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Quantum squeezing is an important resource in modern quantum technologies, such as quantum precision
measurement and continuous-variable quantum information processing. The generation of squeezed states of
mechanical modes is a significant task in cavity optomechanics. Motivated by recent interest in multimode
optomechanics, it becomes an interesting topic to create quadrature squeezing in multiple mechanical resonators.
However, in the multiple-degenerate-mechanical-mode optomechanical systems, the dark-mode effect strongly
suppresses the quantum effects in mechanical modes. Here we study the generation of mechanical squeezing in
a two-mechanical-mode optomechanical system by breaking the dark-mode effect with the synthetic-gauge-field
method. We find that, when the mechanical modes work at a finite temperature, the mechanical squeezing is
weak or even disappears due to the dark-mode effect, while the strong mechanical squeezing can be generated
once the dark-mode effect is broken. In particular, the thermal-phonon-occupation tolerance of the mechanical
squeezing is approximately three orders of magnitude larger than that without breaking the dark-mode effect.
We also generalize this method to break the dark modes and to create the mechanical squeezing in multiple-
mechanical-mode optomechanical systems. Our results describe a general physical mechanism and pave the way
towards the generation of noise-resistant quantum resources.
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I. INTRODUCTION

Cavity optomechanics [1–3], which focuses on the
radiation-pressure interaction between electromagnetic fields
and macroscopic mechanical resonators, has attracted much
attention from several subfields in physics, such as op-
tics, quantum physics, and nanosciences. Recently, many
notable accomplishments have been made in cavity optome-
chanics, including the ground-state cooling of mechanical
modes [4–7], the demonstration of strong linearized optome-
chanical couplings [8–10], and the coherent quantum state
transfer between optical and mechanical modes [11,12]. In
addition, as a promising research platform, optomechani-
cal systems have been widely used to study the quantum
properties of macroscopic mechanical resonators, such as
macroscopic quantum superposition [13–15], mechanical en-
tanglement [16–19], and mechanical squeezing [20–23].

In recent decades, the generation of squeezed states in
mechanical resonators has become an important goal in cavity
optomechanics [3], because these states have a wide range
of applications in modern quantum technologies, including
high-precision measurement [24–27] and continuous-variable
quantum information processing [28]. Up to now, vari-
ous schemes have been proposed to generate mechanical
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squeezing, including parametric amplification [29,30], quan-
tum measurement [31–34], parametric modulation [35–38],
quantum reservoir engineering [39–42], mechanical non-
linearities [43–46], and squeezed-state transfer [47–49]. In
particular, the mechanical squeezing has been experimentally
achieved in electromechanical systems [50–53]. Motivated by
recent interest in multimode optomechanical systems [54–60],
an interesting task arising is whether we can simultane-
ously create single-mode quadrature squeezing of multiple
mechanical modes. However, in multiple-mechanical-mode
optomechanical systems, the dark-mode effect [61–69] will
be induced when multiple degenerate mechanical modes are
coupled in parallel to a common optical mode. It has been
shown that the dark-mode effect strongly suppresses both the
ground-state cooling of the mechanical modes and the gener-
ation of optomechanical entanglement [61,66–69]. Since the
quantum squeezing is also a kind of quantum effect and it is
highly susceptible to thermal noise, a natural question now
being raised is whether the dark-mode effect will affect the
quantum squeezing of the mechanical modes. Furthermore, is
it possible to generate and significantly enhance the squeezing
of multiple mechanical modes via dark-mode engineering in
these multiple-mechanical-mode optomechanical systems?

In this paper, we use the synthetic-gauge-field method
to generate strong quantum squeezing of two mechanical
modes by breaking the dark-mode effect. Concretely, we
consider a two-mechanical-mode optomechanical system in-
volving two degenerate mechanical modes and an optical
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mode. Here a degenerate optical parametric amplifier (OPA)
is placed inside the optical cavity to generate the squeez-
ing of the optical mode [70], then the optical squeezing is
transferred to the mechanical modes via the optomechan-
ical interactions working at red-sideband resonance. Note
that the degenerate OPA has been widely used in cavity op-
tomechanics [48,71–78]. For example, the degenerate OPA
has been suggested to improve the optomechanical cool-
ing [73–75], observe the normal-mode splitting of mechanical
resonator [76], enhance the effective strength of optomechan-
ical interaction [77], enhance the quantum entanglement [78],
and improve the precision of quadrature measurement [27].
To generate a synthetic gauge field and break the dark-mode
effect, we construct a loop-coupled configuration with the
optomechanical and phase-dependent phonon-hopping cou-
plings in this optomechanical system. The synthetic gauge
field has been experimentally achieved in the phase-dependent
loop-coupled optomechanical systems [79–87]. We find that
quantum squeezing of the two mechanical modes can be
largely enhanced by breaking the dark mode, and the gen-
erated mechanical squeezing is extraordinarily robust against
the thermal noise. In particular, the mechanical squeezing
can be persisted even when the thermal phonon number
takes an extremely high value. In addition, we generalize
the method for generation of mechanical squeezing to the
multiple-mechanical-mode optomechanical system by break-
ing the dark mode with the synthetic-gauge-field method. Our
work describes a general physical mechanism, and it pro-
vides a different mean to generate the noise-resistant quantum
resources against the dark modes.

