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Propagation of spatiotemporal optical vortex beams in linear, second-order dispersive media
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In this paper, we study the behaviors of spatiotemporal optical vortex (STOV) beams propagating in linear
dispersive media. Starting with the Fresnel diffraction integral, we derive a closed-form expression for the
STOV field at any propagation distance z in a general second-order dispersive medium. We compare our general
result to special cases published in the literature and examine the characteristics of higher-order STOV beams
propagating in dispersive materials by varying parameters of the medium and source-plane STOV field. We
validate our analysis by comparing theoretical predictions to numerical computations of a higher-order STOV
beam propagating through fused silica, where we model the index of refraction with the corresponding Sellmeier
equation.

DOI: 10.1103/PhysRevA.108.013519

I. INTRODUCTION

Beam shaping or control has traditionally focused on ma-
nipulating light either spatially or temporally. However, this
has begun to change with the development of space-time-
coupled (STC) light beams. As the name implies, STC fields
are solutions to Maxwell’s equations where space and time
are not multiplicatively separable. Although known for quite
some time, STC fields and their effects were first observed
with the use of femtosecond pulsed lasers and considerable ef-
fort has been devoted to modeling and measuring STC [1–6].
In the past few years, attention has turned to controlling STC
to create light beams with novel and exploitable traits. Recent
examples of STC light include beams whose space-time pro-
files can be controlled in free-space propagation [7–11], fields
that experience anomalous refraction at material interfaces
[12–14], and light that is immune to modal dispersion in
waveguides [15].

Of all the STC light that has been studied to date [16,17],
probably the most popular today are the so-called spatiotem-
poral optical vortex (STOV) beams. STOV beams possess a
phase vortex that couples their space and time dimensions
making them the space-time counterparts of traditional vor-
tex fields, such as Laguerre-Gauss (LG) and Bessel-Gauss
(BG) beams [18–21]. Like LG and BG light fields, STOV
beams carry orbital angular momentum (OAM); in contrast,
the OAM direction is transverse to the direction of propaga-
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tion [22–24]. This peculiarity has made STOV beams quite
popular due to their potential uses in optical trapping, atomic
optics, and optical communications.

STOV carrying light beams are now routinely generated
in the laboratory [24–32] and much effort recently has been
dedicated to understanding how these beams evolve as they
propagate. Indeed, several recent papers are devoted to this
subject [27,29,33–35]. Of these, Refs. [34,35] are the most
relevant: In the former, the author derives an expression for the
field of a propagated STOV beam of any order in a nondisper-
sive medium. Prior to this work, such an expression had only
been obtained for first-order STOV fields [35]; others exam-
ined STOV propagation either numerically or experimentally
[24,28–30,33]. The authors of Ref. [35] present modal analy-
sis, using spatiotemporal Hermite-Gauss (HG) beams as basis
or expansion functions, to study STOV fields in both vacuum
and dispersive media. While their modal approach is generally
applicable to STOVs of any order [36], the authors analyze
only first-order STOV beams. What remains to be found is
a single expression for higher-order STOV propagation, like
that in Ref. [34], yet applicable in dispersive media (see
Ref. [35]). This need becomes more imperative as STOV
beams transition from research to applied physics.

In this paper, we derive such an expression. Starting in
the temporal frequency ω domain with the Fresnel diffraction
integral, we derive the ω-domain field for a propagated higher-
order STOV beam applicable in any linear, homogeneous, and
isotropic medium. Then, assuming that the STOV source field
is narrow band (as in all experiments to date), we Fourier
transform the result to obtain the desired time-domain expres-
sion. We discuss special cases, including zeroth- (equivalent
to a pulsed Gaussian beam) and first-order STOVs as well as
nondispersive media, and confirm that our expression simpli-
fies to the corresponding relations in the published literature.
In addition, we study, in a manner similar to Ref. [35], how
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higher-order STOVs behave in dispersive media by vary-
ing the group velocity dispersion (GVD) coefficient and the
STOV’s ellipticity (defined below). Lastly, we validate our
analysis computationally by comparing theory to numerical
results of a higher-order STOV beam propagating through
fused silica, modeling its index of refraction using the Sell-
meier equation. We conclude with a brief summary of our
work.

