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Entanglement properties of a quantum-dot biexciton cascade in a chiral nanophotonic waveguide
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We analyze the entanglement properties of deterministic path-entangled photonic states generated by coupling
the emission of a quantum-dot biexciton cascade to a chiral nanophotonic waveguide, as implemented by Østfeldt
et al. [PRX Quantum 3, 020363 (2022)]. We model the degree of entanglement through the concurrence of
the two-photon entangled state in the presence of realistic experimental imperfections. The model accounts
for imperfect chiral emitter-photon interactions in the waveguide and the asymmetric coupling of the exciton
levels introduced by fine-structure splitting along with time jitter in the detection of photons. The analysis
shows that the approach offers a promising platform for deterministically generating entanglement in integrated
nanophotonic systems in the presence of realistic experimental imperfections.
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I. INTRODUCTION

The generation of high-fidelity entanglement is key for
the development of modern quantum technologies [1,2].
Entangled states of photons have been widely generated
probabilistically by employing spontaneous parametric down
conversion (SPDC) [3], but the probabilistic nature of this pro-
cess is a major obstacle for scaling up to high photon numbers.
The possibility of entanglement generation on demand is of
utmost importance for a wide range of quantum information
applications, such as measurement-based quantum computing
[4,5]. The biexciton cascade from quantum-dot (QD) photon
sources has been investigated as an on-demand entanglement
generator [6–9]. The emitted states are, however, entangled
in the polarization degree of freedom, which is incompatible
with implementations in integrated photonic circuits [10] that
typically support only a single polarization mode. This poses
a challenge for future integration and scalability of quantum
technologies [11] relying on biexciton-cascade entanglement
sources.

A solution to the integration of the biexciton source into
nanophotonic devices was presented in Ref. [12]. Here the
photon emission from a cascaded-biexciton decay from In-
GaAs quantum dots was coupled to a chiral nanophotonic
waveguide [13] (see Fig. 1). The polarization-dependent di-
rectional emission enabled by chiral coupling of dipoles in
these waveguides enable a promising route for on-chip, path-
entangled photon generation. Two-photon excitation of the
quantum dot prepares the system in the biexciton state |XX 〉
with energy ωXX + ωX , which decays through two possible
channels to the exciton levels |X±〉 [see Fig. 1(a)]. In a ho-
mogenous medium, the biexciton decays radiatively to one of
the exciton levels, emitting a photon with either right (σ+) or
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left (σ−) circular polarization. The two exciton levels, |X+〉
and |X−〉, are degenerate with energy ωX and decay to the
ground state |g〉 emitting photons with opposite circular po-
larization to that emitted during the biexciton decay due to
angular momentum conservation. The two emitted photons
are thus entangled in polarization as there is no information
regarding which decay path the system followed. To turn this
into a chip-compatible, path-entangled photon source, the QD
is placed in a single-mode chiral photonic crystal waveguide,
which allows converting the polarization of the transition
dipole moment to the emission direction of the photon, i.e.,
σ− dipoles emit to the left (path A) and σ+ dipoles emit to the
right (path B). The polarization entangled state created by the
biexciton cascade is thus translated into path encoding that
can be used in integrated photonic circuits. Reference [12]
reported on experimental measurements of the dynamics by
out coupling the photons from the waveguide and frequency
filtering them in order to separate photons emitted on the
biexciton and exciton transitions. The desired correlations
were then measured through a Hanbury-Brown-Twiss (HBT)
experiment [14], as shown in Fig. 1.

