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Group and energy velocities of electromagnetic waves in bianisotropic superlattices

A. N. Darinskii
Institute of Crystallography FSRC “Crystallography and Photonics”, Russian Academy of Sciences,

Leninskii Prospekt 59, Moscow 119333, Russia

(Received 30 January 2023; revised 8 May 2023; accepted 7 July 2023; published 19 July 2023)

This paper proves the equality of the group velocity and the energy velocity of electromagnetic Bloch waves
in bianisotropic nonabsorbing periodic superlattices of generic crystallographic symmetry.
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I. INTRODUCTION

The relation between the group velocity and energy ve-
locity of electromagnetic waves is of fundamental interest
and has been attracted researcher’s attention for a long
time [1]. The proofs of the fact that these two velocities of
bulk waves coincide in anisotropic nonabsorbing homoge-
neous condensed media are given in [2–6]. The group and
energy velocities of electromagnetic waves are also equal
in plasma [7–9]. The equality holds true for waveguide
modes [10]. In [11] it was shown that both velocities are equal
for plasmons on half-infinite metals whose electromagnetic
properties are described by a scalar local dielectric function.
The group and energy velocities of plasmons still coincide if
nonlocal effect are taken into account [12]. In [13–15] it was
established that the group and energy velocities are equal in
three-dimensional photonic crystals. The photonic crystal was
described by a continuously periodic dielectric permittivity,
which was assumed to be purely real and frequency depen-
dent, whereas the magnetic permeability was considered to be
a frequency-independent scalar constant. The energy velocity
was defined as the ratio of the Umov-Poynting vector and
energy averaged over the unit cell and time. Note that the
correctness of the definition of the group and energy velocities
in periodic structures was analyzed in [16].

One of the popular trends in modern optics is the investiga-
tion of electromagnetic waves in bianisotropic media [17–21].
In such media the electric displacement and magnetic in-
duction depend on the strength of both the electric and
magnetic fields. This cross dependence is attributed to the
magnetoelectric effect and natural optical activity [22,23].
Significant progress has been made in understanding the ef-
fect of bianisotropic coupling on bulk wave propagation in
homogeneous media [24–29] and surface wave propagation
in half-infinite structures [30–35]. Much attention was paid to
other manifestations of bianisotropy such as negative refrac-
tion [36–39], optical activity and circular dichroism [40–43],
finding effective constants [22,44–46], and nonreciprocal
propagation [47,48]. The equality of the group and energy
velocities of bulk waves in homogeneous bianisotropic media
was proved in [49,50].

In this paper the equality of the group velocity and energy
velocity is proved for Bloch waves which freely propa-
gate in bianisotropic and/or magneto-optically active periodic

superlattices of generic crystallographic symmetry. It is as-
sumed that there are no losses in the superlattice. We use a
matrix representation of the Maxwell equations for the tan-
gential components of the plane-wave electromagnetic field
but do not calculate explicitly these components. In addi-
tion, the frequency dependence of the material constants is
allowed for. In [51,52] the equality of the group and energy
velocities was proved for nonbianisotropic magneto-optically
inactive superlattices whose electromagnetic properties are
fully characterized by purely real symmetric tensors of di-
electric permittivity and magnetic permeability. The methods
used in [51,52] differ significantly from the method used in
the present work, namely, explicit calculations [51] and vari-
ational method [52]. In both [51,52] the frequency dispersion
was ignored.

Our paper is organized as follows. Section II contains a
number of general relations. In Sec. III an explicit expression
of a matrix used subsequently is given. Section IV proves
the equality of the group and energy velocities. Section V
summarizes the results obtained.

II. MATRIX FORM OF MAXWELL’S EQUATIONS
FOR PLANE WAVES

We assume that a superlattice is periodic along the Z axis
and consider an electromagnetic Bloch wave

(
E(r, t )
H(r, t )

)
=

(
E(z)
H(z)

)
ei(kxx+kyy−ωt ), (1)

where kx and ky are the tangential components of the wave
vector, ω is the frequency, the vector functions E(z) and H(z)
describe the z dependence of the electric and magnetic fields,
respectively, and r is the radius vector (Fig. 1). The tangential
components Ex,y and Hx,y of E(z) and H(z) can be found by
solving the system of equations

1

i

dξ

dz
= N̂ξ, (2)

where ξ is a four-component vector column constructed of
Ex,y and Hx,y and N̂ is a 4×4 matrix which depends on ω,
kx,y, and material constants. The expression of N̂ depends
on the order of Ex,y and Hx,y in ξ [53–57]. Following our
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FIG. 1. Infinite periodic superlattice formed by two alternating
layers. The layers filling the space between the bottom and top
connected by dashed lines are not shown for convenience. The Z
axis of the coordinate system XY Z is the stratification direction. The
vector K = (kx, ky ) indicates the direction of propagation along the
layers, where kx and ky are the wave numbers of the Bloch wave (1).
The motion of the wave along the Z axis is characterized by Bloch
wave number k (see Sec. IV).

works [34,35,58,59], we set

ξ(z) =
(

u
v

)
, u =

(−Ey

Hy

)
, v =

(
Hx

Ex

)
. (3)

In superlattices composed of discrete layers, N̂(z) = N̂ j for
z j < z < z j+1, where N̂ j is the N̂ matrix of the layer occupy-
ing the space z j < z < z j+1. The tangential components of the
electromagnetic field are supposed to be continuous at all the
interlayer boundaries, so ξ(z) will be a continuous function of
z over the entire structure.