II. THEORY

A. Frequency-domain expression

It is convenient to begin the analysis in the temporal fre-
quency ω domain and therefore, we start with the Fresnel
diffraction integral [37]:

U (ρ, z, ω) = exp ( jkz)

jλz
exp
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jk

2z
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where j = √−1, ρ = x̂x + ŷy, and k and λ are the wave num-
ber and wavelength in the dispersive medium, respectively.
The dependence of k on ω is implicit and omitted for brevity.

The z = 0 or source-plane field in Eq. (1) is the Fourier
transform of the time-domain STOV field, which has the form
of a zeroth-order (zero radial index) spatiotemporal LG beam
[27,29,34,35], namely,
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Here, A controls the field’s amplitude; σx, σy, and σt are
the 1/e radii of the beam in the x, y, and t dimensions,
respectively; � is the topological charge or order of the STOV;
sgn(x) is the signum function; and ωc is the optical or carrier
frequency. We assume a quasimonochromatic regime where
the envelope of the STOV field comprises many optical cy-
cles, such that σtωc � π . This condition is satisfied by all
STOV beams generated in the literature to date. For example,
in Refs. [24,25,27–30], STOV fields are generated having
λc ≈ 800 nm ( fc ≈ 375 THz) and σt ≈ 50 fs, making σtωc ≈
118 � π .

Computing the Fourier transform of Eq. (2), see 3.462.4 in
Ref. [38], and substituting the result into Eq. (1) yields
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where ω̄ = ω − ωc and H|�|(x) is an |�|th-order Hermite polynomial [38,39]. We now make the substitutions u′ = x′/σx and v′ =
y′/σy (likewise for the observation coordinates u = x/σx and v = y/σy) and recognize that NFx = kσ 2

x /(2z) and NFy = kσ 2
y /(2z)

are the Fresnel numbers in the x and y directions, respectively; these transform Eq. (3) into
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Both integrals can be evaluated in closed form, the latter by making the substitution ψ = σt ω̄/2 + sgn(�)u′, completing the
square of the resulting exponential’s argument, and finally applying 7.374.10 in Ref. [38]. The result, after some effort, is
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B. Time-domain expression

Equation (5) is the frequency-domain field for a STOV
beam propagated to any location z. To obtain the time-domain
field, we must inverse Fourier transform Eq. (5), which is
generally not possible because of the nonlinear ω dependence
of k. However, since our STOV field is narrow band (recall
σtωc � π ), we can expand k in a Taylor series about ωc and

retain only the first three terms, such that

k(ω) ≈ k(ωc) + k′(ωc)ω̄ + k′′(ωc)
ω̄2

2
, (6)

where k(ωc), k′(ωc), and k′′(ωc). denoted as kc, k′
c, and k′′

c
hereafter, are the traditional wave number kc = ωc/vp (vp is
the phase velocity), inverse group velocity k′

c = 1/vg, and

013519-2



PROPAGATION OF SPATIOTEMPORAL OPTICAL VORTEX … PHYSICAL REVIEW A 108, 013519 (2023)

GVD coefficient at ωc, respectively. Substituting Eq. (6) into Eq. (5), approximating NFα ≈ k2
c σ

2
α /(2z) (i.e., diffraction’s

dependence on ω̄ is negligible over the STOV’s bandwidth), and inverse Fourier transforming the result produces
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where zRα = k2
c σ

2
α /2 (α = x, y) is the Rayleigh range and qα = z − jzRα is the complex Gaussian beam parameter. In addition,

τ = t − k′
cz is the retarded time and σ ′′ = 1 − j sgn(k′′

c )z/zD, where zD = σ 2
t /(2|k′′

c |) is the dispersion length. The remaining
integral in Eq. (7) can be evaluated using the same procedure that led to Eq. (5); the final result is
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Equation (8) is the main theoretical result of this paper, and
there are a few aspects of the expression worth noting:

(i) When � = 0, Eq. (8) simplifies to the expression for
a pulsed Gaussian beam propagating in a dispersive medium
[40–43]. The exponentials in Ue are the spatial and temporal
envelopes, respectively. Both have Gaussian amplitudes and
chirped phases. In the former, the phase is up chirped, model-
ing a spatially diverging wavefront; whereas, in the latter, the
chirp is either up or down depending on the sign of k′′

c . The
unitless dispersion parameter σ ′′ is ultimately responsible for
pulse broadening and temporal chirping.