The rest of this paper is organized as follows: In Sec. II,
we describe the physical model and present the Hamiltonian.
In Sec. III, we derive both the quantum Langevin equa-
tions and the Lyapunov equation. In Sec. IV, we study the
squeezing transfer from the squeezed optical mode to the
mechanical modes and investigate the fragile-to-robust me-
chanical squeezing with the synthetic-gauge-field method. In
Sec. V, we study the quantum squeezing of multiple mechan-
ical modes in both the dark-mode unbreaking (DMU) and
dark-mode breaking (DMB) cases. In Sec. VI, we present the
comparison on the squeezing generation in previous theoreti-
cal proposals and the present proposal. Finally, we give a brief
conclusion in Sec. VII.

II. MODEL AND HAMILTONIAN

We consider a three-mode optomechanical system consist-
ing of an optical mode and two degenerate mechanical modes,
as depicted in Fig. 1. Here, a degenerate OPA is placed in
the optical cavity and used to generate quadrature squeez-
ing of the optical mode. The generated optical squeezing is
transferred to the mechanical mode through the linearized
optomechanical couplings working in the red-sideband res-
onance regime. We assume that the OPA is parametrically
pumped by a coherent field at frequency ωm + ωL with a
gain � (depending on the pumping intensity) and a phase φ.
When the two degenerate mechanical modes are coupled to
a common optical mode, the two mechanical modes will be
hybridized into a bright mode and a dark mode. In this case,
the mechanical dark mode decouples from the optical mode,
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FIG. 1. Schematic of a loop-coupled three-mode optomechanical
system. A degenerate OPA is placed inside the optical cavity and it is
pumped by a driving field at frequency ωm + ωL with the parametric
gain � and the parametric phase φ. The optical mode a (resonance
frequency ωc, decay rate κ) is optomechanically coupled to two me-
chanical modes b1 (ω1, γ1) and b2 (ω2, γ2) with the coupling strengths
g1 and g2, respectively. Two mechanical modes are coupled to each
other via a phase-dependent phonon-hopping interaction (coupling
strength η, modulation phase θ ). Moreover, the optical cavity is
driven by a laser with frequency ωL and amplitude 	.

and it cannot be cooled into its quantum ground state via the
optomechanical cooling, then the mechanical squeezing will
be destroyed by the residual thermal-excitation noise in the
dark mode. To break this mechanical dark mode, we intro-
duce a phase-dependent phonon-hopping interaction between
the two mechanical modes with a coupling strength η and a
modulation phase θ . Moreover, a driving field with amplitude
	 and frequency ωL is applied to the optical cavity.

In a rotating frame defined by exp(−iωLa†at ), the system
Hamiltonian reads (with h̄ = 1)

H = 
ca†a +
∑
l=1,2

[ωl b
†
l bl + gla

†a(bl + b†
l )]

+ η(eiθb†
1b2 + H.c.)

+ i�(eiφa†2e−2iωmt − H.c.) + (	a + H.c.), (1)

where a† (a) and b†
l (bl=1,2) are, respectively, the creation (an-

nihilation) operators of the optical and lth mechanical modes
with the corresponding resonance frequencies ωc and ωl . The
parameter 
c = ωc − ωL is the detuning of the optical mode
frequency with respect to the driving laser frequency. The
gl=1,2 terms describe the optomechanical couplings between
the optical mode and the two mechanical modes, the η term
describes the phase-dependent phonon-exchange interaction
between the two mechanical modes, the 	 term denotes the
driving of the input laser, and the � term represents the
coupling between the optical mode and the degenerate OPA.
Here, the phase-dependent phonon-hopping interaction is in-
troduced to generate a synthetic gauge field, which controls
the dark-mode effect.
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III. QUANTUM LANGEVIN EQUATIONS
AND LYAPUNOV EQUATION

Based on Hamiltonian (1), we can obtain the Langevin
equations for the optical mode and the two mechanical modes
as

ȧ = −(κ + i
c)a − i
∑
l=1,2

[gla(bl + b†
l )] + 2�eiφa†e−2iωmt

− i	 +
√

2κain,

ḃ1 = −(γ1 + iω1)b1 − ig1a†a − iηeiθb2 +
√

2γ1b1,in,

ḃ2 = −(γ2 + iω2)b2 − ig2a†a − iηe−iθ b1 +
√

2γ2b2,in, (2)

where κ is the decay rate of the optical mode, and γl=1,2 is
the damping rate of the lth mechanical mode. The operators
ain (a†

in) and bl,in (b†
l,in) are the noise operators associated with

the optical mode and the lth mechanical mode, respectively.
These noise operators have nonzero correlation functions [88]
〈ain(t )a†

in(t ′)〉 = δ(t − t ′), 〈b†
l,in(t )bl,in(t ′)〉 = n̄lδ(t − t ′), and

〈bl,in(t )b†
l,in(t ′)〉 = (n̄l + 1)δ(t − t ′), with n̄l=1,2 being the

environmental thermal-excitation occupation of the lth me-
chanical mode.

