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Gap solitons with quadratic and quartic dispersion competition in one-dimensional
nonlinear periodic systems
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We studied gap solitons and nonlinear Bloch waves in Kerr nonlinear systems under competition between
quadratic and quartic dispersions. The results show that nonlinear Bloch waves can still be regarded as infinite
fundamental gap solitons chains. We also revealed the properties of the gap solitons in the relevant band gaps by
numerical analysis. Notably, for the two classical dipole modes in the first gap, the variation of the dispersion
coefficient leads to the change of the soliton power relation due to the interaction between the two solitons
composing them. We obtained the stable interval variation rule of gap waves without calculation by analyzing the
interaction between fundamental gap solitons. This is consistent with our linear stability analysis and real-time
numerical monitoring results. This finding provides an idea for further investigation of the physical properties of
higher-order solitons under higher-order dispersion.
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I. INTRODUCTION

As one of the most famous nonlinear phenomena, the soli-
ton has been widely focused on by the scientific community.
It is a pulsed traveling wave whose shape, amplitude, and
velocity remain unchanged during propagation. Even after
two solitons collide, they maintain their respective shapes
and velocities. Due to this particular property, it is widely
used in fluid mechanics [1], plasma physics [2], Bose-Einstein
condensation [3,4], nonlinear optics [5], and other fields [6].
In optics, the optical pulse formed by the nonlinear change of
refractive index and the balance of the group dispersion effect
is called an optical soliton, usually described by the cubic
nonlinear Schrödinger equation. Due to the robust stability of
solitons, they are often used as information carriers in infor-
mation transmission. In the past few decades, researchers have
focused on solitons formed by the competition between abnor-
mal quadratic dispersion and the Kerr nonlinear effect [7–10].
The higher-order dispersion is regarded as a disturbance.
However, it is well known that higher-order nonlinearity and
higher-order dispersion effects are usually not negligible in
ultrahigh-bit-rate optical communication systems. The influ-
ence of higher-order dispersion on femtosecond (short) pulses
applied in ultrafast fiber lasers and other fields cannot be
ignored. For example, when the width of short pulses is close
to 50 fs, the cubic dispersion plays a vital role in propagation.
When the pulse is less than 10 fs, the quartic dispersion
effect is also valuable [11,12]. Recently, Ref. [13] showed that
pure quartic solitons obtained by quartic dispersion and Kerr
nonlinear balance are found in silicon photonic crystal waveg-
uides. Such solitons have the advantage of energy spread over
traditional optical solitons with quadratic dispersion and Kerr
nonlinearity, allowing higher-energy pulses to be obtained at
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short pulse widths. Researchers hope to apply this discovery
to fiber lasers [14], but how to manage dispersion in fibers
has become an urgent problem, which has led to extensive
discussion on higher-order dispersion.

In recent studies, pure cubic solitons [15] and pure quar-
tic solitons [16–18] formed by single dispersion and Kerr
nonlinearity have been mentioned constantly. Nevertheless,
pure dispersion solitons are challenging to achieve. Many
researchers consider combining higher-order dispersion in
Kerr media rather than simply treating higher-order disper-
sion as a disturbance. Surprisingly, in Ref. [19], it was found
that compared with pure quadratic or pure quartic disper-
sion, using the dispersion of different orders is expected to
maximize the performance of fiber lasers. Therefore, the sci-
entific community considers various dispersion combinations,
such as a quadratic, cubic dispersion combination [20–22], a
quadratic, cubic, and quartic dispersion combination [23–27],
and even combinations of higher-order dispersions than quar-
tic [28–31]. These studies show that adding higher-order
dispersion impacts the solitons’ power, shape, and stability.
Furthermore, in parity-time (PT ) period systems, the addi-
tion of quartic dispersion significantly affects the Bloch band
structure [32]. The quartic dispersion produces different ef-
fects for different PT potential traps and can even alter the
PT -breaking points [33].

