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Recoil momentum of an atom absorbing light in a gaseous medium
and the Abraham-Minkowski debate
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We discuss a fundamental question regarding the Abraham-Minkowski debate about the momentum of light in
a medium: If an atom in a gas absorbs a photon, what is the momentum transferred to it? We consider a classical
model for the internal degrees of freedom of the absorbing atom, computing the absorbed energy and momentum
using the Lorentz force law due to the microscopic electromagnetic fields. Each nonabsorbing atom from the gas
is treated as a dielectric sphere, with the set of atoms forming a linear, dielectric, nonmagnetic, and nonabsorbing
medium with a refractive index n close to 1. Our numerical results indicate that, if the atoms are classically
localized, the average absorbed momentum increases with n, but is smaller than Minkowski’s momentum np0,
p0 being the photon momentum in vacuum. However, experiments performed with Bose-Einstein condensates
[G. K. Campbell et al., Phys. Rev. Lett. 94, 170403 (2005)] are consistent with the atom absorbing Minkowski’s
momentum. We argue that there is no contradiction between these results since, in a Bose-Einstein condensate,
the atoms are in a quantum state spatially superposed in a relatively large volume, forming a “continuous”
medium. In this sense, the experimental verification of an atomic momentum recoil compatible with Minkowski’s
momentum would be a quantum signature of the medium state.
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I. INTRODUCTION

The momentum of light in a vacuum has been well-
established since the end of the 19th century. However, when
it comes to the momentum of light in material media, there
has been a controversy for over one hundred years [1–5].
The two most common expressions are the ones formulated
by Abraham and Minkowski [6,7]. They determined that the
momentum density of light in a medium should be E × H/c2

and D × B, respectively, where E is the electric field, B is
the magnetic field, D = ε0E + P, H = B/μ0 − M, P and M
are the polarization and magnetization of the medium, ε0 and
μ0 are the permittivity and permeability of free space, and
c is the speed of light in a vacuum. An essential distinction
between Abraham’s and Minkowski’s formulations is how the
momentum of a light pulse depends on the refractive index n
of the medium. Minkowski’s formulation of electrodynamics
in continuous media predicts an electromagnetic momen-
tum proportional to n, while Abraham’s formulation predicts
an electromagnetic momentum inversely proportional to n.
This divergence originates what is now called the Abraham-
Minkowski debate.

Several experimental works in the past decades have
been devoted to determining which expression is the cor-
rect description of the momentum density of light [8–13].
However, at the same time, it was understood that many
different formulations for electrodynamics of continuous me-
dia, with different energy-momentum tensors and different
expressions for the electromagnetic momentum density, lead
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to the same experimental predictions when the appropri-
ate material energy-momentum tensor is taken into account
[2,14]. Recently, it was argued that Abraham’s expression
is associated with the kinetic electromagnetic momentum
density and Minkowski’s with the canonical electromagnetic
momentum density [15]. Other expressions also carry mean-
ingful physical importance [2,16–24], such as the momentum
density ε0E × B, which is compatible with momentum con-
servation in several situations when the material part of the
momentum is computed employing the Lorentz force law
[21,22]. After more than 100 years, the Abraham-Minkowski
debate is still a topic of interest, with theoretical [23–31]
and experimental [32–37] works being published to clarify
different aspects of the momentum of light in a medium.
In particular, one work from Campbell et al. [32] showed
that the momentum transferred from light to an atom from
a Bose-Einstein condensate is proportional to n, as predicted
by Minkowski’s expression.

Here we aim to analyze the momentum recoil that light
causes in an absorbing atom inside a linear, dielectric, non-
magnetic, and nonabsorbing gaseous medium, modeled by a
set of rigid dielectric spheres, in the limit where the medium
has a refractive index close to 1. We consider a classical
model for the internal degrees of freedom of the absorbing
atom, computing the energy and momentum transfers by the
Lorentz force law due to the action of the microscopic elec-
tromagnetic fields. We show that the average ratio between
the momentum and the energy absorbed by the atom increases
with n, but is smaller than n/c, such that the average momen-
tum recoil is smaller than Minkowski’s momentum. We argue
that this result is not in conflict with the experiments from
Campbell et al. [32] since, in a Bose-Einstein condensate,
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FIG. 1. Different models for a gaseous medium where one atom
absorbs light. The color yellow indicates the atom that absorbs light,
while the color blue represents the material medium. (a) The absorb-
ing atom is immersed in a continuous medium. (b) The absorbing
atom is immersed in a cloud of nonabsorbing atoms modeled as rigid
dielectric spheres.

the atoms are in a quantum superposition state in space, such
that the model of rigid spheres is not valid and a continuous
medium approximation, which predicts a ratio between the
absorbed momentum and energy equal to n/c, is more reason-
able. In this sense, the experiments from Campbell et al. [32]
can be seen as a signature of quantum properties of the atomic
medium since we predict that experiments performed with a
classical gas would result in a different average momentum
transfer for the absorbing atom.