In the strong-driving case, we can expand the operators o ∈
{a, a†, bl=1,2, b†

l } as a sum of their steady-state average values
and fluctuation operators (i.e., o = 〈o〉ss + δo). By neglecting
the higher-order terms in the fluctuation equations, Eq. (2) can
be linearized as

δȧ = −(κ + i
)δa − i
∑
l=1,2

[Gl (δbl + δb†
l )] +

√
2κain

+ 2�eiφe−2iωmtδa†,

δḃ1 = −iG∗
1δa − (γ1 + iω1)δb1 − iηeiθ δb2 − iG1δa†

+
√

2γ1b1,in,

δḃ2 = −iG∗
2δa − iηe−iθ δb1 − (γ2 + iω2)δb2 − iG2δa†

+
√

2γ2b2,in, (3)

where 
 = 
c + 2
∑

l=1,2 glRe[〈bl〉ss] is the normalized
driving detuning with Re[〈bl〉ss] being the real part of 〈bl〉ss.
The parameter Gl=1,2 = gl〈a〉ss is the strength of the lin-
earized optomechanical coupling. Note that the steady-state
average value 〈a〉ss = −i	/(κ + i
) is considered to be real
by selecting the amplitude 	.

By introducing the slowly varying fluctuation opera-
tors δa = δãe−i
t , δbl = δb̃l e−iωl t , ain = ãine−i
t , and bl,in =
b̃l,ine−iωl t , Eq. (3) can be written as

δ ˙̃a = −κδã − i
∑
l=1,2

Gl [δb̃l e
i(
−ωl )t + δb̃†

l ei(
+ωl )t ]

+ 2�eiφδã†e2i(
−ωm )t +
√

2κ ãin,

δ ˙̃b1 = −iG∗
1δãe−i(
−ω1 )t − γ1δb̃1 − iηeiθ δb̃2ei(ω1−ω2 )t

− iG1δã†ei(
+ω1 )t +
√

2γ1b̃1,in,

δ ˙̃b2 = −iG∗
2δãe−i(
−ω2 )t − iηe−iθ δb̃1e−i(ω1−ω2 )t − γ2δb̃2

− iG2δã†ei(
+ω2 )t +
√

2γ2b̃2,in. (4)

We point out that these transformed noise operators ãin and
b̃l,in satisfy the same correlation functions as those of these
noise operators ain and bl,in before the transformation.

For convenience, we consider the case where the two
mechanical modes are degenerate and the driving is in
red-sideband resonance (i.e., 
 = ωm = ω1 = ω2). We also
assume that the system works in the resolved-sideband limit
(ωl � κ), the quality factors of the mechanical modes are
high (ωl � γl ), and the mechanical frequencies ωl are much
larger than Gl and �. Under these conditions, we make
the rotating-wave approximation by discarding the high-
frequency oscillating terms. Then Eq. (4) is simplified to

δ ˙̃a = −κδã − iG1δb̃1 − iG2δb̃2 +
√

2κ ãin + 2�eiφδã†,

δ ˙̃b1 = −iG1δã − γ1δb̃1 − iηeiθ δb̃2 +
√

2γ1b̃1,in,

δ ˙̃b2 = −iG2δã − iηe−iθ δb̃1 − γ2δb̃2 +
√

2γ2b̃2,in. (5)

We can see from Eq. (5) that δ ˙̃a depends on δã†, so the OPA
leads to the appearance of the optical squeezing. Moreover,
the optical squeezing can be transferred to the two mechanical
modes via the linearized optomechanical couplings working at
red-sideband resonance.

To investigate quantum squeezing of the two mechan-
ical modes, we introduce the quadrature operators of the
optical and mechanical modes δXo = (δõ† + δõ)/

√
2 and

δYo = i(δõ† − δõ)/
√

2 (o = a, a†, bl=1,2, b†
l ), and the corre-

sponding quadrature operators of input quantum noise X in
o =

(õ†
in + õin )/

√
2 and Y in

o = i(õ†
in − õin )/

√
2. Then the lin-

earized Langevin equation (5) can be rewritten as

u̇(t ) = Au(t ) + N(t ), (6)

where we introduce the fluctuation operator vector u(t ) =
[δXb1 , δYb1 , δXb2 , δYb2 , δXa, δYa]T and the noise operator vec-
tor N(t ) = √