In the study of higher-order dispersion, there have been
many studies of quadratic and quartic dispersion [34–36].
However, in these works, only the influence of the quartic
dispersion coefficient on fundamental gap solitons (FGSs) is
considered. This paper details the properties of gap solitons
under the Kerr nonlinear effect, quadratic dispersion, and
quartic dispersion. In particular, we obtain the stability of
gap waves by analyzing the interaction between solitons. In
another reference [36], it is also called multipulse solitons.
Nonlinear Bloch waves (NBWs) and solitons are the two most
typical phenomena in nonlinear periodic systems. We study
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the relationship between them and analyze the influence of
quadratic and quartic dispersion on the properties of solitons
by numerical calculation. The structure of this paper is as
follows. In Sec. II, we give the model with quadratic and quar-
tic dispersion under Kerr nonlinearity and define the soliton
power. In Sec. III, we use the numerical analysis method to
analyze the properties of solitons under higher-order disper-
sion. For the dipole mode, we regard it as the formation of
two FGSs coupling through interaction and analyze the inter-
action type between solitons. Finally, the relationship between
solitons and NBWs is given. In Sec. IV, by analyzing the
interaction between two FGSs that make up the dipole mode,
we give the stability of the dipole under different parameters
and propagation constants, which is consistent with the results
obtained by linear stability analysis and real-time evolution. In
the following section (Sec. V), we discuss the stability of gap
waves constructed by different construction methods in detail.
We conclude in Sec. VI.

II. MODEL

In a one-dimensional periodic system, we consider that
pulse propagation along the fiber under the combined in-
fluence of quadratic dispersion, quartic dispersion, and Kerr
nonlinearity is described by the generalized Gross-Pitaevskii
equation [19,35,37],

i
∂ψ

∂z
= β2

2

∂2ψ

∂t2
− β4

24

∂4ψ

∂t4
+ V (t )ψ − γ |ψ |2ψ, (1)

with V (t ) is a time-periodic function. This paper will use
V (t ) = v0 sin2(t ). ψ (t, z) is the slowly varying complex en-
velope of the electric field, z is the propagation distance, and
t is the retarded time, which is normalized using the opti-
cal frequency of the coherent laser. β2 and β4 are quadratic
and quartic dispersion coefficients, which are indicated by
∂2k/∂ω2 and ∂4k/∂ω4, respectively. γ is the normalized
Kerr nonlinear coefficient and its sign represents the nonlin-
ear type: γ < 0 for the defocusing (or repulsive) case and
γ > 0 for the focusing (attractive) case. Here we only con-
sider the defocusing case. For simplicity, we set the Kerr
coefficient to −1, namely, γ = −1. When we select γ =
1, the soliton can be found in the semi-infinite gap below
the first energy band [38], and such solitons are similar to
the FGSs of the first energy gap at γ = −1. In this case,
we can consider the semi-infinite gap as the “first energy
gap.” Usually, such nonlinearity is selected in the study of
gap solitons’ laws without external potential [39–41] or dark
solitons [42].

To obtain the stationary solutions, we use the method of
separating variables. Substituting the solution in the form
of ψ (t, z) = φ(t ) exp(−iμz) into the generalized nonlinear
Schrödinger equation (1) yields a z-independent equation,

μφ = β2

2

∂2φ

∂t2
− β4

24

∂4φ

∂t4
+ v0 sin2(t )φ − γ |φ|2φ. (2)

Here, μ is called the propagation constant. Due to the addition
of Kerr nonlinear terms, NBWs and FGSs are two essential
stationary solutions of Eq. (2). In soliton theory, FGSs can
be considered a fundamental component of NBWs. This con-
clusion is also proper in the case of the quartic dispersion

FIG. 1. Bloch energy structure, where LBi represent the ith lin-
ear band. (a) v0 = 10 W−1 mm−1, β2 = −1 ps2 mm−1, and β4 =
−2 ps4 mm−1. (b)–(d) The shadow areas represent the linear band
and the invariant parameters are taken from the parameters in (a).

term, which will be mentioned later. Note that when μ is
a purely real number, the intensity of stationary solutions
will not change with the propagation of the pulse, namely,
|ψ (t, z)|2 = |φ(t )|2. In the soliton system, we usually call it
the conserved density and can define soliton power as

P =
∫ ∞

−∞
|φ(t )|2dt . (3)

FGSs will be limited inside a unit cell since the periodic ex-
ternal potential trap exists. In contrast, NBWs are periodically
distributed in the entire space. To better find the matching
NBWs, we define the average norm of the NBWs by

N =
∫ π

0
|φ(t )|2dt . (4)

