈ [0.1, 0.5] W for the first and second
harmonics, respectively. To make sure that the difference in
the PDFs is not simply a consequence of a different number
of high-amplitude pulses in the system, one can measure
the number of peaks with an amplitude higher than a fixed
threshold. Figure 7(c) displays the temporal evolution of the
peak count for the first-harmonic dynamics in regions I and
II. The peak count is averaged over 25 different realizations
characterized by different white noises in the initial condition.
A threshold value of 0.04 W is selected, slightly lower than the
peak power of the single-SHG-soliton solution. Figure 7(c)
reveals that during the initial stage of the dynamics, both
regions exhibit an equal number of peaks. However, due to the
crystal instability, a sudden increase in peak count is observed
specifically in the dynamics associated with region II. This
phenomenon can be attributed to the influence of walk-off,
resulting in an asymmetric shape within the solitons forming
the crystal. This asymmetry is manifested by a minor am-
plitude bump [as depicted in Fig. 5(b)] on the right side of
each peak within the crystal. Over time, the Hopf instability
amplifies this small bump, giving rise to the generation of
multiple pulses within the resonator. Consequently, for a brief
period, the number of these pulses seems to be twice the
count of peaks characterizing the crystal. However, after this
transitional phase, both the SHG dissipative breather and soli-
ton gas settle around an average peak count, which becomes
comparable.

VI. TURBULENCE LOCKING

As a final remark, we will focus on the SHG dissipative
breather gas, showing how the system reaches a statistically
stationary equilibrium. This can be seen by measuring the
ensemble average of the rhs of Eq. (5) over many realizations,
each characterized by a different initial random noise (see

FIG. 9. (a) Plot of the linear momentum for the first (black line)
and second (orange line) harmonics with respect to different soliton
velocities in the absence of walk-off. (b) Ratio of linear momenta vs
soliton velocity for nonzero walk-off, U/2π = 5 MHz. Red circles
indicate the numerically evaluated velocity selection for dissipa-
tion ratios κs/κp = 4 and κs/κp = 1. The detuning parameters and
cw-laser power are the same as those used in Fig. 1(b).

Fig. 8). For this system, statistical stationarity implies that

〈Mp〉
〈Ms〉 = − κs

κp
, (14)

where 〈·〉 stands for the ensemble average over many
realizations. As pointed out in the Appendix, if there is no
walk-off, the single-SHG solution is quiescent, V = 0. This
means that both Mp and Ms are equal to zero, as shown
in Fig. 9(a). The same idea can be applied to the case
of statistical stationarity. If U is zero, then the ensemble
averages 〈Mp〉 and 〈Ms〉 are also zero. On the other hand,
when U is not zero, both 〈Mp〉 and 〈Ms〉 are nonzero, and
their ratio is fixed by the dissipation value. In our system,
where κp/κs = 4, Fig. 8 shows how the ratio Mp/Ms oscillates
around the value −4. This observation suggests that despite
the chaotic state, the first and second harmonics remain
locked together and move with a nonzero average velocity.
We refer to this phenomenon as turbulence locking.

VII. CONCLUSIONS

We presented a study of the impact of walk-off on the
stability of a second-harmonic-generated soliton comb in a re-
alistic quadratic WGM microresonator. We showed that SHG
breathers can be obtained in microresonator cavities away
from the cascading regime. The soliton-breather transition
can, indeed, be achieved away from the cascading regime due
to the instability caused by the walk-off between the first-
and second-harmonic light fields. Soliton instability was also
shown to be responsible for the transition into a turbulent
regime where a multitude of breathers coexist with dispersive
waves. A study of the PDF for the wave amplitude con-
firmed the presence of a walk-off-induced SHG dissipative
breather gas. The dissipative breather gas was then compared
to its SHG dissipative soliton counterpart. Further analysis of
the statistical average of the linear momentum showed the
presence of locking between the turbulent state in the first
and second harmonics. Finally, a semianalytical method was
presented in order to estimate the velocity at which second-
harmonic-induced combs move in the presence of walk-off. In
parallel with this work, experimental observations of the SHG
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FIG. 10. (a) First-harmonic components of neutral eigenvectors
of matrix (A5) and its transpose. Each eigenvector is normalized
to unity. (b) Relative error for analytical prediction for the soliton
locking velocity.