2[
√

γ1X in
b1

,
√

γ1Y in
b1

,
√

γ2X in
b2

,
√

γ2Y in
b2

,
√

κX in
a ,√

κY in
a ]T with the matrix transpose notation “T ”. The

coefficient matrix is defined by

A =
(

E P

−PT F

)
,

where we introduce

E =

⎛
⎜⎜⎜⎜⎝

−γ1 0 η sin θ η cos θ

0 −γ1 −η cos θ η sin θ

−η sin θ η cos θ −γ2 0

−η cos θ −η sin θ 0 −γ2

⎞
⎟⎟⎟⎟⎠, (7)

and

F =
(

−(κ − 2� cos φ) 2� sin φ

2� sin φ −(κ + 2� cos φ)

)
. (8)

In addition, the matrix P is defined by these nonzero elements:
P12 = G1, F21 = −G1, P32 = G2, and P41 = −G2. The stabil-
ity condition of this system can be obtained by confirming that
all the eigenvalues of the coefficient matrix A have negative
real parts. In our calculations, we used proper parameters to
confirm the stability of the system with the Routh-Hurwitz
criterion [89].
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To study the steady-state squeezing of the two mechanical
modes, we calculate the steady-state value of the covariance
matrix V, defined by the matrix elements

Vi j = 1
2 [〈ui(∞)u j (∞)〉 + 〈u j (∞)ui(∞)〉], i, j = 1–6.

(9)
In the linearized optomechanical system, the covariance ma-
trix V obeys the Lyapunov equation [90]

AV + VAT = −Q, (10)

where the matrix Q is defined by Q = (C + CT )/2, with
C being the noise correlation matrix defined by the ma-
trix elements 〈Nk (s)Nl (s′)〉 = Ck,lδ(s − s′). Thus, we ob-
tain the diagonal matrix Q = diag{γ1(2n̄1 + 1), γ1(2n̄1 + 1),
γ2(2n̄2 + 1), γ2(2n̄2 + 1), κ, κ}.

IV. QUADRATURE SQUEEZING

In this section, we present the definition of the degree of
squeezing, study the squeezing transfer from the optical mode
to the two mechanical modes, and investigate the fragile-to-
robust mechanical squeezing with the synthetic-gauge-field
method. Concretely, we first calculate the degree of squeezing
of both the optical mode and mechanical modes when the
mechanical modes are connected with zero-temperature en-
vironments. Then, we study the mechanical squeezing in both
the absence and presence of the synthetic magnetism when the
mechanical modes are connected with nonzero-temperature
environments.

A. Squeezing transfer from squeezed optical
mode to mechanical mode

In this scheme, due to the zero expectations of 〈δXo〉 and
〈δYo〉 (o = a and bl=1,2), the quadrature squeezing can be
measured by either the mean square fluctuations 〈δX 2

o 〉 or
〈δY 2

o 〉, which is just one of the six diagonal elements (V j j for
j = 1–6) of the covariance matrix V defined in Eq. (9). Ac-
cording to the Heisenberg uncertainty principle, the product
of 〈δX 2

o 〉 and 〈δY 2
o 〉 obeys the inequality

〈δX 2
o 〉〈δY 2

o 〉 � 1
4 |[δXo, δYo]|2 = 1

4 , (11)

where we used the relation [δXo, δYo] = i. Therefore, if either
〈δX 2

o 〉 or 〈δY 2
o 〉 is below 1/2, the corresponding mode will ex-

hibit quadrature squeezing. The degree of squeezing is defined
by [48]

SZ = −10 log10
〈Z2〉

〈Z2〉zpf
(12)

with Z = δXo or δYo, where 〈Z2〉zpf denotes the zero-point
fluctuation of the operator Z . The degree of squeezing SZ >

0 dB implies that the corresponding mode is squeezed.
The degenerate OPA is a good candidate for the genera-

tion of the optical squeezing, so it is interesting to study the
influence of both the parametric gain � and phase φ on the
optical squeezing. In Figs. 2(a) and 2(b), we show the degree
of squeezing SδXa as a function of the scaled gain �/κ and
phase φ/π , respectively. We note that the optical mode is not
squeezed (SδXa = 0 dB) in the absence of the OPA (� = 0).
However, SδXa > 0 dB appears when the OPA is introduced
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FIG. 2. Degree of the squeezing SδXa versus (a) the scaled gain
�/κ when the phase φ/π takes various values and versus (b) the
phase φ/π when the gain �/κ takes various values. Other parameters
are ω1/κ = ω2/κ = 10, γ1/κ = γ2/κ = 10−5, G1/κ = G2/κ = 0,
n̄1 = n̄2 = 0, η/κ = 0, and θ = 0.

(� > 0), which means that the optical squeezing appears.
Especially, the optimal optical squeezing occurs at φ = π , and
it becomes stronger as the parametric gain � increases. These
results indicate that the optical squeezing can be generated
when the degenerate OPA is placed inside the optical cavity.