(ii) In a nondispersive medium, vg = vp, σ ′′ = 1, and
Eq. (8) reduces to Eq. (7) in Ref. [34].

(iii) For a first-order (� = ±1) STOV beam, it is relatively
easy to show, by applying the summation theorem for Hermite
polynomials (8.958.1 in Ref. [38]), that Eq. (8) is equivalent
to Eq. (7) in Ref. [35]. Indeed, we can use that theorem to
write Eq. (8) as a sum of HG beams for any �, in effect, gen-
eralizing the first-order result in Ref. [35]. Applying 8.958.1
in Ref. [38], Eq. (8) becomes
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The function hy
0 is of the exact same form as hx

i , just with
y replacing x. We note that Eq. (9) is expanded in terms

of elegant HG beams [19], vice the standard modes used in
Ref. [35].

(iv) Lastly, in the far zone zRα/qα ∼ zRα/z + j(zRα/z)2,
which simplifies Eq. (8) to
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where θα = α/z and θ0α = σα/zRα are the observation and
divergence angles, respectively.

C. Discussion

To investigate the behaviors of higher-order STOV beams
propagating in dispersive media, we predicted the space-time
profiles of the field’s envelope, i.e., Ue(x, 0, z, t ), using Eq. (8)
at multiple GVD coefficients, STOV ellipticities, and prop-
agation distances. The results are shown in Figs. 1 and 2,
the organization of which is similar to figures presented in
Refs. [34,35]: Each figure consists of a 5 × 3 grid of images;
each element of the grid shows the magnitude (top) and phase
(bottom) of the propagated Ue. Both the retarded time τ (ab-
scissa) and space x (ordinate) axes are normalized by the pulse
and beam radii, i.e., σt (z) = σt

√
1 + (z/zD)2 and σx(z) =

σx

√
1 + (z/zRx )2, respectively. Row-wise, the images show

how the field’s envelope varies versus normalized GVD co-
efficient k̂′′

c = k′′
c (kc/k′2

c ), the values of which are given as row
headings. The normalized GVD coefficient, in combination
with the STOV ellipticity γ = vgσt/σx = σt/(k′

cσx ), relates
zD and zRx, such that zD/zRx = γ 2/|k̂′′

c |. Negative values of
k̂′′

c imply anomalous dispersion, k̂′′
c = 0 is a nondispersive
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FIG. 1. Space-time profiles of a propagated third-order (� =
3) STOV beam [Ue(x, 0, z, t ) in Eq. (8)] with ellipticity γ =
σt/(k′

cσx ) = 1. The normalized GVD coefficients k̂′′
c = k′′

c (kc/k′2
c )

and propagation distances z are given as row and column headings,
respectively. The top and bottom images in each 2 × 1 group are |Ue|
and arg(Ue).

medium, and lastly, k̂′′
c > 0 is normal dispersion. The columns

in the figures correspond to propagation distances, reported
as multiples of the Rayleigh range zRx. Figure 1 shows the
results for a third-order (� = 3) STOV beam with an ellipticity
γ = 1, i.e., an initially circular STOV beam in the x-vgt plane.
Lastly, Fig. 2 displays the same results as Fig. 1; however, this
time for a fourth-order (� = −4) STOV beam with a γ = 0.5.