breathers were reported in microresonators made of thin-film
lithium niobate [36].
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APPENDIX: VELOCITY LOCKING

In this Appendix we present an analysis of the velocity
at which solitons are locked together. We start by evaluat-
ing numerically soliton solutions in the Hamiltonian limit.
For numerical reasons it is easier to cast Eqs. (3) and (4)
in dimensionless units by performing the following trans-
formations: Ap,s = ψp,s/

√
W , τ = D1pt , d2p,2s = D2p,2s/D1p,

�p,s = δp,s/D1p, kp,s = κp,s/D1p, gp,s = γp,s

√
W/D1p, and

h = H/
√
W . In order to find soliton solutions moving with

velocity V = V/D1p in the presence of walk-off U = U/D1p

we will make use of a root-finding Newton-Raphson method
to find a stationary solution in a moving frame of reference,

θ → θ − (D1p − V )t, (A1)

for the system of equations(
�p − iV ∂θ − 1

2 d2p∂
2
θ

)
Ap − gpAsA

∗
p + h = 0,[

�s − i(V − U )∂θ − 1
2 d2s∂

2
θ

]
As − gsA

2
p = 0. (A2)

We would like to stress that such a procedure can be easily
applied in the Hamiltonian limit since for each value of the
walk-off parameter soliton solutions admit a continuous range
of velocities. From Figs. 9(a) and 9(b) it is possible to see how
the linear momenta for each harmonic Mp,s vary for different
velocities. Even if we are dealing with a Hamiltonian limit,
we can still extract further information concerning the locking
velocity in the dissipative case by noticing that Eq. (5) forces
moments to have opposite signs:

Mp(V )

Ms(V )
= − κs

κp
. (A3)

From Fig. 9(a) it clear that in the case of zero walk-off
Eq. (A3) is never satisfied unless both Mp and Ms vanish,
which is the case only when V = 0. In contrast, when U �= 0,
Eq. (A3) can be verified for a range of velocities, such as the
one highlighted in yellow in Fig. 9(b). From Eq. (A3) we can
see how the relation between dissipation coefficients allows
us to select a specific value of velocity locking. For example,
Fig. 9(b) shows the velocity at which the soliton will move
considering values of κs/κp = 1 and 4. The estimated velocity
is remarkably close to the one obtained numerically by mak-
ing use of the velocity-selective Newton-Raphson method [see
red circles in Fig. 9(b)].

We now reintroduce dissipation in the system and present
a semianalytical method to estimate the value of the veloc-
ity locking. Such a method requires only knowledge of the
dissipative soliton solution A0

p,s = Ap,s(V = 0,U = 0), which
is, in the case of zero walk-off, easy to evaluate numerically
since, as shown already, the locking velocity vanishes too.
Starting from the case when U = 0 and V = 0, we can assume
that by introducing a small walk-off in the system, U ∼ ε,
the solutions will change accordingly, Ap,s = A0

p,s + ε(Ar
p,s +

iAI
p,s), resulting in the first and second harmonics moving at

nonzero locking velocity V ∼ ε. Considering Eqs. (A2) under
such conditions and separating the real and imaginary parts,
we can write the first order in ε as

MA + V ∂θA0 = U∂θA(0), (A4)

where each column vector contains real and imaginary parts
of the first- and second-harmonic components such that A =
(Ar

p, Ai
p, Ar

s, Ai
s)T . Note that the matrix M is given by

M =

⎡
⎢⎢⎢⎢⎢⎣

−kp − gp
(
A0

s

)i Lp + gp
(
A0

s

)r
gp

(
A0

p

)i −gp
(
A0

p

)r

−Lpgp
(
A0

s

)r −kp + gp
(
A0

s

)i
gp

(
A0

p

)r
gp

(
A0

p

)i

−2gs
(
A0

p

)i −2gs
(
A0

p

)r −ks Ls

2gs
(
A0

p

)r −2gs
(
A0

p

)i −Ls −ks

⎤
⎥⎥⎥⎥⎥⎦

, (A5)

where we used the following definitions: Lp ≡ (�p −
1/2d2p∂

2
θ ) and Ls ≡ (�s − 1/2d2s∂

2
θ ). By noting that η ≡

∂θA0 corresponds to the neutral eigenvector of L, such that
Mη = λη with λ = 0, it is possible to derive the following

equation [28]:

V = U
〈φ|Pη〉
〈φ|η〉 , (A6)

013520-8



WALK-OFF-INDUCED DISSIPATIVE BREATHERS AND … PHYSICAL REVIEW A 108, 013520 (2023)

where Pη = (0, 0, ∂Ar
s, ∂Ai

s)T , 〈·|·〉 defines the scalar
product, and φ corresponds to the neutral eigenvector of
M†. Figure 10(a) shows the first-harmonic components of
η and φ. Despite the fact that Eq. (A6) was derived in the

limit of small walk-off, our semianalytical formula provides
excellent results for all possible values of walk-off where
solitons exists; see Fig. 10(b), where the percent error is
plotted as a function of the value of the walk-off parameter.

[1] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev,
M. L. Gorodetsky, and T. J. Kippenberg, Nature Photon. 8, 145
(2014).

[2] A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P. H.
Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M.
Weiner, and V. Torres-Company, Nat. Commun. 9, 1598 (2018).

[3] S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T.
Zelevinsky, M. Jarrahi, and C. W. Wong, Phys. Rev. X 7,
041002 (2017).

[4] W. Weng, R. Bouchand, E. Lucas, E. Obrzud, T. Herr, and T. J.
Kippenberg, Nat. Commun. 11, 2402 (2020).

[5] M. Karpov, M. H. Pfeiffer, H. Guo, W. Weng, J. Liu, and T. J.
Kippenberg, Nat. Phys. 15, 1071 (2019).

[6] E. Obrzud, I. Breunig, J. Szabados, K. Buse, S. J. Herr, S.
Lecomte, T. Herr, V. Brasch, and Y. Jia, Opt. Lett. 43, 5745
(2018).

[7] J. Szabados, D. N. Puzyrev, Y. Minet, L. Reis, K. Buse, A.
Villois, D. V. Skryabin, and I. Breunig, Phys. Rev. Lett. 124,
203902 (2020).

[8] A. Villois, N. Kondratiev, I. Breunig, D. N. Puzyrev, and D. V.
Skryabin, Opt. Lett. 44, 4443 (2019).

[9] N. Amiune, Z. Fan, Z. Fan, V. V. Pankratov, V. V. Pankratov,
D. N. Puzyrev, D. N. Puzyrev, D. V. Skryabin, D. V. Skryabin,
D. V. Skryabin, K. T. Zawilski, P. G. Schunemann, I. Breunig,
I. Breunig, and I. Breunig, Opt. Express 31, 907 (2023).

[10] D. N. Puzyrev, V. V. Pankratov, A. Villois, and D. V. Skryabin,
Phys. Rev. A 104, 013520 (2021).

[11] K. Beloy et al., Nature (London) 591, 564 (2021).
[12] M. G. Suh, X. Yi, Y. H. Lai, S. Leifer, I. S. Grudinin, G.

Vasisht, E. C. Martin, M. P. Fitzgerald, G. Doppmann, J. Wang,
D. Mawet, S. B. Papp, S. A. Diddams, C. Beichman, and K.
Vahala, Nature Photon. 13, 25 (2019).

[13] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L.
Gorodetsky, Science 361, eaan8083 (2018).

[14] H. Guo, E. Lucas, M. H. P. Pfeiffer, M. Karpov, M. Anderson,
J. Liu, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, Phys.
Rev. X 7, 041055 (2017).

[15] A. A. Afridi, H. Weng, H. Weng, J. Li, J. Liu, M. McDermott,
Q. Lu, W. Guo, W. Guo, and J. F. Donegan, Opt. Continuum 1,
42 (2022).

[16] M. Yu, J. K. Jang, Y. Okawachi, A. G. Griffith, K. Luke, S. A.
Miller, X. Ji, M. Lipson, and A. L. Gaeta, Nat. Commun. 8,
14569 (2017).

[17] M. H. Anderson, A. Tikan, A. Tusnin, J. Riemensberger,
A. Davydova, R. N. Wang, and T. J. Kippenberg, Phys. Rev.
X 13, 011040 (2023).

[18] H. J. Chen, Q. X. Ji, H. Wang, Q. F. Yang, Q. T. Cao,
Q. Gong, X. Yi, and Y. F. Xiao, Nat. Commun. 11, 2336
(2020).