Since the degenerate OPA plays an important role in the
appearance of the mechanical squeezing, it is necessary to
investigate the dependence of the mechanical squeezing on
the parametric gain � and phase φ. In Figs. 3(a) and 3(b),
we show the degrees of squeezing SδYb1

and SδYb2
as functions

of the scaled gain �/κ and phase φ/π . We can see that the
degree of squeezing SδYb1

(SδYb2
) reaches the maximum value

at the optimal phase φ = π when the parametric gain �/κ

takes the maximum value. We also see that SδYb1
and SδYb2

can be significantly enhanced with the increase of the gain
�/κ around the optimal phase φ = π . These features can
be seen more clearly in Figs. 3(c) and 3(d). We observe that
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FIG. 3. Degrees of the squeezing (a) SδYb1
and (b) SδYb2

ver-
sus the scaled gain �/κ and the phase φ/π . (c) SδYb1

and SδYb2
versus �/κ when φ/π takes various values. (d) SδYb1

and SδYb2
versus φ/π when �/κ takes various values. Note that the solid
curves and the symbols represent the degrees of the squeezing SδYb1
and SδYb2

, respectively. Other parameters are ω1/κ = ω2/κ = 10,

γ1/κ = γ2/κ = 10−5, G1/κ = G2/κ = 0.1, n̄1 = n̄2 = 0, η/κ = 0,
and θ = 0.
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FIG. 4. Degrees of the squeezing (a) SδYb1
and (b) SδYb2

versus
the scaled phonon-hopping coupling strength η/κ and the modula-
tion phase θ/π . (c) SδYb1

and SδYb2
versus θ/π in both the DMU

and DMB cases. (d) SδYb1
and SδYb2

versus the scaled phonon-
hopping coupling strength η/κ when θ = π/2. Other parameters
are ω1/κ = ω2/κ = 10, γ1/κ = γ2/κ = 10−5, G1/κ = G2/κ = 0.1,
n̄1 = n̄2 = 10, �/κ = 0.45, and φ = π .

the two mechanical modes are not squeezed (SδYb1
= SδYb2

=
0 dB) in the absence of the OPA (� = 0). However, once the
OPA is introduced (� > 0), the mechanical squeezing appears
(SδYbl

> 0 dB) when we take appropriate parametric phases
φ (see the upper part of the panel). In particular, the change
of the mechanical squeezing with parameters is consistent
with those of optical squeezing, and the maximal degree of
mechanical squeezing is significantly less than that of optical
squeezing. These results indicate that the squeezing of the
optical mode has been transferred to the mechanical mode,
while there exists some loss in the transfer process [48,49].

The underlying physics for the generation of the mechan-
ical squeezing can be explained as follows: In the absence
of the OPA, neither optical nor mechanical modes can be
squeezed under the current parameter conditions. However,
when the OPA is placed in the optical cavity, the squeezing
of the optical mode can be created, and the optical squeezing
can be further transferred into the mechanical mode via the
linearized optomechanical interaction working in the red-side
resonance. Thus, the OPA provides the physical origin for
generating the quantum squeezing of the two mechanical
modes.

In the two-mechanical-mode optomechanical system,
when the two mechanical modes are degenerate, there exists
a mechanical dark mode. It has been shown that the dark
mode will suppress the ground-state cooling of the mechan-
ical modes and the optomechanical entanglement [61,66–69].
Since the quantum squeezing is a kind of quantum effect,
it is interesting to study the quantum squeezing behavior in
the system in both the absence (η = 0) and presence (η 
= 0)
of the synthetic magnetism. As shown in Fig. 4, we plot
the degrees of squeezing SδYb1

and SδYb2
as functions of the

scaled phonon-hopping coupling strength η/κ and the mod-
ulation phase θ/π . From Figs. 4(a)–4(c) we can see that

the mean square fluctuations 〈δY 2
b1

〉 and 〈δY 2
b2

〉 are squeezed
in a large range of η when the phase is around θ = π/2
and θ = 3π/2. Meanwhile, the largest quantum squeezing of
each mechanical mode emerges at θ = π/2 and θ = 3π/2,
which are related to the strongest quantum interference be-
tween the two excitation-transport channels. Moreover, the
mechanical squeezing is completely lost at θ = nπ (for an
integer n), which corresponds to the emergence of the dark-
mode effect. In addition, the degree of squeezing SδYb1

(SδYb2
)

is slightly larger than SδYb2
(SδYb1

) in the region 0 < θ < π

(π < θ < 2π ). This phenomenon shows that the periodically
controllable and switchable quantum squeezing of each me-
chanical mode can be performed by just tuning the modulation
phase θ . In Fig. 4(d), we see that the squeezing of two me-
chanical modes can be generated and significantly enhanced
by properly increasing the phonon-hopping coupling strength
η/κ when θ = π/2. The results indicate that the synthetic
magnetism plays an important role in the enhancement of
mechanical squeezing.