III. BAND SPECTRUM AND GAP SOLITONS

Since the propagation constant of gap solitons only takes
the value within the linear Bloch band gap [43], it is very im-
portant to calculate the Bloch energy spectrum. First, we apply
Bloch theorem φn,k (t ) = un,k (t ) exp(ikt ) to the linear version
of Eq. (2). Here, un,k (t ) = un,k (t + π ) and k, n are the Bloch
wave number and band index, respectively. Then, we obtain
the linear Bloch energy spectrum through the plane-wave ex-
pansion method [44] and plot it in Fig. 1. Figures 1(b)–1(d)
show the difference in the energy spectrum under different
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FIG. 2. Soliton power diagram. (a) v0 = 10 W−1 mm−1, β2 =
−1 ps2 mm−1 and β4 = −2 ps4 mm−1. Shadow regions are linear
bands. Black (thick solid), pink (thin solid), and green (dash-dotted)
lines represent FGSs, subfundamental solitons, and higher-order soli-
tons, respectively. Red (solid near the dotted) and blue (dotted) lines
are the in- and out-of-phase dipole mode, respectively. (b)–(d) Prop-
agation constant μ = 4 mm−1. The solid black line represents twice
the power of FGSs (2P0), while the red dotted line and the blue
dotted line represent the in-phase (Pin) and out-of-phase (Pout) mode,
respectively. Furthermore, the invariant parameters are taken from
the parameters in (a).

parameters. We particularly point out here that the parameter
comparisons in this paper are all comparisons of the absolute
values of the parameters. That is, when we talk about the
dispersion coefficient increasing, it is actually the absolute
value that increases. Therefore, when the quadratic and quartic
dispersions increase, the band gap moves toward increasing
propagation constant. As can be seen from Figs. 1(b) and
1(d), the width of the first gap does not noticeably change, but
the second gap gradually decreases. According to Fig. 1(c),
greater Bragg reflection is caused at the Brillouin zone (BZ)
boundary with increased external potential intensity. The band
gap gradually opens and widens from the boundary of the
BZ and the bandwidth decreases, contrary to the effect of
the quadratic and quartic dispersion terms. Next, we use
Newton’s iterative method to solve Eq. (2) on a finite dif-
ference network [45]. According to the definition of soliton
power given by Eq. (3), we obtain the power diagrams of
two low-order soliton families in the first and second gap; see
Fig. 2(a). Among them, we study the two most typical types
of higher-order solitons, i.e., in-phase and out-of-phase dipole
modes [44]. The two peaks of the in-phase mode have the

same phase, as shown in Fig. 4(b), and the out-of-phase mode
has the opposite phase, as shown in Fig. 4(c). In this paper,
unless special emphasis is placed on the center distance of the
dipole modes, the default is that the two peaks are located in
two adjacent periodic potential wells. The two higher-order
solitons can be regarded as a combination of FGSs. They
are formed by coupling two independent FGSs under their
interaction.

Since any nonlinear Schrödinger equation follows the
variational principle, we introduce an energy functional of a
system as an effective Hamiltonian,

H =
∫

dt

{
−β2

2

∣∣∣∣ ∂

∂t
ψ

∣∣∣∣
2

− β4

24

∣∣∣∣ ∂2

∂t2
ψ

∣∣∣∣
2

+V (t )|ψ |2 − γ

2
|ψ |4

}
,

(5)

which satisfies i∂ψ/∂z = δH/δψ∗. When the depth of the
potential well v0 is large enough or the two solitons φ1, φ2

are far enough apart, the overlap of the two solitons’ complex
envelopes is small. In the potential well where the first soliton
φ1 is located, φ2 tends to zero. Similarly, in the potential well
where the second soliton φ2 is located, φ1 tends to zero. The
effective Hamiltonian can be reduced to [41]

H = H1 + H2 + Htrap + Hint, (6)

where H1 and H2 are Hamiltonians of two independent
FGSs. Htrap is the Hamiltonian caused by the interaction
between the dipole modes and the external potential well, i.e.,
Htrap = ∫

dtV (t )|φ|2, where φ is the complex envelope after
coupling. Due to the locality of the solitons, φ tends to zero
in other regions outside the main potential well. Furthermore,
when v0 is sufficiently large, the external potential well can
be approximately regarded as a square potential well, as
shown in Fig. 6(a), i.e., the Htrap inside the potential well
approaches zero. Under the above approximation, Htrap

is simplified as the value at the edge of the square well,
Htrap = v0|φ(t = potential well edge)|2δt , where δt is the
approximate thickness of the square potential well. This
value is usually greater than zero for in-phase modes and
the opposite for out-of-phase modes. Moreover, its absolute
value also increases as the propagation constant μ increases.
For Hint, Refs. [40] and [41] point out that the interaction
is formed by the oscillation tail of the solitons (OTS). The
specific expression of Hint is determined by the OTS, relative
phase, relative distance, propagation constant, etc. In this
paper, we only consider the increase or decrease in power
caused by interaction, which reflects the type of interaction
between solitons. When the interaction leads to an increase
in power, we call it a repulsive interaction. When it leads to a
decrease in power, we call it an attractive interaction.