The components Ez and Hz as well as the electric displace-
ment D and the magnetic induction B may be calculated using
the constitutive relations. These relations for a bianisotropic
nonabsorbing medium are given, e.g., in [20–23,33,44,48] and
we write them in the form

(
D
B

)
= �̂

(
E
H

)
, �̂ =

(
ε̂ κ̂

κ̂† μ̂

)
, (4)

where the tensors of dielectric permittivity and magnetic per-
meability ε̂ and μ̂, respectively, are assumed to be complex
Hermitian in order to allow for the magneto-optical activity,
κ̂ is a complex nonsymmetric pseudotensor describing the
bianisotropic coupling, and Re(κ̂) and Im(κ̂) characterize the
contribution of the magnetoelectric effect and natural optical
activity, respectively. The dagger stands for Hermitian conju-
gation.

III. EXPLICIT EXPRESSION OF MATRIX N̂NN

When proving the equality of the group and energy veloci-
ties, we will use an explicit expression of the matrix

N̂NN = T̂N̂, (5)

where T̂ is a 4×4 matrix

T̂ =
(

0̂ Î
Î 0̂

)
, (6)

where 0̂ and Î are zero and identity 2×2 matrices. In partic-
ular, we need to know the explicit dependence of N̂NN on kx

and ky. In our paper [34] an expression of N̂NN was derived
assuming ky = 0. For ky �= 0 the matrix N̂NN is found similarly.
We insert (1) in the Maxwell equations and write the resulting
six equations as

1

i

dξ

dz
= T̂(ωψ + Ĵφ), (7)

−Ĵtξ = ων, (8)

where ψ = (−Dy By Bx Dx )t , the symbol t denotes transposi-
tion,

Ĵ = kxĴx + kyĴy, (9)

and Ĵx and Ĵy are 4×2 matrices

Ĵx =
(

Î
0̂

)
, Ĵy =

(
0̂
K̂

)
, (10)

K̂ =
(

0 −1
1 0

)
, φ =

(
Hz

Ez

)
, ν =

(
Bz

Dz

)
. (11)

Next, by multiplying both sides of (4) by the relevant permu-
tation matrix 	̂, we transform (4) to(

ψ

ν

)
= 
̂

(
ξ

φ

)
, (12)

where


̂ = 	̂�̂	̂−1 ≡
(


̂1 
̂2


̂
†
2 
̂4

)
= 
̂

†
, (13)


̂1 and 
̂4 are the upper 4×4 and lower 2×2 diagonal blocks
of 
̂, respectively, and 
̂2 is a 4×2 matrix with elements
(
̂2)i j = (
̂)i, j+4, i = 1, . . . , 4, j = 1, 2. The equality 
̂ =

̂

†
follows from �̂ = �̂

†
and 	̂−1 = 	̂t , since 	̂ is a purely

real orthogonal matrix.
Inserting (8) in (12) yields

φ = −
̂
−1
4 (
̂

†
2 + ω−1Ĵt )ξ. (14)

We replace φ by (14) in (12), express ψ in terms of ξ, and
insert the obtained expressions of ψ and φ in (7). As a result,
we obtain (2), where N̂ = T̂N̂NN and

N̂NN = ωÂ − B̂ − ω−1Ĉ, (15)

Â = 
̂1 − 
̂2
̂
−1
4 
̂

†
2, (16)

B̂ = 
̂2
̂
−1
4 Ĵt + Ĵ
̂

−1
4 
̂

†
2, Ĉ = Ĵ
̂

−1
4 Ĵt . (17)

These expressions also hold true when material constants de-
pend on z.
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IV. ENERGY AND GROUP VELOCITIES

The components VE ,a, a = x, y, z, of the energy velocity
VE in superlattices are the ratios of the corresponding com-
ponents Pa of the Umov-Poynting vector P averaged over the
period to the energy density W averaged over the period l of
the superlattice,

VE ,a = 1

l

∫ l

0
Pa(z)dz

/
1

l

∫ l

0
W (z)dz = Pa

W
. (18)