We now explain the physical mechanism of the squeez-
ing enhancement based on the DMB effect. In the presence
of the synthetic magnetism (η 
= 0), we introduce two new
normal modes associated with the synthetic magnetism as
B̃± = f δb̃1(2) ∓ e±iθ hδb̃2(1). Based on Eq. (5), the linearized
Hamiltonian can be rewritten as

Hlin =
∑
j=±

(G̃ jδã†B̃ j + H.c.) + i�(eiφδã†2 − e−iφδã2),

(13)

where we introduce the two coupling strengths G̃± =
f G1(2) ∓ e∓iθ hG2(1), with f = |ω f |/(ω2

f + η2)1/2, h =
η f /ω f , and ω f = 1

2 {ω2 − ω1 − [(ω1 − ω2)2 + 4η2]1/2}. In
the degenerate-resonator (ω1 = ω2) and symmetric-coupling
(G1 = G2 = G) case, the coupling strengths G̃± can be
simplified as

G̃+ = G(1 + e−iθ )/
√

2, G̃− = G(1 − eiθ )/
√

2. (14)

Equation (14) shows that one of the two mechanical normal
modes decouples from the optical mode and becomes a dark
mode when θ = nπ for an integer n. In this case, the mechan-
ical modes cannot be cooled into their quantum ground states
via the optomechanical-cooling channel. In general cases of
θ 
= nπ , a coupling between the dark mode and the optical
mode can be realized, i.e., both the two normal modes B̃±
are coupled to the optical mode a, which indicates that the
dark mode is broken and then the ground-state cooling of the
two mechanical modes can be realized. Physically, a reconfig-
urable synthetic gauge field can be formed by modulating θ ,
and this enables a flexible switching between the DMB and
DMU cases.

Combined with the above DMB physical mechanism, the
physical reason for the generation of mechanical squeezing
shown in Fig. 4 can be explained as follows. In the absence
of the synthetic magnetism (η = 0), this system can be de-
scribed by the two degenerate mechanical modes coupled
to a common optical mode, then the two mechanical modes
will be hybridized into a bright mode and a dark mode.
The dark mode is decoupled from the optical mode, then
the thermal excitations concealed in the dark mode cannot
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FIG. 5. Degrees of the squeezing SδYb1
and SδYb2

versus (a) the
thermal phonon numbers n̄l=1,2 and (b) the optomechanical cooper-
ativity parameter C in both the DMU and DMB cases. Note that the
optomechanical coupling strengths G1/κ = G2/κ = 0.1 are used in
panel (a) and the thermal phonon numbers n̄l=1,2 = 10 are used in
panel (b). Other parameters are ω1/κ = ω2/κ = 10, γ1/κ = γ2/κ =
10−5, �/κ = 0.45, φ = π , η/κ = 0.1, and θ = π/2.

be extracted by the cooling channel associated with the op-
tical mode. Hence, the dark mode cannot be cooled to its
quantum ground state [91]. Furthermore, the residual thermal
noise in the dark mode will fully destroy the mechanical
squeezing transferred from the squeezed optical mode. How-
ever, in the presence of the synthetic magnetism (η 
= 0), a
coupling between the optical mode and the dark mode can
be realized by modulating the phase θ , which indicates that
this dark mode is broken. In this case, the two mechanical
modes can be cooled into their quantum ground states [91],
and hence the mechanical squeezing transferred from the
squeezed optical mode can be created. Thus, the synthetic
magnetism not only enables a flexible switching between the
DMB and DMU regimes, but also provides a clear perspec-
tive for generating dark-mode-immune quantum resources in
multiple-mechanical-mode optomechanical systems.

B. Fragile-to-robust squeezing

In the presence of the dark-mode effect (η = 0), the quan-
tum squeezing of two mechanical modes is highly susceptible
to thermal noise. To study whether the synthetic-gauge-field
method can generate the robust squeezing of mechanical
modes, we plot the degrees of squeezing SδYb1

and SδYb2
as

functions of the mechanical thermal phonon numbers n̄l=1,2

in both the DMB and DMU cases. As shown in Fig. 5(a),
the squeezing of mean square fluctuations (SδYb1

> 0 dB and
SδYb2

> 0 dB) emerges only when the thermal phonon num-
bers n̄l=1,2 � 0.1 (see the point 10−1 on the horizontal axis)
in the DMU case. This indicates that the quantum squeezing
of the two mechanical modes does not exist in this system
when the mechanical modes are not cooled into their quantum
ground states. In the DMB case, differently, the degrees of
squeezing SδYb1

> 0 dB and SδYb2
> 0 dB can persist even

when the thermal phonon numbers are about n̄l=1,2 ≈ 100 (see
the point 102 on the horizontal axis), and it is about three
orders of magnitude larger than the case where the dark-mode
effect is not broken. For the typical mechanical resonators
with the resonance frequencies of ω1 = ω2 ≈ 2π × 108 Hz,
the corresponding temperature of the environment can be es-
timated as Tl=1,2 ≈ 482 mK when n̄l=1,2 ≈ 100.