While an ideal QD that is precisely positioned at a chi-
ral point could generate maximally entangled, path-encoded
photon pairs, imperfections in the QD as well as in the chiral
coupling could impact the degree of entanglement. In partic-
ular, intrinsic asymmetry of the QD could lead to coupling
between the exciton states |X±〉 through a spin-flip oscillation
with a frequency S that is known as the fine-structure splitting
(FSS) of the QD. In this work we provide a full theoretical
analysis of the entanglement properties of the path-entangled
state accounting for all these imperfections [15]. This analysis
already successfully described the experimental findings in
Ref. [12], but here we provide the full details of the theory and
apply it to systematically analyze the impact of various errors
on the degree of entanglement. In particular, the aforemen-
tioned FSS induces a frequency splitting of the exciton levels

2469-9926/2023/108(1)/013507(11) 013507-1 ©2023 American Physical Society

https://orcid.org/0000-0001-5881-7628
https://orcid.org/0000-0001-8351-3474
https://orcid.org/0000-0002-8052-9427
https://orcid.org/0000-0003-1337-9163
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.013507&domain=pdf&date_stamp=2023-07-17
https://doi.org/10.1103/PRXQuantum.3.020363
https://doi.org/10.1103/PhysRevA.108.013507


EVA M. GONZÁLEZ-RUIZ et al. PHYSICAL REVIEW A 108, 013507 (2023)

FIG. 1. Entanglement generation scheme and level structure of the quantum dot (QD). The QD (semisphere) is placed in a chiral
nanowaveguide, and is excited from above, perpendicularly to the nanostructure plane. The photons emitted by the QD can couple to the
left (A path) or to the right (B path). The light is collected and frequency filtered to separate between the biexciton (ωX X ) and exciton (ωX )
photons in order to measure the desired temporal correlations as a function of τ , the difference between the two emission times. The level
structure of the QD can be expressed in two different bases: (a) Circular basis. The biexciton level |XX 〉, with energy h̄ωX X , emits two opposite
circularly polarized photons (circular right and left polarized with γ± decay rates, respectively). In this picture, the two exciton levels |X+〉 and
|X−〉 have the same energy h̄ωX , but are coupled at a frequency equal to the fine-structure splitting S, which makes the state time dependent.
The exciton |X+〉 decays at rate γ ′

− to the ground state |g〉, and so does |X−〉 at a rate γ ′
+. (b) Linear basis. The biexciton level |XX 〉 has the

same energy as in the circular basis, but the two emitted photons have opposite linear polarization (horizontal and vertical with γx and γy decay
rates, respectively). The two exciton levels are no longer degenerate, but split into the exciton levels |Xx〉 and |Xy〉 that are stationary in time.
The exciton level |Xx〉 (|Xy〉) couples to the x (y) in-plane dipole component and has energy ωx + S/2 (ωx − S/2). It decays to the ground state
|g〉 at a rate γ ′

x (γ ′
y).

(see Fig. 1), which effectively creates a time dependence of
the entangled polarization states. This can reduce the quality
of entanglement when imperfect time detection of photons is
taken into account. Moreover, since the photons emitted in the
two different decay paths in Fig. 1(b) have different polariza-
tions, the two paths may occur with different probabilities in
photonic nanostructures, given by the polarization-dependent
local density of states. These effects, together with imperfect
chiral coupling to the waveguide, can reduce the amount of
entanglement. The analysis and understanding of these effects
will be important for further explorations of the biexciton
cascade as an on-demand source of path-entangled photons
in integrated quantum information platforms.

II. ANALYSIS

We start our analysis by introducing the Hamiltonian of the
system and a wave-function ansatz for the state generated by
means of the light-matter interaction with the QD. The state
is then fully characterised through studying its evolution by
solving Schrödinger’s equation.

A. Hamiltonian and wave-function ansatz

The biexciton level structure can be expressed in two
different bases. In the linear polarization basis [Fig. 1(b)],
the emitted photons are linearly polarized (either horizon-
tally or vertically, with γx and γy decay rates, respectively),
while in the circular basis [Fig. 1(a)] the photons are cir-

cularly polarized (with right- and left-circularly polarized
photons, and γ+ and γ− decay rates, respectively). In the
linear basis the two exciton levels have different ener-
gies, split by the FSS S, while in the circular basis the
levels are degenerate. In the latter basis, there is a time-
dependent oscillation between the two exciton levels at a
frequency S.