As seen from Figs. 3(a) and 3(b), the interaction between
solitons only affects the side where the solitons are close,
while the shape and OTS of the other side of the solitons
remain unchanged. At the same time, the interaction between
the solitons weakens as the distance between the centers
of the two solitons increases, indicating that the interaction
is a short-range interaction; see Figs. 3(c) and 3(d). This
force plays an important role in the stability of higher-order
solitons and will be discussed in detail in Sec. IV. In this
section, we focus on the effect of different parameters on
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FIG. 3. Soliton profile and exponential oscillating tail for v0 =
10 W−1 mm−1, β2 = −1 ps2 mm−1, and β4 = −2 ps4 mm−1 at μ =
4 mm−1. The numbers in parentheses in the figure legend indicate
the center positions of FGSs and the FGSs, which compose dipole
modes. For example, Figs. 4(a) and 4(b) correspond to (0) and (0, π ),
respectively. (c) In-phase modes. (d) Out-of-phase modes.

this interaction. To show the effects of this interaction, we
define a power difference, δ = Pin/out − 2P0. Pin and Pout

represent in- and out-of-phase mode power, respectively. P0

represents the power of FGSs that comprise the two dipole
modes. This power difference is caused by soliton-soliton and
soliton–potential-well interaction.

We consider the variation in the power of independent
FGSs. Since FGSs are generated in the first gap, the power
is zero as they approach the bottom of the first gap. When the
dispersion parameter increases, the band gap shifts upward.
For a fixed propagation constant, it is equivalent to the point
in the gap constantly approaching the bottom of the gap.
Therefore, the soliton power decreases, which is consistent
with our numerical analysis results; see solid black line in
Figs. 2(b)–2(d). Then, we analyze the power differences be-
tween dipole modes and the two FGSs composed of them in
different parameters. It can be found that with the increase
of the quartic dispersion coefficient, the absolute value of the
power difference between the two modes increases gradually,
but the symbols of the two modes are different. However,
quadratic dispersion produces different effects. The power
difference between the two modes is gradually close to each
other, and then increases in the reverse direction, but in this
case, in the in-phase mode, it increases in the positive direc-
tion. The effect of v0 is that the power difference gradually
approaches zero, and the dipole is closer to the two FGSs due
to suppressed tunneling, which will be mentioned later.

FIG. 4. Solitons (solid red line) and corresponding NBWs
(dashed black line) at the point indicated in the first gap in
Fig. 2(a) at μ = 6.5 mm−1. The shadow and white regions dis-
tinguish two adjacent external potential periods. The dashed blue
line represents the solitons profiles, namely, the real part of the
solitons, whose value corresponds to the right y axis. (a)–(d) NBWs
at the center of the BZ with N = 7.2241, 7.2414, 6.9569, and
7.2448 W.

Then, we consider the relationship between solitons and
NBWs. In the first gap, only one basic mode family is
characterized by the peak being limited to a periodic unit, as
shown in Fig. 4(a). It can be seen that it matches a periodic
element of NBWs very well. In the soliton’s theory, NBWs at
the center or edge of the BZ are infinite chains composed of
FGSs [46]. As shown in Figs. 4 and 5, the above rules apply to
the system with quartic dispersion. The higher-order soliton
in Fig. 4(d) comprises five FGSs by in-phase. The results
show that our conclusion is correct. An alternative family of
basic modes appears in the second gap, i.e., subfundamental
gap solitons (sub-FGSs). Its characteristic is that it has two
opposite peaks limited in a periodic unit, like the FGSs. It can
be considered one of the components of the NBWs. As shown
in Figs. 5(e) and 5(f), the two dipole modes are completely
different from those we mentioned earlier in that they are
composed of sub-FGSs, but it can still be seen that they match
the NBWs quite well.