The physical reason behind this phenomenon can be under-
stood in this way. In the absence of the synthetic magnetism
(η = 0) and when the two mechanical modes work at nonzero
temperatures (n̄l=1,2 
= 0), the thermal excitations concealed
in the mechanical dark mode cannot be extracted via the opti-
cal mode, thus the mechanical squeezing transferred from the
squeezed optical mode is fully destroyed by the thermal noise.
However, when the synthetic magnetism is introduced, the
dark-mode effect can be broken by modulating the phase. As
a result, the two mechanical modes can be cooled near to their
quantum ground states, and hence the mechanical squeezing
can be generated. This DMB physical mechanism switches
the tolerance of the mechanical squeezing to the thermal noise
from extremely fragile to extraordinary robust.

The optomechanical cooperativity parameter C = |G2|/κγ

(depending on the pump power of optical cavity) is an im-
portant physical quantity for the generation of mechanical
squeezing. To investigate the influence of the parameter C on
the generation of mechanical squeezing when the mechanical
modes work at nonzero-temperature environment, we plot the
degrees of squeezing SδYb1

and SδYb2
as functions of the param-

eter C in both the DMU and DMB cases. Figure 5(b) shows
that the mechanical squeezing does not appear (SδYb1

< 0 dB
and SδYb2

< 0 dB) in the DMU case. However, when the dark
mode is broken, the degrees of squeezing SδYb1

and SδYb2

increase with the increase of C, thus we can obtain the strong
mechanical squeezing by increasing the parameter C (C =
1000 corresponds to G/κ = 0.1). The results indicate that the
strength of mechanical squeezing is related to the optome-
chanical coupling strength. However, when the mechanical
modes work at the nonzero-temperature environment, DMB
is the dominant factor for the generation of squeezing, and the
strong mechanical squeezing can be obtained only when the
dark mode is broken.

V. MECHANICAL SQUEEZING IN A
MULTIPLE-MECHANICAL-MODE

OPTOMECHANICAL SYSTEM

In Sec. IV A, we have studied the generation of quantum
squeezing of two mechanical modes by breaking the dark-
mode effect with the synthetic-gauge-field method. We now
generalize this squeezing-generation method to a multiple-
mechanical-mode optomechanical system consisting of an
optical mode and N (N � 3) mechanical modes. Here, the
optical mode and N mechanical modes are coupled via the op-
tomechanical interactions. The nearest-neighbor mechanical
modes are coupled via the phase-dependent phonon-exchange
interactions. In a rotating frame defined by exp(−iωLa†at ),
the system Hamiltonian reads (h̄ = 1)

H = 
ca†a +
N∑

l=1

[ωl b
†
l bl + gla

†a(bl + b†
l )] + (	a + H.c.)

+
N−1∑
l=1

[ηl (e
iθl b†

l bl+1 + H.c.)] + i�(eiφa†2e−2iωmt −H.c.),

(15)
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FIG. 6. Degrees of the squeezing SYbl
for l = 1-4 versus (a) the

scaled phonon-hopping coupling strength ηl/κ and (b) the modula-
tion phase θ1/π when �/κ = 0.45 and φ = π . Note that parameter
θl = π/2 is used in panel (a) and parameters θl=2,3,4 = π/2 and
ηl/κ = 0.1 are used in panel (b). SYbl

versus (c) the gain �/κ and
(d) the phase φ/π when ηl/κ = 0.1 and θl = π/2 in both the DMU
and DMB cases. Parameter φ = π is used in panel (c) and parameter
�/κ = 0.45 is used in panel (d). Other parameters are ωl/κ = 10,
γl/κ = 10−5, Gl/κ = 0.1, and n̄l = 10.

where b†
l and bl are, respectively, the creation and annihi-

lation operators of the lth mechanical mode with resonance
frequency ωl . The gl terms denote the optomechanical cou-
plings between the optical mode and the lth mechanical mode.
The ηl terms describe the phase-dependent phonon-exchange
interactions between the two nearest-neighbor mechanical
modes with the modulation phase θl . Other operators and
parameters have been defined in Eq. (1).

By using the same method as shown in Sec. III, we
can obtain the linearized Hamiltonian of this multiple-
mechanical-mode optomechanical system. We know that in
the absence of synthetic magnetism (ηl = 0), the N (N � 3)
mechanical modes will be hybridized into a bright mode
B = ∑N

l=1 δb̃l/
√

N and (N − 1) dark modes [66,67]. When
the synthetic magnetism is introduced into this system (i.e.,
ηl 
= 0), all the dark modes can be broken by adjusting the
phase θ1 
= 2nπ [66,67]. Thus, this DMB physical mecha-
nism provides a possibility to switch the DMU case to the
DMB case in this multiple-mechanical-mode optomechanical
system.

To clearly investigate the influence of synthetic magnetism
on the quantum squeezing of these N mechanical modes, in
Figs. 6(a) and 6(b) we plot the degrees of squeezing SYbl

for l = 1–4 as functions of the phonon-hopping coupling
strengths ηl/κ and the modulation phase θ1/π . Here we can
see that the squeezing of four mechanical modes can be gen-
erated and significantly enhanced by properly increasing the
phonon-hopping coupling strength ηl/κ , which means that all
the dark modes are broken. Similar to the case of squeezing
of two mechanical modes, the largest squeezing of each me-
chanical mode emerges at θ1 = π/2 and θ1 = 3π/2, which
are related to the strongest quantum interference effect.