[19] S. Coulibaly, M. Taki, A. Bendahmane, G. Millot, B. Kibler,
and M. G. Clerc, Phys. Rev. X 9, 011054 (2019).

[20] D. V. Skryabin, Phys. Rev. E 60, R3508(R) (1999).
[21] P. Parra-Rivas, C. Mas Arabí, and F. Leo, Phys. Rev. Res. 4,

013044 (2022).
[22] F. Baronio, Opt. Lett. 42, 1756 (2017).
[23] E. A. Kuznetsov, Akad. Nauk SSSR Doklady 236, 575 (1977).
[24] Y.-C. Ma, Stud. Appl. Math. 60, 43 (1979).
[25] N. N. Akhmediev and V. I. Korneev, Theor. Math. Phys. 69,

1089 (1986).
[26] F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S.

Wabnitz, and M. Erkintalo, Phys. Rev. Lett. 116, 033901
(2016).

[27] D. V. Skryabin, J. Opt. Soc. Am. B 37, 2604 (2020).
[28] D. V. Skryabin and A. R. Champneys, Phys. Rev. E 63, 066610

(2001).
[29] A. Villois and D. Skryabin, Opt. Express 27, 7098 (2019).
[30] L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58, 2209

(1987).
[31] M. Johansson, V. E. Lobanov, and D. V. Skryabin, Phys. Rev.

Res. 1, 033196 (2019).
[32] D. V. Skryabin and W. J. Firth, Opt. Lett. 24, 1056 (1999).
[33] D. N. Puzyrev and D. V. Skryabin, Opt. Express 30, 39396

(2022).
[34] G. El and A. Tovbis, Phys. Rev. E 101, 052207 (2020).
[35] S. Wang, Z. Qi, T. F. Carruthers, A. M. Weiner, C. R. Menyuk,

J. Jaramillo-Villegas, G. D’Aguanno, and M. Qi, Optica 6, 1220
(2019).

[36] J. Lu, D. N. Puzyrev, V. V. Pankratov, D. V. Skryabin, F. Yang,
Z. Gong, J. B. Surya, and H. X. Tang, Nat. Commun. 14, 2798
(2023).

013520-9

https://doi.org/10.1038/nphoton.2013.343
https://doi.org/10.1038/s41467-018-04046-6
https://doi.org/10.1103/PhysRevX.7.041002 
https://doi.org/10.1038/s41467-020-15720-z
https://doi.org/10.1038/s41567-019-0635-0
https://doi.org/10.1364/OL.43.005745
https://doi.org/10.1103/PhysRevLett.124.203902
https://doi.org/10.1364/OL.44.004443
https://doi.org/10.1364/OE.476436
https://doi.org/10.1103/PhysRevA.104.013520
https://doi.org/10.1038/s41586-021-03253-4
https://doi.org/10.1038/s41566-018-0312-3
https://doi.org/10.1126/science.aan8083
https://doi.org/10.1103/PhysRevX.7.041055
https://doi.org/10.1364/OPTCON.444775
https://doi.org/10.1038/ncomms14569
https://doi.org/10.1103/PhysRevX.13.011040
https://doi.org/10.1038/s41467-020-15914-5
https://doi.org/10.1103/PhysRevX.9.011054
https://doi.org/10.1103/PhysRevE.60.R3508
https://doi.org/10.1103/PhysRevResearch.4.013044
https://doi.org/10.1364/OL.42.001756
https://ui.adsabs.harvard.edu/abs/1977DoSSR.236..575K/abstract
https://doi.org/10.1002/sapm197960143
https://doi.org/10.1007/BF01037866
https://doi.org/10.1103/PhysRevLett.116.033901
https://doi.org/10.1364/JOSAB.397015
https://doi.org/10.1103/PhysRevE.63.066610
https://doi.org/10.1364/OE.27.007098
https://doi.org/10.1103/PhysRevLett.58.2209
https://doi.org/10.1103/PhysRevResearch.1.033196
https://doi.org/10.1364/OL.24.001056
https://doi.org/10.1364/OE.473008
https://doi.org/10.1103/PhysRevE.101.052207
https://doi.org/10.1364/OPTICA.6.001220
https://doi.org/10.1038/s41467-023-38412-w