IV. STABILITY OF GAP SOLITONS

Reference [37] points out that FGSs in the first gap are sta-
ble under quadratic and quartic dispersion effects. In Fig. 7(a),
we also provide stability analysis for FGSs with different pa-
rameters in the first gap, proving the correctness of this result.
Due to the short-range interaction between solitons, when a
sufficient distance separates the two solitons that make up the
dipole, the solitons do not affect each other and are regarded
as independent propagation. In this case, the stability of the
dipole is consistent with that of FGSs. As the two solitons get
close together, the interaction between them increases, which
causes the stability of the dipole to be destroyed. According
to Fig. 6(a), FGSs are confined to each period and can be
regarded as a soliton trapped in the potential well, whose tail
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FIG. 5. Solitons (solid red line) and corresponding NBWs
(dashed black line) at the point indicated in the second gap
in Fig. 2(a) at μ = 9.5 mm−1. The shadow and white regions
distinguish two adjacent external potential periods. The dashed
blue line represents the solitons profiles, namely, the real part
of the solitons, whose value corresponds to the right y axis.
(e),(f) In-phase and out-of-phase dipole modes composed of two
subfundamental solitons, respectively. (a)–(f) NBWs at the cen-
ter of the BZ with N = 15.0689, 5.5690, 15.0862, 13.2924, 5.6034,

and 5.5086 W.

is represented by the tunneling of solitons. It can be seen
from Figs. 6(b)–6(d) that the OTS’s frequency is consistent
with that of the periodic external potential well. On this basis,
we analyze that when two solitons approach each other, the
complex envelopes of the two solitons overlap on the side
close to each other due to the action of tunneling, which is
the fundamental cause of the interaction. If the interaction
is repulsive, it is equivalent to enhancing the potential-well
depth and weakening the tunneling effect. The two solitons
tend to propagate independently. In this case, the stability
of the dipole approaches that of the independent FGSs, that
is, the stability increases. Conversely, when the interaction is
attractive, the two solitons have a stronger coupling, which
leads to a decrease in the stability of the dipole. To validate
our conclusion, we will use two methods to verify the stability
of stationary solutions, and look forward to the consistent
results of these two methods. The first method is called linear
stability analysis. Since the unstable solution is very sensitive
to small disturbances, we test the stability of the solution by
the disturbance complex envelope 
(t, z),


(t, z) = [φ(t ) + u(t ) exp(iλz)

+ w∗(t ) exp(−iλ∗z)] exp(−iμz), (7)

FIG. 6. External potential well V (t ) and corresponding OTS for
v0 = 10 W−1 mm−1, β2 = −1 ps2 mm−1, β4 = −2 ps4 mm−1 at
μ = 6.5 mm−1. (a) The solid blue and the dashed black lines rep-
resent V (t ) and the simplified square potential well, respectively,
whose values correspond to the right y axis. Red (dashed), green
(thick), and black (thin) lines, respectively, represent dipole (0, π ),
dipole (−π, π ), with FGSs (−π ). The numbers in parentheses in-
dicate the center position of the solitons, which are consistent with
the representation of Fig. 3. (b)–(d) The shadow and white regions
distinguish two adjacent external potential periods. Moreover, the
solid black line represents the decaying OTS.

where φ(t ) is the stationary solution of Eq. (2), with u(t )
and w(t ) being the small perturbations at eigenvalue λ. By
substituting the perturbation solution 
(t, z) to Eq. (2), the
following eigenvalue problem can be obtained:(

L γφ2

−γφ∗2 −L

)(
u

w

)
= λ

(
u

w

)
, (8)

with L = − β2

2
d2

dt2 + β4

24
d4

dt4 − v0 sin2(t ) + 2γ |φ|2 + μ. In
Eq. (8), when the imaginary part of the eigenvalue λ is zero,
we call the stationary solution φ(t ) robust stability. When it is
nonzero, it is unstable.