To study the effect of the degenerate OPA on the quantum
squeezing of N mechanical modes, in Figs. 6(c) and 6(d) we
plot the degrees of squeezing SYbl

for l = 1–4 as functions
of the scaled gain �/κ and phase φ/π . Here we can see
that the squeezing of four mechanical modes does not appear
(SYbl

� 0 dB) in the absence of the OPA (� = 0), and the
mechanical squeezing can be generated with the increase of
the gain �/κ in the DMB case. Meanwhile, SYbl

reaches the
maximum value at the optimal phase φ = π . However, the
four mechanical modes cannot be squeezed when the OPA is
introduced into the system in the DMU case. These results in-
dicate that the OPA provides the physical origin for generating
the mechanical squeezing, and the dark-mode breaking is the
dominate factor for the existence of the mechanical squeezing
when the mechanical modes are connected to heat baths.

VI. COMPARISON BETWEEN THE PREVIOUS
THEORETICAL PROPOSALS AND OUR PROPOSAL

Quantum squeezing is an important resource in quantum
optics and quantum information science. Currently, there ex-
ist some theoretical proposals for generation of mechanical
squeezing in optomechanical systems. In this section, we
present the comparison between these previous theoretical
proposals and our proposal for the generation of mechanical
squeezing. In Table I we present the physical mechanisms for
squeezing generations, the 3 dB limit, the squeezing types,
and the number of the squeezed resonators for these pro-
posals. We find that many physical mechanisms can be used
to generate the mechanical squeezing, including parametric
amplification, quantum measurement, parametric modula-
tion, reservoir engineering, mechanical nonlinearity, and
squeezed-state transfer. Meanwhile, the types of generated
mechanical squeezing include the transient-state squeezing
and the steady-state squeezing. Some generated mechani-
cal squeezing breaks the 3 dB limit, and some mechanical
squeezing does not break the 3 dB limit. We should mention
that, most of previous schemes considered the generation of
quadrature squeezing for a single mechanical mode. However,
in the present proposal, we consider the squeezing genera-
tions in two and multiple degenerate mechanical modes. In
particular, we want to point out that, the main contribution of
this proposal is to create mechanical squeezing by controlling
the dark-mode effect. To break the dark modes, we intro-
duce the synthetic-gauge-field method. More importantly, we
find that this method not only breaks the dark modes and
generates the strong steady-state mechanical squeezing, but
also improves the tolerance of the mechanical squeezing to
thermal noise by about three orders of magnitude. Therefore,
the dark-mode manipulation and the generated single-mode
squeezing of multiple mechanical modes are the main results
in this proposal.

VII. CONCLUSION

In conclusion, we have used the synthetic-gauge-field
method to generate and enhance the quantum squeezing
of two mechanical modes in a three-mode optomechanical
system consisting of an optical mode and two degenerate
mechanical modes. We have found that the optical squeezing
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TABLE I. Some reported theoretical proposals and our proposal for the generation of mechanical squeezing. Columns 1, 2, 3, 4, and 5
present the references, the physical mechanisms, the 3 dB limit, the squeezing types, and the number of squeezed resonators, respectively.

Reference Physical mechanism 3 dB limit Squeezing type Number of squeezed resonators

Agarwal et al. [29] Parametric amplification Transient state One
Szorkovszky et al. [32] Quantum measurement Breaking Steady state One
Mari et al. [35] Parametric modulation Unbreaking Transient state One
Liao et al. [36] Parametric modulation Unbreaking Transient state One
Kronwald et al. [39] Reservoir engineering Breaking Steady state One
Tan et al. [40] Reservoir engineering Steady state Two
Huang et al. [42] Reservoir engineering Breaking Steady state One
Nunnenkamp et al. [43] Mechanical nonlinearity Steady state One
Asjad et al. [44] Mechanical nonlinearity Breaking Steady state One
Lü et al. [45] Mechanical nonlinearity Breaking Steady state One
Jähne et al. [47] Squeezed-state transfer Breaking Steady state One
Agarwal et al. [48] Squeezed-state transfer Unbreaking Steady state One
This proposal Squeezed-state transfer Unbreaking Steady state Two or multiple

is created by the degenerate OPA, and then it is transferred
to the two mechanical modes. In particular, the breaking
of the dark-mode effect plays a key role in the appear-
ance of the mechanical squeezing. We have found that this
DMB mechanism switches the tolerance of the mechani-
cal squeezing to thermal noise from extremely fragile to
extraordinary robust. Especially, the threshold number of
thermal phonons for preserving the mechanical squeezing
can reach around 100. Moreover, we have generalized this
method to realize the squeezing of multiple mechanical
modes by breaking the dark-mode effect. We have also com-
pared our proposal with the previous theoretical proposals
for generating the mechanical squeezing. Our results pave a

way toward the generation of the macroscopic mechanical
squeezing and initiate the study of noise-immune quantum
resources.
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