Inspection of Figs. 1 and 2 reveals that the behaviors of
multiorder STOV fields in dispersive media are generally

FIG. 2. Space-time profiles of a propagated fourth-order (� =
−4) STOV beam [Ue(x, 0, z, t ) in Eq. (8)] with ellipticity γ =
σt/(k′

cσx ) = 0.5. The normalized GVD coefficients k̂′′
c = k′′

c (kc/k′2
c )

and propagation distances z are given as row and column headings,
respectively. The top and bottom images in each 2 × 1 group are |Ue|
and arg(Ue).

similar to � = 1 beams (see Fig. 2 in Ref. [35]). In particular,
the orientations of the STOV ellipses for a specific γ and k̂′′

c
are identical. Also, the direction of phase circulation around
a vortex or phase singularity is the same. This direction can
clearly be seen in the phase images. Take for instance, the
images for k̂′′

c = −1 in Fig. 1, i.e., the first row of the figure:
For z = zRx/5, the third-order vortex is clearly visible in the
phase image, and the direction of circulation is counterclock-
wise (i.e., positive charge). As the beam propagates, the � = 3
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vortex and its charge are maintained. This is an expected
result, as STOV beams (spatiotemporal LG beams, more
generally) are solutions to the space-time paraxial wave
equation in media with anomalous dispersion [22,23,25,30].
Consequently, they maintain their shape in such media, if
diffraction and dispersion are equal, viz., zRx = zD. Recently,
this behavior has been experimentally confirmed [28,30]. For
the other cases of anomalous dispersion (γ �= 1 or 0 > k̂′′

c >

−1), the multiorder vortex generally splits into first-order vor-
tices, with the charges remaining the same (positive in Fig. 1
and negative in Fig. 2).

In nondispersive and normally dispersive media, the ini-
tial multiorder vortex splits into � = ±1 vortices due to the
asymmetry between diffraction and dispersion, a phenomenon
called space-time astigmatism. Indeed, one can clearly see this
astigmatism in the last row and last column phase images in
Figs. 1 and 2. For nondispersive media in particular, space-
time astigmatism eventually (in the far zone) leads to the
� = ±1 vortices being stretched into parallel lines (π phase
jumps) oriented in the direction of the zeros of what ultimately
becomes an �th-order Hermite polynomial, see Eq. (11) and
the phase images for k̂′′

c = 0 and z = 5zRx in Figs. 1 and 2.
Since the vortices are now π phase steps corresponding to the
zero crossings of the Hermite polynomial, phase circulation
ceases. Nevertheless, until the field’s envelope assumes its
asymptotic far-zone form, the vortex charges are maintained
(again, positive in Fig. 1 and negative in Fig. 2). This behavior
was reported and analyzed in Ref. [34].

In contrast, for normally dispersive media, the vortices can
reverse polarity [22,23]. This is most evident in the last row
of Fig. 1, where at z = zRx/5 three positively charged vortices
are clearly present. At z = zRx, the vortices have transitioned
to three π phase steps. Finally, at z = 5zRx, we again ob-
serve three � = 1 vortices; however, they are now negatively
charged. We see the same charge reversal in the corresponding
images in Fig. 2.

It should be noted that for γ = 1, k̂′′
c = 1, and z = zRx

(row five and column two of Fig. 1), we obtain a Ue that is
essentially equivalent to the far-zone Ue in nondispersive me-
dia, with the only differences being the spatial and temporal
chirps. We can derive the condition for this equivalence by
setting 1/σ ′′ = zRx/qx and substituting zD = zRxγ

2/k̂′′
c . The

result is simply k̂′′
c = γ 2 implying that zRx = zD. As discussed

above, when this condition is met in media with anomalous
dispersion, the STOV’s shape is preserved during propagation,
exactly like the images in the first row of Fig. 1.

III. NUMERICAL VALIDATION

In this section, we analyze numerical results of a higher-
order STOV beam propagating through fused silica. Before
presenting and comparing those results to predictions using
Eq. (8), we briefly discuss the details of the numerical compu-
tation.

A. Setup

The starting point for the numerical analysis was the ω-
domain propagation expression given in Eq. (5), which we
evaluated at multiple z and then inverse fast Fourier trans-

formed (FFT). The STOV beam in the source plane had
the following parameter values: λc = 800 nm, A = 1, � =
−5, σx = σy = 0.5 mm, and σt = 50 fs. We discretized the
space-frequency (x-ω̄) domain STOV field using Nx × Nω =
13, 262 × 13, 262 points with grid spacings equal to ω =
0.127 THz and x = 0.954 μm, respectively. The FFT linked
the ω̄- and t-domain grids, such that t = 2π/(Nωω ) =
3.74 fs and Lt = Nωt = 49.5 ps.