The full system is described by the total Hamiltonian
Ĥ = Ĥ0 + Ĥf + Ĥint, which can be decomposed into the free
energy of the emitter Ĥ0, the free field Ĥf, and the interaction
Ĥint Hamiltonians. These are given by

Ĥ0 = h̄(ωXX + ωX )|XX 〉〈XX | + h̄

(
ωX + S

2

)
|Xx〉〈Xx|

+ h̄

(
ωX − S

2

)
|Xy〉〈Xy|

Ĥf = h̄
∫

(ωkâ†
kâk + ω′

kâ′†
k â′

k )dk

Ĥint = − q

m0
Â · p̂, (1)

where we have chosen the Coulomb gauge with vector
potential A. The QD is described by the coordinate r with the
conjugate variable or generalized momentum p, charge q and
mass m0 [16]. Ideally, the energy of the biexciton (|XX 〉) and
exciton (|Xα〉 with α = x, y) levels is given by h̄ωXX and h̄ωX ,
respectively. The FSS S, however, splits the exciton levels
into h̄(ωX ± S/2) in the linear polarization basis. Note that
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we express the total Hamiltonian in a linear polarization basis
as it simplifies the temporal dynamics of the system. The field
annihilation operators âk are momentum dependent, where k
expresses the corresponding wave vector, and the prime indi-
cates whether it annihilates a biexciton (âk) or an exciton (â′

k)
photon with frequency ω

(′)
k , correspondingly. The biexciton

and exciton binding energies are assumed to be sufficiently
different to treat them as two independent reservoirs. This
assumption is motivated by the 2–3 meV energy splitting
between the exciton and biexciton binding energies observed
in QDs, which is over three orders of magnitude larger than
the natural line widths of these transitions [17].

To put the interaction Hamiltonian into a simpler form, the
conjugate variable p (proportional to the dipole operator) can
be expressed in terms of the transition matrix elements p̂ =∑

l,m〈l|p̂|m〉|l〉〈m|, where the indexes l and m represent the
excited and ground states of the transition, respectively. This
allows us to express the interaction Hamiltonian as

Ĥint =
∑
l,m,k

〈l|p̂|m〉 · Uk(r)âk|l〉〈m| + H.c., (2)

where Uk(r) is the mode function of the field. We consider that
the field propagates in the waveguide along the x direction.
Following Bloch’s theorem we thus have Uk (r) = ek (r)eikx,
where ek (r) is the Bloch function describing the electric field
with wave number k at the QD position r, and the field only
propagates in the x direction. Moreover we assume that the
QD only interacts within a narrow frequency range around the
resonance frequency with wave numbers ±k0 yielding

Ĥint =
∑
l,m

k≈±k0

〈l|p̂|m〉 · ek (r)eikxâk|l〉〈m| + H.c., (3)

where for brevity we have taken only the nonprimed anni-
hilation operators, with the sign of k indicating whether the
field propagates to the right (+k0) or to the left (−k0). By
assuming the same wave number in both directions, we im-
plicitly assume time-reversal symmetry for the propagation of
the field in the waveguide (i.e., without the QDs). This is valid
as long as we can, e.g., neglect the intrinsic Faraday effect of
the waveguide. Since waveguides are very broad band this is
typically an excellent approximation and does not exclude any
possible violation of time-reversal symmetry of the QD if an
external magnetic field was applied.