Figures 7(c)–7(e) show that for in-phase modes, there is a
sudden and abnormal drop in soliton power difference near
the top of the band gap. This is because as the propagation
constant increases, the OTS strength increases, leading to a
stronger coupling between FGSs; see Fig. 7(b). From the per-
spective of physics, this can be interpreted as soliton energy
increasing, but the depth of the potential well is changeless,
and tunneling increases as a result. Moreover, the complex
envelopes are superimposed because the in-phase modes are

013509-5



Y. CAO AND T. F. XU PHYSICAL REVIEW A 108, 013509 (2023)

FIG. 7. Linear stability analysis of FGSs and dipole modes’
power difference in the first gap. (a) The numbers in the figure leg-
end are the values of v0, −β2, and −β4, separated by hyphens.
For example, “10 − 1 − 1” indicates v0 = 10 W−1 mm−1, β2 =
−1 ps2 mm−1, and β4 = −1 ps4 mm−1. (b) Black (solid), red
(dashed), and blue (dash-dotted) lines represent μ = 5, 6, and
7 mm−1, respectively. The thin lines are FGSs, and the thick lines are
the in-phase mode. (c)–(e) The left panels represent in-phase modes
and the right panels represent out-of-phase modes. The invariant
parameters are taken from v0 = 10 W−1 mm−1, β2 = −1 ps2 mm−1,
and β4 = −2 ps4 mm−1. The content is in one-to-one correspondence
with Fig. 8.

composed of two FGSs in phase. So, the coupling part cannot
simply be regarded as the disturbance part, Eq. (6) is no longer
applicable, and the definition of δ is also no longer satisfied.

FIG. 8. Linear stability analysis. The maximum imaginary part
of the eigenvalue varies with μ under different parameters in the first
gap. (a),(c),(e) The stabilities of the in-phase mode; (b),(d),(f) the
out-of-phase mode. Their unchanged parameters are taken from v0 =
10 W−1 mm−1, β2 = −1 ps2 mm−1 and β4 = −2 ps4 mm−1.

Since δ is composed of two parts, we should remove the
soliton–potential-well interaction part, δint = δ − δwell. For in-
phase solitons, it is equivalent to moving δ in the decreasing
direction, while out-of-phase is moving in the increasing di-
rection, but these do not change the trend of δ. So we can
still distinguish the change of stability by the change of δ.
Since the FGSs’ power tends to zero at the bottom of the
first gap and the power variation δwell caused by the external
potential well also tends to zero, we use this as the basis for
stability judgment. When the part near the top of the band
gap is not considered, it can be seen from Fig. 7(c) that
when β4 = 0 ps4 mm−1, the in-phase mode power difference
δ is always greater than zero, which indicates the repulsive
interaction and enhanced stability. From this conclusion, we
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FIG. 9. Linear stability analysis and real-time evolution with
10% noise added at μ = 5 mm−1. Parameters corresponding to the
three figures on the left are v0 = 10 W−1 mm−1, β2 = −1 ps2 mm−1,
and β4 = 0 ps4 mm−1, and the right has a different parameter, which
is β4 = −2 ps4 mm−1. In the evolution diagram on the right panel,
the color represents |φ(t )|2. (a),(b) In-phase mode. (c),(d) Out-of-
phase mode. (e) Out-of-phase mode (−π, π ) in which the central
position differs by two periods. (f) In-phase mode (−2π, π ). The
shadow and white regions distinguish two adjacent external potential
periods in the left panel of (e) and (f).

can conclude that in the first gap, when β4 = 0 ps4 mm−1,
the in-phase mode is stable throughout the first gap, while
the out-of-phase mode is the opposite because its power dif-
ference is always less than zero. In addition, as can be seen
from Fig. 7(c), with the increase of β4, the in-phase mode is
unstable at the bottom of the band gap and the unstable region
keeps expanding. However, after a certain point, the instability
decreases because the interaction changes from attractive to
repulsive as μ increases. The out-of-phase mode is stable at
the bottom of the band gap, and the stability region becomes
larger when β4 increases. Nonetheless, the stability decreases
after a point, indicating that the out-of-phase mode is unstable
in the large propagation constant region. These results are
consistent with the numerical analysis results of Figs. 8(a)
and 8(b). Other cases are consistent with the above analysis
and can be seen to be consistent with the linear stability anal-
ysis results. Furthermore, Figs. 7(c)–7(e) show that the power
difference can show stability under different parameters at the

FIG. 10. Type of gap waves and linear stability analysis for v0 =
10 W−1 mm−1, β2 = −1 ps2 mm−1, and β4 = −1 ps4 mm−1. The
shadow and white regions distinguish two adjacent external potential
periods.