Both Pa and W are also averaged over time.
The local energy density W (z) in bianisotropic media with

frequency dispersion may be expressed in terms of the deriva-
tive ∂ (ω�̂)/∂ω [49,50] or ∂ (ω
̂)/∂ω,

W (z) = 1

4

(
E
H

)†
∂ (ω�̂)

∂ω

(
E
H

)

= 1

4

(
ξ

φ

)†
∂ (ω
̂)

∂ω

(
ξ

φ

)
. (19)

Excluding φ from (19) with the help of (14) and taking into
account (15)–(17), we find that (19) is reduced after proper
grouping of terms to

W (z) = 1

4
ξ† ∂N̂NN

∂ω
ξ. (20)

The frequency derivative is taken with kx and ky constant.
Matrices (16) and (17), which implicitly depend on ω through
material constants, are to be differentiated. The contraction
in (20) is purely real because N̂NN is a Hermitian matrix. This
ensues from the fact that the matrix 
̂ (13) is Hermitian and
hence so are the matrices Â, B̂, and Ĉ. [The expression (20)
was derived in our paper [34] for ky = 0.]

By inserting the vector φ (11) and(−Ey

Hy

)
= Ĵxξ,

(−Ex

Hx

)
= Ĵyξ (21)

in Px = Re(EyH∗
z − HyE∗

z )/2 and Py = Re(EzH∗
x − HzE∗

x )/2,
we obtain

Pa = − 1
4

(
ξ†Ĵaφ + φ†Ĵt

aξ
)
, a = x, y. (22)

The substitution of (14) for φ in (22) yields

Pa = 1
4ξ†[Ĵa
̂

−1
4

(

̂

†
2 + ω−1Ĵt

)
+ (
̂2 + ω−1Ĵ)
̂

−1
4 Ĵt

a

]
ξ (23)

and, taking into account expressions (9) and (15)–(17), it may
be noticed that

Pa = −1

4
ξ† ∂N̂NN

∂ka
ξ, a = x, y. (24)

The lossless condition divP = 0 reduces to dPz/dz = 0 be-
cause Px,y do not depend on x and y. Therefore, Pz = const, so
by writing Pz = Re(ExH∗

y − HxE∗
y )/2 in terms of ξ, we find

that for an arbitrary z = const,

Pz = 1
4ξ†T̂ξ|z = 1

4ξ†T̂ξ|z=0. (25)

We consider that wave (1) propagates freely through a
periodic superlattice. Apart from kx, ky, and ω, such a wave
is characterized by a purely real Bloch wave number k = θ/l ,

where θ is the phase of an eigenvalue γ = eiθ of the 4×4
transfer matrix of unit cell M̂. The matrix M̂ relates the
vectors ξ(0) and ξ(l ) pertaining to the boundaries z = 0 and
z = l of the period (unit cell) ξ(l ) = M̂ξ(0) and is calculated
taking into account the continuity of ξ(z) over the entire su-
perlattice [34,51–53,56–58].

Note that in infinite superlattices one can choose as the
period boundaries a sequence of planes z = zn = const, where
zn = z0 + nl , z0 is an arbitrary point of the Z axis, and the n
are integers. The matrix M̂ and its eigenvectors change with
the position of period boundaries, whereas the eigenvalues
and hence the Bloch vectors do not depend on it. It may be
checked that P and W also do not depend on the choice of the
period boundaries.

In the intervals zn < z < zn+1 the amplitude and phase of
a Bloch wave change in a complex way. For example, if
the superlattice is built of homogeneous layers then, in the
general case, ξ(z) in the jth layer is a linear combination
of the four partial solutions ξ( j)

α eip( j)
α z of Eq. (2), where ξ( j)

α

and p( j)
α , α = 1, . . . , 4, are the eigenvectors and eigenvalues

of the matrix N̂ j . However, setting ξ(z0) = ζ, where ζ is the
eigenvector of M̂ corresponding to the eigenvalue γ = eikl ,
we see that then ξ(zn) = ζeiknl , i.e., over the n periods the
wave undergoes only a phase shift by θn = knl . Therefore,
the motion of the Bloch wave along the sequence of points zn

may be viewed as an analog of the propagation along the Z
axis of a monochromatic wave in a homogeneous medium.
Accordingly, the components Vg,a, a = x, y, z, of the group
velocity Vg are defined as Vg,a = ∂ω/∂ka, where kz is the
Bloch wave number k [51,52].

To express Vg,a in terms of the mean energy flux and energy,
we take advantage of the equality

−i
d

dz

(
ξ†T̂

dξ

dg

)
= ξ† dN̂NN

dg
ξ, (26)

where d/dg stands for a differential operator. The right-hand
side of this equality is obtained by inserting the derivatives
dξ†/dz and d2ξ/dzdg found via (2) on the left-hand side and

using the identity N̂NN = N̂NN
†
.