The polarization of the emitted light is determined by the
symmetry of the states, which results in the following matrix
elements for the dipole forbidden transitions in the linear
polarization basis

〈XX | p̂x|Xy〉 = 〈XX | p̂y|Xx〉 = 〈Xx| p̂y|g〉
= 〈Xy| p̂x|g〉 = 0, (4)

as the x (y) component of the dipole only couples to the hor-
izontally (vertically) polarized light. Moreover, the allowed
transitions from the exciton levels have a dipole moment de-
fined as P,

〈Xx| p̂x|g〉 = 〈Xy| p̂y|g〉 = P, (5)

whereas the two possible biexciton decay transitions are given
by [16]

〈XX | p̂x|Xx〉 = 〈XX | p̂y|Xy〉 =
√

2P. (6)

We now insert these dipole transitions in the interaction
Hamiltonian from Eq. (3) and calculate its Fourier transform.
For now we only consider the modes propagating to the right
(path B), yielding

Ĥint = − P · [√2
(
εk0,x(r)|XX 〉〈Xx|

+ εk0,y(r)|XX 〉〈Xy|
)
eik0x0 âB(x0) + (

εk′
0,x(r)|Xx〉〈g|

+ εk′
0,y(r)|Xy〉〈g|

)
eik0x0 â′

B(x0)
] + H.c., (7)

where the position-dependent annihilation operator ân(x) is
defined as

ân(x) = 1√
2π

∫ ∞

0
ân,±kei(k−k0 )xdk, (8)

with n = B(A) denoting fields propagating to the right (left)
and the sign being positive (negative) for path B (A) and x0

is the position of the emitter. We note that since we separate
the annihilation operator into left and right propagating modes
(A and B) the limit of the integration is k = 0. In practice,
however, we only expect the annihilation operator to give a
contribution for k ≈ ±k0. We can therefore extend the limit
of integration to −∞ yielding the commutator

[ân(x), â†
n′ (x′)] = δn,n′δ(x − x′). (9)

We further note that with the definition in Eq. (8) we make
the convention that both left and right propagating fields are
traveling towards positive x, i.e., the direction of the x axis is
reversed for the left propagating modes.

To relate the coupling of the right propagating modes with
the left propagating modes we again invoke time-reversal
symmetry of the waveguide modes. If the local electric field
εk0,x(r) is a solution for the waveguide, then by time-reversal
symmetry the solution for a wave propagating in the opposite
direction is given by ε−k0 (r) = ε∗

k0
(r). This allows us to obtain

the full interaction Hamiltonian by combining Eq. (7) with
the corresponding expression for back-propagating waves.
This results in

Ĥint = − h̄
∑

α

[(gA,α âA(0) + gB,α âB(0))|XX 〉〈Xα|

+ (g′
A,α â′

A(0) + g′
B,α â′

B(0))|Xα〉〈g| + H.c.], (10)

where we have set x0 = 0 for simplicity and defined the com-
plex coupling constants gn,α = |gn,α|eiφn,α and their phases in
relation to the local electric field components ε±k0,i as

gA,x =
√

2Pε∗
k0,x(r),

gB,x =
√

2Pεk0,x(r),

g′
A,x = Pε′∗

k0,x(r),

g′
B,x = Pε′

k0,x(r).

gA,y =
√

2Pε∗
k0,y(r),

gB,y =
√

2Pεk0,y(r),

g′
A,y = Pε′∗

k0,y(r),

g′
B,y = Pε′

k0,y(r).

(11)

The coupling constants in Eq. (11) describe the light-matter
interaction between the field and the waveguide including the
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chirality. In particular, their magnitude describes the coupling
of a horizontally or vertically polarized photon (through the
x and y components of the dipole, respectively) to the left or
to the right paths. From Eq. (11) we note that |gA,α| = |gB,α|
for α = x, y, so that linearly polarized dipoles always have
the same coupling constant and hence the same decay rate
in both directions A and B. This does not, however, exclude
that circular dipoles can have chiral interaction and predom-
inantly decay in one direction. The existence of such chiral
interactions is encoded in the relative phase of the coupling
constants. From Eq. (11) we find that the phase difference �

between the phases of the x and y components of the electric
field is

� ≡ φx − φy = φA,x − φA,y = −(φB,x − φB,y), (12)

and similarly for the exciton phase difference �′. Consider
now a circularly polarized state |X±〉 = (|Xx〉 ± i|Xy〉)/

√
2.