II. MICROSCOPIC MODEL FOR A GASEOUS MEDIUM

Figure 1(a) depicts an atom (in yellow) immersed in a
continuous, linear, dielectric, nonmagnetic, and nonabsorbing
medium (in blue). The atom absorbs light and we want to
compute the ratio between the absorbed momentum and en-
ergy after this interaction. Figure 1(b) shows a microscopic
model where the medium is composed of linear, dielectric,
nonmagnetic, and nonabsorbing atoms, modeled as spheres
with radius R (in blue), and the absorbing atom (in yellow).
We show in the following sections that the microscopic model
of Fig. 1(b) predicts different results compared to the contin-
uous medium model of Fig. 1(a). In the present section, we
discuss the microscopic model of Fig. 1(b) in detail.

When the nonabsorbing atoms depicted in Fig. 1(b) are
in a region containing an electric field, they polarize. The
induced dipole moment in each atom pi can be written as
pi(t ) = αε0E (ri, t ) using the usual complex notation, where
E (ri, t ) is the microscopic value of the electric field at the
position ri of the center of the atom labeled by the index i [38].
The parameter α is the atom’s polarizability and its magnitude
is related to the strength of the interaction. In this model, the
macroscopic polarization of the medium should come from
the dipole moments of the atoms. The medium polarization P
from N dipoles with average dipole moment p0 in a volume
V is thus P = Np0/V . Also, for linear dielectric media, the
relation between the average electric field and polarization
is P = ε0χE, where χ is the medium electric susceptibility,
such that χ = Nα/V . In this work, we consider that the
medium refractive index is close to 1, such that we may

approximate

n =
√

1 + χ ≈ 1 + χ/2 = 1 + Nα

2V
. (1)

This result can also be obtained from the well-known
Clausius-Mossotti relation in the limit of refractive index
close to 1 [39]. In this regime, the total electromagnetic
fields produced by the atoms are considerably smaller than
the incident fields, such that we may consider that only the
incident electric field E0 induces polarization on the atoms,
i.e., pi(t ) = αε0E0(ri, t ). This approximation greatly simpli-
fies the numerical calculations that will be presented.

In the medium depicted in Fig. 1(b), the total electro-
magnetic fields are equal to the superposition of the incident
electric and magnetic fields E0 and B0 entering the medium
and the electric and magnetic fields E i and Bi generated by
each atom. We consider the incident fields to be in the form

E0 = E0ei(k0·z−ωt )x̂, B0 = B0ei(k0·z−ωt )ŷ, (2)

with k0 = (2π/λ0)ẑ, λ0 being the light wavelength in a vac-
uum. In the present work, we model each nonabsorbing atom
as a linear, dielectric, nonmagnetic, and nonabsorbing sphere
with a radius R. That is, to compute the fields that atom i
produces, we compute the fields that one of these dielectric
spheres, placed in the same position and subjected to the
same electromagnetic fields, would produce. The following
results corroborate the validity of this model. The radius R
used for the spheres is much smaller than the wavelength of
the external fields E0 and B0, such that the external fields are
approximately homogeneous inside the atoms. When linear
dielectric spheres are exposed to homogeneous oscillating
electric fields, they respond producing electric and magnetic
fields equivalent to an oscillating electric dipole in the region
outside of the sphere [39]. So, if atom i has a dipole moment
given by pi(t ) = αε0E0(ri, t ), we consider that, outside it, it
produces electromagnetic fields

E i = eikr

4πε0

{
ω2

c2r
(r̂ × pi ) × r̂

+
(

1

r3
− iω

cr2

)
[3r̂(r̂ · pi ) − pi]

}
, (3)