Below it is assumed that the period is the interval 0 � z �
l . With the Bloch wave number k constant, the integration of
the left-hand side of (26) over the period yields

I = −i

(
ξ†T̂

dξ

dg

∣∣∣∣
z=l

− ζ†T̂
dζ

dg

)
= 0, (27)

since ξ(l ) = γ ζ and dγ /dg = 0, so in this case∫ l

0
ξ† dN̂NN

dg
ξ dz = 0. (28)

In layered superlattices an integral over the period is the sum
of the integrals over the thickness of each layer within the
period. The continuity of ξ at the interlayer interfaces is also
taken into account.

We fix k and ky and insert d
dg = ∂

∂ω
+ ∂kx

∂ω
∂

∂kx
in (28). Af-

terward we set d
dg = ∂

∂ω
+ ∂ky

∂ω
∂

∂ky
with k and kx constant. This

yields

Vg,a = −
∫ l

0
ξ† ∂N̂NN

∂ka
ξ dz

/ ∫ l

0
ξ† ∂N̂NN

∂ω
ξ dz, a = x, y. (29)
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Finally, we fix kx and ky and set d
dg = ∂

∂ω
, so now

I = l
∂k

∂ω
ζ†T̂ζ =

∫ l

0
ξ† ∂N̂NN

∂ω
ξ dz (30)

and

Vg,z = ζ†T̂ζ

/
1

l

∫ l

0
ξ† ∂N̂NN

∂ω
ξ dz. (31)

Thus, from (20), (24), (25), (29), and (31) and the fact that
ζ = ξ(0) it follows that

Vg,a = VE ,a, a = x, y, z, (32)

which completes the proof.

V. CONCLUSION

We have shown that the group velocity of harmonic electro-
magnetic waves in bianisotropic periodic superlattices is equal
to the energy velocity. The equality holds true provided the
absorbtion is disregarded, which is a widely used assumption
confirmed by data on electromagnetic wave absorption. Oth-
erwise the equality fails.

The equality of the group and energy velocities means
that the planes of constant amplitudes of a monochromatic
wave modulated by a sufficiently smooth envelope function
move with the energy velocity of this monochromatic car-
rier wave and that the energy velocity of a monochromatic
wave is directed along the normal to the surface of constant
frequency [1,5,10]. Such an interpretation of the group ve-
locity and its equality to the energy velocity defined as the
ratio (18) is applicable to Bloch waves at continuous values
of x and y but discrete values zn = z0 + nl . As it has already
been mentioned, it is the successive “jumps” of the Bloch
wave over points zn at a distance equal to the period l of the
superlattice that may be viewed as a wave motion similar to
the propagation of bulk waves in a homogeneous medium.
Accordingly, the period-averaged values of the energy flux
and energy turn out to be suitable energy characteristics of the
Bloch wave. At points zn and zn + �z, �z �= l , the amplitudes

of the Bloch wave of a given frequency differ without any
relation with possible modulation, so the concept of a smooth
wave packet loses its meaning for points other than points
zn of a sequence specified by the choice of z0. Note that
the local energy velocity P(z)/W (z) changes in the interval
zn < z < zn+1 and naturally does not equal the group velocity.

Note also that in homogeneous media the projection of
the group (energy) velocity on the direction of wave prop-
agation equals the phase velocity if the material constants
do not depend on the frequency [5], but this does not hold
true in superlattices. Owing to the spatial changes of material
constants, the nonlinear dependence of the frequency on the
wave numbers arises irrespective of the frequency dispersion
of material constants.

The equality Vg = VE implies that the corresponding com-
ponents of the velocities have to vanish simultaneously. In
particular, if a gap between allowed frequency zones exists
at the boundary of the Brillouin zone |k| = π/l , then the
component Vg,z along the stratification direction vanishes at
|k| = π/l together with VE ,z ∝ ζ†T̂ζ. However, it may be
that the gap does not open at |k| = π/l and two dispersion
curves just intersect at the boundary of the Brillouin zone, so
Vg,z = VE ,z �= 0. The two options ζ†T̂ζ = 0 and ζ†T̂ζ �= 0 are
due to properties of the transfer matrix of unit cell M̂. Specifi-
cally, M̂ has a pair of coinciding eigenvalues at |k| = π/l , the
eigenvector ζ is associated with this pair of eigenvalues, M̂
fulfills the identity M̂−1 = T̂M̂†T̂, and M̂ is not a Hermitian
matrix. In view of the latter fact, M̂ need not be diagonaliz-
able when its eigenvalues coincide (see, e.g., [60]). If M̂ is
not diagonalizable, then from M̂−1 = T̂M̂†T̂ it follows that
ζ†T̂ζ = 0. Otherwise ζ†T̂ζ �= 0. Analogous situations occur
inside the Brillouin zone at the extreme points of dispersion
curves and points of their intersections.
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