We can calculate the coupling constants g′
n,+ for the decay of

these states into the n = A, B directions from the interaction
Hamiltonian (10), yielding

g′
n,± = 1√

2
(g′

n,x ∓ ig′
n,y). (13)

If |g′
n,x| = |g′

n,y| = g′, the decay rate of the circular states into
the two directions will thus fulfill

γ ′
A,± ∝ |g′

A,±|2 = g′2(1 ± sin �′)

γ ′
B,± ∝ |g′

B,±|2 = g′2(1 ∓ sin �′). (14)

For �′ = π/2 the x and y components of the field in the
waveguide are phase shifted corresponding to circular polar-
ization. Furthermore, whether the waveguide mode is left-
or right-hand circularly polarized is linked to the propaga-
tion direction of the light. As a consequence, the system
exhibits perfect chiral coupling with the circularly polarized
states coupling only to a single propagation direction, i.e.,
γ ′

A,+ �= 0 and γ ′
B,+ = 0, with the directions reversed for the

opposite circular state. Complete absence of chirality occurs
when �′ = 0, where the field in the waveguide is linearly
polarized. Thus, the parameters � and �′ represent the degree
of chirality of the system, which we employ in the subsequent
sections of this paper.

To describe the emission into the waveguide, it is
convenient to change the Hamiltonian into the position
basis. While the Fourier transform of the free energy term in
the total Hamiltonian (1) is itself, Fourier transforming the
free field term yields

Ĥf =
∑

n

[
ih̄

∫ (
vgXX

∂ â†
n(x)

∂x
ân(x) + vgX

∂ â′†
n (x)

∂x
â′

n(x)

)
dx

+ h̄
∫

(ωXX â†
n,kân,k + ωX â′†

n,kâ′
n,k )dk

]
, (15)

where the group velocities associated with the biexciton and
exciton energy levels are given by vg,XX = ∂ω′

k/∂k and vg,X =
∂ωk/∂k, respectively. Note that these two group velocities
could be different due to the dispersion of the waveguide
and the different emission wavelengths of the exciton and
biexciton levels. Here, we approximate them to lowest order
around the exciton and biexciton frequencies, that is ωk ≈
ωX + vg,X (k − k0) and ω′

k ≈ ωXX + vg,XX (k − k0).
We can now write a wave-function ansatz for the total state

of the system in the real space domain. The state should de-
scribe that up to two photons can be emitted by the biexciton
decay and that they couple into the left- or right-propagating
waveguide modes. Based on the methods from Ref. [18] (with
similar methods being developed in Refs. [19–21]) we use the
following ansatz:

|ψ (t )〉 = e−i(ωXX +ωX )t

[
cXX (t )|XX 〉|∅〉 + √

vgXX

×
∑
α,n

∫
dtXX ψα,n(t, tXX )â†

n(vgXX (t−tXX ))|Xα〉|∅〉

+ √
vgXX vgX

∑
n,m

∫∫
dtXX dtX ψn,m(t, tXX , tX )

× â†
n(vgXX (t − tXX ))â′†

m (vgX (t − tX ))|g〉|∅〉
]
,

(16)

where tX and tXX are the two emission times with tXX < tX .
This state describes that with an amplitude cXX (t ) the system
is in the biexciton state with the field being in the vacuum
state |∅〉. Since the system is initially excited to this state we
have cXX (t = 0) = 1. The amplitude ψα,n(t, tXX ) describes
the state after the emission of a photon in the direction n =
A, B at time tXX by the decay into the exciton state |Xα〉. Since
the photon propagates in the waveguide, this is associated
with a photon at position x = vgXX (t − tXX ). As this state
still evolves in time the amplitude has an explicit dependence
on time t with the amplitude vanishing before the emission,
ψα,n(t, tXX ) = 0 if t � tXX . Finally, after the emission of
both photons, the system is in the ground state |g〉 and the
two photons are emitted in directions n, m with amplitude
ψn,m(t, tXX , tX ). This amplitude vanishes unless t � tX � tXX .
It should be noted that both for the left and right propagation
directions in the waveguide x ∈ [0,∞], i.e., the reference
frame is placed such that in both directions x is positive after
the QD.