Bi = ω2eikr

4πε0c3

(
1

r
− c

iωr2

)
(r̂ × pi ), for r > R, (4)

where r is a distance vector from the center of the atom to the
evaluated point [39]. Since the radius R of the atom is con-
sidered to be much smaller than the light wavelength, for the
region inside the atom, we disregard the radiating components
of the field and consider that they produce a uniform electric
field and a circulating magnetic field with zero average [39].
Since we are not interested in the spatial variation of the fields
inside the atoms, we may consider a null magnetic field in our
calculations. So we consider that the field generated by each
atom polarization inside it is

E i = −pi

4πε0R3
, Bi = 0, for r < R, (5)

as is the case for a dielectric sphere exposed to a uniform
electric field [40]. Figure 2 illustrates the electrostatic con-
tribution for the electric field generated by each atom, which

013511-2



RECOIL MOMENTUM OF AN ATOM ABSORBING LIGHT IN … PHYSICAL REVIEW A 108, 013511 (2023)

FIG. 2. Electric field lines of a homogeneously polarized sphere
in the static regime. The electric field inside the sphere (in orange)
is homogeneous and in the opposite direction of the applied field E0

that induces the polarization. Outside the sphere, the electric field (in
blue) is one of a perfect dipole at the sphere center.

is dominant for r � λ0. The total electromagnetic fields in the
medium can then be written as

E = E0 +
N∑

i=1

E i, B = B0 +
N∑

i=1

Bi. (6)

We expect the averaged macroscopic fields to be

E =
〈

E0 +
N∑

i=1

E i

〉
, B =

〈
B0 +

N∑
i=1

Bi

〉
. (7)

The brackets represent the average over a region containing
many atoms in a volume �V much smaller than the light
wavelength cubed. We perform a numerical computation of
the above equation to verify this relation between the micro-
scopic and macroscopic fields. Using the software WOLFRAM

MATHEMATICA [41], we randomly draw the positions on which
the N atoms will be placed. Those positions are drawn in
a volume in the form of a rectangular parallelepiped with
size λ0 in the z direction and a square cross-section with
sides 5λ0 in the xy plane. The atomic densities we use in
our numerical computations are between the one from the air
at atmospheric pressure and room temperature (around 1019

molecules per cm3) and the ones obtained in Bose-Einstein
condensates (around 1013 atoms per cm3). The average elec-
tric and magnetic fields are computed by calculating the fields
of Eq. (7) in 106 random positions inside a small volume �V .
Note that some random positions will fall inside one atom,
while others will fall outside all of them. Some results are
shown in Fig. 3. In Fig. 3(a), we see that the wavelength of
the average electric field respects the relation λ ≈ λ0/n. The
filled markers in Fig. 3(b) show that the ratio between the
average magnetic and electric fields agrees with the expected
relation between these fields |By|/|Ex| = n/c. These results
corroborate the validity of the model. It is important to stress
the contribution of the electric field generated by the atom
polarization inside it, which points in the opposite direction of
E0 as seen in Fig. 2 and contributes for lowering the average
electric field. As shown by the hollow markers in Fig. 3(b), if
it only points outside the atoms are considered for computing

FIG. 3. Numerical computations testing the model. (a) Real part
of Ex from Eq. (7) in a fixed time along the propagation direction z.
The blue circles represent numerically calculated values for the field
and the solid blue line represents the fit curve cos[2πz/λ]. The green
dashed line represents the incident field E0 from Eq. (2). The value
λ0/λ = 1.051 ± 0.002 obtained from the fit matches the expected
value λ0/λ = n = 1.050 for the used parameters, which are N =
25625, α = 10−6λ3

0, V = 25λ3
0, and R = 2 × 10−2λ0. (b) |By|/|Ex|,

where Ex and By are computed from Eq. (7), for several values of
the index of refraction n. The markers represent the numerically
calculated values, and the solid black line is the theoretical prediction
for continuous media |By|/|Ex| = n/c. The hollow markers present
data filtered only to include positions outside all atoms, while the
filled markers present unfiltered data. The dashed lines are the fits
for the expression c|By|/|Ex| = a(n − 1) + 1 and the values obtained
for a are a = 0.99 ± 0.02 for unfiltered data and a = 0.36 ± 0.01
for the filtered data. The parameters used were α = 10−6λ3

0 and
R = 2 × 10−2λ0 in green squares; α = 2 × 10−6λ3

0 and R = 10−2λ0

in red circles; α = 5 × 10−7λ3
0 and R = 3 × 10−2λ0 in blue stars. We

have V = 25λ3
0 in all cases, and the value of n is varied through a

variation of the number of atoms N . The error bars were computed
by repeating the process five times with different drawn positions and
computing the standard deviation.

the average fields, the ratio |By|/|Ex| becomes smaller than
n/c, and the continuous medium result is not recovered.