fixed propagation constant. The smaller δ is, the less stable
it is. We use the maximum value of the imaginary part λ to
represent the degree of instability. When the dipole modes are
unstable, a smaller δ will cause a larger [MAXIm(λ)] in the
linear stability analysis. We use the second method to verify
the results of linear stability analysis. We add 10% Gaussian
noise to the stationary solution to simulate the disturbance,
take results after a disturbance as the initial condition of
Eq. (1), and use the second-order time-splitting step method
[47] and Crank-Nicolson method [48] to monitor its evolution;
see the Appendix for details. If it grows or decays with the
development of the system, we call it unstable. Otherwise, it
is robust stable. This method is called real-time evolution. As
shown in Fig. 9, we show some real-time evolution results,
which are consistent with our linear stability analysis results.
It can be seen that with the evolution of the system, in the
stable area, the unstable state caused by disturbance will decay
rapidly and transform into a stable soliton shape, and then the
soliton morphology will remain unchanged. However, solitons
in the unstable region will fluctuate and even diverge in evo-
lution. Since the interaction between solitons is a short-range
interaction, when the dipole is unstable, we can increase the
central distance between the two FGSs to reduce the inter-
action between solitons, thus increasing the stability of the
composed dipole. The real-time evolution results are shown
in Figs. 9(b), 9(e), 9(c), and 9(f).

V. GAP WAVES

This section focuses on higher-order solitons, often called
gap waves. Among them, the dipoles mentioned in Sec. IV
are special gap waves composed of two FGSs. We use the
previous conclusions to directly obtain the stability of some
gap waves without numerical analysis. To better illustrate our
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FIG. 11. Soliton profile and real-time evolution with 10%
noise for v0 = 10 W−1 mm−1, β2 = −1 ps2 mm−1, and β4 =
−1 ps4 mm−1. In the soliton profile figure, the shadow and white
regions distinguish two adjacent external potential periods. In the
evolution diagram on the right panel, the color represents |φ(t )|2.
(a) “+ + +” mode at μ = 6 mm−1. (b) “+ + + + ++” mode
at μ = 6 mm−1. (c),(d) “+ − + − + − +” mode at μ = 5.6 and
6 mm−1, respectively. (e),(f) “+ − +−” and “− + −+” modes at
μ = 5.6 mm−1, respectively.

conclusions, we explain the symbols that appear later. We
define the peak of the soliton profile in the positive half-axis
part as a “+” mode and a “−” mode in the negative half-axis
part. We use the “×” mode to represent the part without a
peak between the two peaks. The more “×” between the two
peaks, the farther apart the soliton centers are. Due to the
localization of solitons, each peak of the gap waves formed
by FGSs is confined to a unit cell, so each symbol represents
a unit cell and is described from the first crest encountered in
the negative direction. In Fig. 10(a), we give some gap waves
and name them using our definition. Since the short-range
interaction between solitons affects only the close side, we do
not destroy the stability when we add FGSs successively in the
same relative phase based on the dipole models. For example,
if “++” continues to add “+” mode, that is, to add FGSs in
the same phase, then the gap waves under this construction
should get the same stable interval. We used linear stability
analysis and real-time evolution to obtain consistent results,
as shown in Figs. 10(b), 11(a), and 11(b). The out-of-phase

FIG. 12. Soliton profile, linear stability analysis, and real-time
evolution with 10% noise added for v0 = 10 W−1 mm−1, β2 =
−1 ps2 mm−1, and β4 = −1 ps4 mm−1 at μ = 6.5 mm−1.
(a),(b) “+ + − + +” mode. (c),(d) “+ + × − × + +” mode. In the
evolution diagram, the color represents |φ(t )|2.

mode “+−” is obtained by successively adding FGSs in re-
verse phase to obtain gap waves such as “+ − +,” “+ − +−,”
and “− + −+,” which should also maintain the same stable
interval, as shown in Figs. 10(c), 11(c), and 11(d). If the way
of constructing gap waves is reversed, that is, the “+ − +−”
mode is changed into the “− + −+” mode, it can be easily
known from Eq. (8) that the stability will not change at all.
Figures. 11(e) and 11(f) verify this conclusion. In fact, there
is no difference between the “+−” and “−+” modes. We can
only see that this is a gap wave composed of two FGSs by out-
of-phase combination, so its stability will not change, which
also verifies the correctness of our linear stability analysis and
real-time evolution. In the process of constructing gap waves,
a phase different from the law will lead to a huge change in
the stability of the gap waves, for instance, the “+ + + + +”
and “+ + − + +” modes. From the linear stability analysis
results of Fig. 10(b), it can be seen that the “+ + + + +”
mode is stable at μ = 6.5 mm−1, but Fig. 12(b) shows that
the “+ + − + +” mode is unstable. In that case, we can still
increase the distance between the abnormal mode and the
center of the surrounding FGSs to restore stability, like the
“+ + × − × + +” mode; see Fig. 12(d).