B. Solving the Schrödinger equation

The wave functions |ψ (t )〉 from Eq. (16) should be cal-
culated to describe the state. We thus apply Schrödinger’s
equation ih̄∂|ψ〉/∂t = Ĥ |ψ〉 to the wave-function ansatz us-
ing the space-domain Hamiltonian. Following the procedure
from Ref. [18], we obtain the set of coupled differential
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equations:

ċXX (t ) = − i√
vgXX h̄

∑
α,n

gα,nψα,n(t, t ),

ψ̇x,n(t, tXX ) = iS

2h̄
ψx,n(t, tXX ) − ig∗

x,ncXX (t )
√

vgXX h̄
δ(t − tXX ),

− i√
vgX h̄

∑
m

g′
x,nψn,m(t, tXX , t ),

ψ̇y,n(t, tXX ) = − iS

2h̄
ψy,n(t, tXX ) − ig∗

y,ncXX (t )
√

vgXX h̄
δ(t − tXX )

− i√
vgX h̄

∑
m

g′
y,nψn,m(t, tXX , t ),

ψ̇n,m(t, tXX , tX ) = − i√
vgX h̄

∑
α

g′∗
α,nψα,n(t, tXX )δ(t − tX ).

(17)

We then apply the Laplace transform to the nine equations in
Eq. (17), with the system initially prepared in the biexci-
ton state (cXX (t = 0) = 1). The Laplace transform simplifies
solving the coupled differential equations to solving an al-
gebraic problem, where the initial conditions of the system
are already specified in the Laplace space instead of in the
solution of the differential equations. Inverting the Laplace
transformation now yields

ψ̇x,n(t, tXX ) = − ig∗
x,ncXX (t )
√

vgXX h̄
δ(t − tXX )

−
(−iS + γ ′

x

2h̄

)
ψx,n(t, tXX ) − �

2h̄
ψy,n(t, tXX )

ψ̇y,n(t, tXX ) = − ig∗
y,ncXX (t )
√

vgXX h̄
δ(t − tXX )

−
(

iS + γ ′
y

2h̄

)
ψy,n(t, tXX ) − �∗

2h̄
ψx,n(t, tXX ),

(18)

with the spontaneous emission rates given by

γ (′)
α =

∑
n

γ (′)
α,n ≡

∑
n

∣∣g(′)
α,n

∣∣2

vgX
. (19)

A coupling between the |Xx〉 and |Xy〉 states mediated by the
local electric field of the waveguide is captured by the cross
terms with coupling coefficient

� = g′
A,xg′∗

A,y + g′
B,xg′∗

B,y

vgX
, (20)

which is real due to time-reversal symmetry (11). This cou-
pling is important if, e.g., the local electric field in the
waveguide is diagonally polarized, which leads to � = γ ′

x =
γ ′

y .
When solving the coupled set of differential equations (18)

it is convenient to work in a basis that diagonalizes the dy-
namics, i.e., where the equations decouple. For a rotationally
symmetric system, this is the case for any basis, but it is no
longer the case once the symmetry is broken. The FSS is
induced by the asymmetry of the QD and is assumed to be
in the x and y directions such that Eqs. (18) decouple in that
basis. On the other hand, the local waveguide field may have
a different orientation, which also breaks the symmetry and
thus leads to a coupling between the equations, i.e., � �= 0. In
practice, however, we typically have S � �, e.g., in the exper-
imental implementation in Ref. [12] the fine structure splitting
S was an order of magnitude larger than the exciton emission
rate (γ ′

x + γ ′
y )/2. The coupling between the exciton levels

(|Xx〉 and |Xy〉) can therefore be neglected and we set � = 0.
We note that this assumption may lead to inconsistencies in
the obtained results due to incorrect normalization of the state
in QDs with small FSS, i.e., S comparable to (γ ′

x + γ ′
y )/2. In

the subsequent sections, we use S = 4(γ ′
x + γ ′

y )/2 for which
we find that the magnitude differs from unity by <6%.