III. MOMENTUM AND ENERGY TRANSFERRED
TO THE ABSORBING ATOM

In this section, we compute the amount of momentum and
energy transferred by the electromagnetic fields to an atom
absorbing light inside a gaseous medium described by the
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model presented in the previous section. We use the Lorentz
force law

F = 1

2
R

{
(p∗ · ∇ )E + ∂p∗

∂t
× B

}
, (8)

where p is the dipole moment of the absorbing atom and R(x)
denotes the real part of x, to compute the momentum transfer.
E and B are the microscopic electric and magnetic fields given
by Eq. (6) at the atom position. The above force represents
the average force in one optical cycle. We consider that the
incident light is resonant with the atom. In this way, the dipole
moment of the absorbing atom is related to the microscopic
electric field as

p = iα0ε0E . (9)

Note that there is a phase difference of π/2 between the dipole
oscillation and the electric field oscillation, which results in
the atom’s permanent absorption of momentum and energy.
Note also that the atomic polarizability α0 differs from the
polarizability α of the medium’s atoms. Substituting Eq. (9)
into Eq. (8), we arrive at the following expression for the
momentum transferred to the atom:

P = α0ε0

2

∫
dtR{−i(E∗ · ∇ )E + ωE∗ × B}. (10)

The absorbed energy can be computed through the work
done by the electric field into the electric current associated
with the time variation of the atomic dipole moment:

U = 1

2

∫
dtR

{
E∗ · ∂p

∂t

}
= α0ε0ω

2

∫
dtE∗ · E . (11)

If we set U = h̄ω, with h̄ω being the energy of one photon, the
modulus of the momentum transfer according to Minkowski’s
expression would be nh̄ω/c, such that P/U = n/c.

This calculation for the microscopic model is fundamen-
tal, coming only from the microscopic Lorentz force law. It
neither depends on Abraham’s nor Minkowski’s formulation
since they are fundamentally macroscopic.

The microscopic fields from Eq. (6) are computed numer-
ically using the same parameters as before. The momentum
and energy acquired by the absorbing atom in a particular po-
sition are computed by Eqs. (10) and (11). Different positions
for the absorbing atom are randomly chosen, so the average
ratio between the absorbed momentum P and the absorbed
energy U can be computed for different medium parameters.
We separately analyze the data of the situations where the
observed point is outside all the atoms. This analysis is done
considering that our model for the gas consists of a set of rigid
dielectric spheres. This condition is reasonable for describing
a classical gas of atoms since the absorbing atom cannot be
inside another atom in this case. Figure 4 presents some results
as hollow markers. We see that the computed average ratio
〈Pz/U 〉 is different from the one obtained with Minkowski’s
expression for the momentum transfer having a smaller value.
One could wonder if considering contributions from positions
inside the atoms would result in Minkowski’s momentum, but
this is not the case, as shown by the filled markers in Fig. 4. In
this case, the average ratio 〈Pz/U 〉 becomes larger than n/c.

Figure 5 shows the number of obtained values for the
components of the ratio between the absorbed momentum P

FIG. 4. Average ratio between the z component of the absorbed
momentum Pz from Eq. (10) and the absorbed energy U from
Eq. (11) as a function of n. The continuous black line is the func-
tion 〈cPz/U 〉 = n. The filled markers are acquired by considering
positions for the absorbing atom inside and outside the nonab-
sorbing atoms that compose the medium and the hollow markers
are acquired by filtering only positions that fall outside the atoms.
The dotted lines are linear fits for each scenario. The expression
used was 〈cPz/U 〉 = a(n − 1) + 1 and the values obtained for a are
a = 1.36 ± 0.01 for the unfiltered data and a = 0.69 ± 0.01 for the
filtered data. Sets of points of each color and shape represent data
acquired using different parameters in the computation, showing the
independence of the results on the specific parameters used. The
volume V = 25λ3