For Eq. (5), we computed the wave number k = ωn(ω)/c
and Fresnel number NFα over the 13,262-point ω grid (i.e., the
ω̄ grid described above centered at ωc) using the fused silica
Sellmeier equation for the index of refraction n(ω) published
in Ref. [44]. Applying that relation at λc = 800 nm, the kc,
k′

c, and k′′
c used in the theoretical expression Eq. (8) were

11.414 rad/μm, 4.894 fs/μm, and 0.036163 fs2/μm, respec-
tively. These, when combined with the σt and σx listed above,
made the ellipticity and normalized GVD coefficient equal to
γ = 0.0204 and k̂′′

c = 0.0172.
Lastly, the propagation distances in the numerical solutions

were z = zD/5, zD, 5zD, 10zD, 20zD, zRx, and 3zRx (zRx ≈
40zD). We have also included a 40 s animation as Supple-
mental Material, which shows the evolution of the STOV
beam in fused silica in steps of z ≈ zD/5 over the same
z ∈ [zD/5, 3zRx] range [45].

B. Results

Figure 3 shows the results and is organized as follows.
Figure 3(a) is composed of two rows and six columns of
2 × 1 images. The first and second rows show the theoretical
[computed using Eq. (8)] and numerical Ue(x, 0, z, t ), while
the columns, from left to right, display the Ue for increasing
z—the values of which are provided as column headings. Like
in Figs. 1 and 2, |Ue| and arg(Ue) are the top and bottom im-
ages in each 2 × 1 element comprising Fig. 3(a). In addition,
the theoretical and numerical |Ue| at each z are plotted using
the same color scale. Figure 3(b) directly compares theory
and the numerical results by plotting the diagonal slices
through the |Ue| in Fig. 3(a). The theoretical and numerical
results are the solid-blue and dashed-red traces, respectively.

Overall, the theoretical and numerical results are in excel-
lent accord. The quality of these results validates our analysis
in Sec. II. Note that in Fig. 3(a) we observe repeating |Ue|,
just like in Figs. 1 and 2. Indeed, aside from physical size and
amplitude values, the |Ue| at z = zD and zRx are effectively
equivalent. In addition, the |Ue| at z = 5zD ≈ zRx/8 and z =
10zD ≈ zRx/4 (i.e., the temporal far zone) are very similar to
the far zone |Ue| for an � = −5 STOV beam in nondispersive
media.

IV. CONCLUSION

In this paper, we derived a closed-form expression for
the STOV field of any order, at any propagation distance
z, in a second-order dispersive medium. We then analyzed
our general result by comparing it to special cases in the
literature and examined STOV beam behavior in disper-
sive media by varying both the initial STOV’s ellipticity
and the GVD coefficient of the medium. We validated our
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FIG. 3. Numerical results of a fifth-order, negatively charged STOV beam propagating through fused silica. (a) The top and bottom rows
of 2 × 1 figures show the theoretical and numerical results, with |Ue(x, 0, z, t )| and arg[Ue(x, 0, z, t )] displayed as the top and bottom images,
respectively. The theoretical and numerical |Ue| at each propagation distance z are plotted using the same color scale. (b) Diagonal slices
through the theoretical and numerical |Ue| in (a).

theoretical result computationally by inverse Fourier trans-
forming (i.e., inverse FFT) the frequency domain expression
for a fifth-order, negatively charged STOV beam propagating
through fused silica, modeling the index of refraction over the
STOV’s bandwidth using the Sellmeier equation. We com-
pared the numerical STOV field results to those predicted by
our analytical expression and found them to be in excellent
agreement.

STOV beams and space-time-coupled fields, more gen-
erally, are new and exciting advancements in beam control
research with many potential applications. Our work, which
predicts how STOV-carrying light behaves in general linear

media, is a necessary step in ultimately applying these struc-
tured light fields.
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