We now solve the two coupled differential equations from
Eq. (18) by taking the aforementioned limit � = 0, such that
the equations decouple. We can then straightforwardly solve
them by again applying the Laplace transform, obtaining

cXX (t ) = e− 1
2h̄ (γx+γy )t

ψx,n(t, tXX ) = −i
√

γx,ne− 1
2h̄ (γx+γy )tXX − 1

2h̄ (γ ′
x+iS)(t−tXX )−iφx,nθ (t − tXX )

ψy,n(t, tXX ) = −i
√

γy,ne− 1
2h̄ (γx+γy )tXX − 1

2h̄ (γ ′
x−iS)(t−tXX )−iφy,nθ (t − tXX )

ψn,m(t, tXX , tX ) = −e− 1
2h̄ (γx+γy )tXX

(√
γx,nγ ′

x,me− 1
2h̄ (γ ′

x+iS)(tX −tXX )−i(φx,n+φ′
x,m )

+
√

γy,nγ ′
y,me− 1

2h̄ (γ ′
y−iS)(tX −tXX )−i(φy,n+φ′

y,m )
)
θ (t − tX )θ (tX − tXX ),

(21)

where θ (x) is the Heaviside step function, i.e., θ (x) = 1 if x >

0, and θ (x) = 0 otherwise.
We now calculate the probability of detecting two photons

simultaneously at the output of the waveguide in order to

analyze the quality of the entanglement. To do so we correlate
the biexciton and exciton photons with a time delay τ in
two different settings: when both are coupled to the forward
or back-propagating direction (noted as AX AXX and BX BXX ,
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respectively) and when they couple to opposite directions
(AX BXX and BX AXX ):

Pn,m(t, tXX , tXX + τ )

= |vgXX ||vgX |〈ψ (t )|â†
n(vgXX t )ân(vgXX t )

× â′
m

†(vgX (t − τ ))â′
m(vgX (t − τ ))|ψ (t )〉. (22)

With the wave-function ansatz Eq. (16) and the results from
Eq. (21) we obtain

Pn,m = |ψn,m(t, tXX , tXX + τ )|2

= e−(γx+γy )tXX
[
γx,nγ

′
x,ne−γ ′

xτ + γy,nγ
′
y,ne−γ ′

yτ

+ 2
√

γx,nγy,nγ ′
x,mγ ′

y,me− 1
2 (γ ′

x+γ ′
y )τ · cos (Sτ+(φx,n−φy,n)

+ (φ′
x,m − φ′

y,m))
] · θ (t − tXX − τ ). (23)

C. Entanglement generation

The state produced by the biexciton cascade coupled to
the chiral waveguide has two different degrees of freedom:
the path followed (to the left, A, or to the right, B) and the
respective times of emission of the biexciton (tXX ) and exciton
(tX ) photons. We project this state in time space by fixing
the two times of detection tX − tXX ≡ τ > 0. Note that the
characteristics of the state produced depend only on the time
difference τ .

From our wave-function ansatz in Eq. (16), we postselect
the two-photon emission terms by conditioning on detecting
photons at times t = tXX and t = tX , thus obtaining the state

|ψ (τ )〉 = 1√
N

(ψAA(τ )|AA〉 + ψAB(τ )|AB〉

+ ψBA(τ )|BA〉 + ψBB(τ )|BB〉), (24)

where,

N = |ψAA(τ )|2 + |ψAB(τ )|2 + |ψBA(τ )|2 + |ψBB(τ )|2 (25)

is the normalization factor. Note that we dropped the explicit
subscripts for exciton X and biexciton XX photons on the
direction index. Instead, we utilize time-ordered emission in
the simplified notation, i.e., the subscript AB should be read
as AXX BX .