VI. CONCLUSION

In conclusion, through numerical calculation, we find
the gap solitons produced by the competition between the
quadratic dispersion, quartic dispersion, and Kerr nonlinear-
ity. Compared with the NBWs, FGSs can still be regarded
as a basic component of the NBWs. We then investigate the
effect of parameter variations on the power of the two clas-
sical dipole modes. The results show that the quadratic and
quartic dispersion have opposite effects on the power caused
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by changes in the interaction between the two FGSs that make
up the dipole mode. We analyze this interaction and find a
short-range action generated by the decaying OTS. The action
only affects the side of the two solitons close to each other,
and the OTS’s frequency is the same as that of the external
potential well. We define different interaction types by com-
paring the power difference between the dipole model and
FGSs. Furthermore, we analyze the effect of this interaction
on the stability of the dipole model, with results consistent
with linear stability analysis and real-time evolution. Finally,
we adopt the interaction analysis to directly present the sta-
bility of gap waves, consistent with the results obtained from
the numerical analysis. In addition, some possible methods are
given to stabilize some unstable gap waves, which provides a
method to regulate the stability of higher-order solitons.
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APPENDIX: NUMERICAL METHODS

In this Appendix, we briefly introduce numerical schemes
for simulating soliton evolution. The method combines the
second-order time-splitting step method and the Crank-
Nicolson method. First, we divide the nonlinear Schrödinger
equation (1) into a linear part and a nonlinear part as follows:

i
∂ψ

∂z
= (Hlin + Hnon)ψ, (A1)

with

Hlin = β2

2
�t − β4

24
�2

t + V (t ), Hnon = −γ |ψ |2. (A2)

Here, �t is the Laplace operator expressed as ∂2/∂t2. For
a better description, we introduce some notation here. Let
m and p be two positive integers. The interval [−T, T ] is
equally divided into m parts, and the step size in the t di-
rection is ht = 2T/m. The interval [0, Z] is divided into p
parts, and the step size in the z direction is hz = Z/p. Let us
call t j = jht (−m/2 � j � m/2), zn = nhz(0 � n � p). Now
we introduce the following notation: ψn

j is the value of the
complex envelope at (t j = jhz, zn = nhz ); ψn represents all
values of the complex envelope in the t direction at zn = nhz,
which is an m × 1 column vector.

According to the idea of the “time”-splitting step method,
we decompose Eq. (A1) at each z level and then calculate it
step by step to obtain the following form:

ψn+1 = e−iHnonhz/2e−iHlinhz e−iHnonhz/2ψn. (A3)

This method is also known as Strang splitting. In order to
improve the accuracy of the simulation, we use the Crank-
Nicolson method for the calculation of the linear part, which
is of the form

ψn+1
j − ψn

j

hz
= 1

2
F n+1

j

(
t, z,�t ,�

2
t

) + 1

2
F n

j

(
t, z,�t ,�

2
t

)
.

(A4)

By substituting Eq. (A4) into the linear version of Eq. (1), we
get

(I + A − B − C)ψn+1 = (I − A + B + C)ψn, (A5)

where

A = 1

2
coeff1

⎛
⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞
⎟⎟⎟⎟⎠, (A6)

B = 1

2
coeff2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 −4 1
−4 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A7)

with

coeff1 = −β2hz

2ih2
t
, coeff2 = − β4hz

24ih4
t
, (A8)

and I is the identity matrix, and C is the diagonalized matrix
of V (t ). The vertical bars in the matrix are used only to
distinguish between two adjacent columns and have no prac-
tical meaning. We define M = (I + A − B − C)−1(I − A +
B + C) and give a numerical scheme within a loop,

ψn+ 1
2 = exp(iγ |ψn|2hz/2)ψn,

ψ̃n+ 1
2 = Mψn+ 1

2 ,

ψn+1 = exp
(
iγ |ψ̃n+ 1

2 |2hz/2
)
ψ̃n+ 1

2 n. (A9)

In the above process, the product between column vectors
and column vectors is expressed as the corresponding element
multiplication, i.e., Hadamard product. At the beginning of
the simulation, we denote the perturbed complex envelope as
ψ0; then, by repeating the Eq. (A9) process, we can simulate
solitons of any z value.
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