0 is the same for all sets. We have α = 10−6λ3
0 and

R = 2 × 10−2λ0 in green squares; α = 2 × 10−6λ3
0 and R = 10−2λ0

in red circles; α = 5 × 10−7λ3
0 and R = 3 × 10−2λ0 in blue stars. The

index of refraction is varied by changing the number of atoms N .
The bigger error bar for the data in red circles is associated with
the smaller number N of atoms in the medium for the particular set
of parameters. In each run, 106 random positions for the absorbing
atom are chosen and the error bars were computed by repeating the
process five times with different drawn positions and computing the
standard deviation.

and absorbed energy U for one particular set of parameters
when the position of the absorbing atom is randomly chosen
in 106 different positions. The distributions have relatively
large variances since the microscopic fields have significant
variations in the microscopic scale. It is valid to stress that
since the x and y components of P are much smaller than the
z component, they have a negligible influence on its modulus.
So graphics like the ones from Fig. 4 for 〈c|P |/U 〉 would be
visually identical to the ones shown.

IV. DISCUSSION

Experiments performed with Bose-Einstein condensates
show results consistent with the atoms acquiring Minkowski’s
momentum through light scattering [32]. Since light scattering
can be seen as a photon absorption followed by one photon
emission, this result differs from the one we present. Despite
this fact, we argue that there is no contradiction between
these results. In a Bose-Einstein condensate, the atoms are
in a quantum state spatially superposed in a relatively large
volume, forming a “continuous” medium. In a continuous
medium, the fields are homogeneous, such that the term
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FIG. 5. Number of each obtained value for the components of
cP/U for n = 1.00070. The blue bars are related to positions for
the absorbing atom that fall outside all the atoms. The orange bars
are related to positions for the absorbing atom that fall inside one
atom. The red vertical line (solid) in the first panel corresponds to the
mean value of the distribution of the blue bars (1.00048 ± 0.00004).
In contrast, the black vertical line (dashed) corresponds to the pre-
diction using Minkowski’s momentum cPz/U = n = 1.00070. The
used parameters are α = 2 × 10−6λ3

0, V = 25λ3
0, R = 2 × 10−2λ0,

and N = 20008.

(E∗ · ∇ )E in Eq. (10) does not contribute for the momentum
absorbed by the atom, contrary to the case in our calculations.
Also, the microscopic and macroscopic fields are always equal
without microscopic variations. That leads us to the simplified
relation

P
U

=
∫

dtR{E∗ × B}∫
dtE∗ · E

= B

E
k̂ = n

c
k̂. (12)

Note also that the ratio Pz/U is independent of the mi-
croscopic position of the absorbing atom in this continuous
medium case. So the distribution shown in Fig. 5 would have a

sharp peak around cPz/U = n instead of the large distribution
that happens in the case of a classical gas of atoms. This sharp
distribution for cPz/U is consistent with the experimental
results with Bose-Einstein condensates [32].

It is also important to mention that, in this work, we fo-
cused on the energy and momentum transferred by light to
the one absorbing atom. Considering the superposition of the
incident field with the field generated by the absorbing atom
in the atoms nearby, there may be a permanent momentum
transfer to these other atoms, even if they do not absorb light.
The investigation of these permanent momentum transfers to
the nonabsorbing atoms, as well as a complete momentum
balance analysis in the process, is outside the scope of the
present work and should be analyzed in future works. Our
microscopic model, in principle, could also be extended to
treat other situations relevant in the Abraham-Minkowski de-
bate, such as the momentum balance of light and matter at the
interface between two different media [9,17,26,33,35–37,42],
the momentum balance in the reflection of light by a mirror
immersed in a dielectric medium [8,12,17,25], and the optical
electro and magnetostriction effects [26,31,33,36,43].

To conclude, we considered the situation where an atom
absorbs light immersed in a linear, dielectric, nonmagnetic,
and nonabsorbing gaseous medium modeled as a set of rigid
dielectric spheres. We computed the momentum and energy
absorbed by the atom in numerical computations, which show
that the average ratio between the absorbed momentum and
energy is smaller than the one predicted using Minkowski’s
momentum. We thus predict that an experiment similar to the
one from Campbell et al. [32], if performed with a classical
gas instead of a Bose-Einstein condensate, would present dif-
ferent results for the atomic momentum recoil. In this sense,
the experimental verification of an atomic momentum transfer
proportional to n shown in Ref. [32] can be considered a
quantum signature of the medium state.
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