In general the two possible decay channels do not have the
same spontaneous emission rates, i.e., γx �= γy due to differ-
ences of the local electric field components in the waveguide.
However, to achieve a high degree of chirality in the waveg-
uide, the two exciton decay rates have to be similar γx ≈ γy.
This was also the case in the recent experiment in Ref. [12].
For most of the paper we therefore set γx = γy and γ ′

x = γ ′
y ,

but investigate the influence of differences in the rates in
Sec. III D. Moreover, the biexciton and exciton spontaneous
emission rates are given by

γx + γy ≡ γXX , γ ′
x = γ ′

y ≡ γX . (26)

Since the biexciton decays twice as fast according to Eq. (6),
if we assume identical group velocities we have that γX =
γXX /2. In the rest of the paper, we assume this relation be-
tween the spontaneous emission rates.

The difference in the phase of the transition dipoles for
biexciton and exciton decays, � and �′, respectively, satisfies
Eq. (12). Moreover as the optical wavelengths of the photons
emitted from biexciton and the exciton decay channels are
comparable, we can approximate the phase differences to be
equal, i.e., � = �′. Under these assumptions, the total proba-
bility of detecting the first photon at time t = tXX is

P(t = tXX ) = (γx + γy)e−(γx+γy )tXX /h̄ = 2γX e−2γX tXX /h̄. (27)

We can thus calculate the path-dependent, two-photon emis-
sion probabilities to be

PAA = γX

4
e−γX τ/h̄[1 + cos(Sτ + 2�)]

PBB = γX

4
e−γX τ/h̄[1 + cos(Sτ − 2�)]

PAB = PBA = γX

4
e−γX τ/h̄[1 + cos(Sτ )].

(28)

A QD with S = 0 that is perfectly chiral coupled to the waveg-
uide, i.e., � = �′ = π/2, results in PAA = PBB = 0. In this
case we thus have the ideal entangled state (|AB〉 + |BA〉)/

√
2,

where the emission direction of the two photons is perfectly
anticorrelated, as shown with the dashed and dotted lines in
Fig. 2. Note that, for S = 0, our model can only accurately
represent the perfect chiral coupling case and will lead to
erroneous conclusions if � �= π/2 since this leads to � �= 0.
For the general case of S > 0, we can calculate the resulting
entangled two-photon state by conditioning the solution in
Eq. (21) on the detection of a photon at time t = tXX . For

FIG. 2. Time correlations PAA and PAB as a function of the differ-
ence in the emission time τ . The dashed and dotted lines have been
calculated with perfect symmetry between the exciton levels (S = 0)
while the dash-dotted and solid lines have been obtained for S = 4γX .
The waveguide coupling is perfectly chiral (� = π/2) in all cases.
Inset: Concurrence C of the state as a function of the difference in
emission times τ . The concurrence remains unity at all times for
any value of S. This shows that the state is maximally entangled
independently of the time τ , as also shown in Eq. (29).
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perfect chiral coupling the state is

|ψ (τ )〉�=π/2 = 1

2

(
cos

(
Sτ

2

)
(|AB〉 + |BA〉)

+ i sin

(
Sτ

2

)
(|AA〉 + |BB〉)

)
, (29)

To understand the entanglement in this state we rewrite it as

|ψ (τ )〉�=π/2 = 1
2 (|A〉|ξ 〉 + |B〉|ξ ′〉), (30)

which is in fact a maximally entangled state, with |ξ 〉 =
cos(Sτ/2)|B〉 + i sin(Sτ/2)|A〉 and |ξ ′〉 = cos(Sτ/2)|A〉 +
i sin(Sτ/2)|B〉. For perfect chirality the entanglement is thus
maximal regardless of the detection time, although the specific
entangled state varies with the emission time, resulting in a
time varying detection pattern in Fig. 2. In practice, this means
that the corresponding measurement protocol must compen-
sate for the time dependence. This task may be nontrivial
depending on the specific application. Here, for simplicity we
chose to characterise the state by its intrinsic entanglement
that could be obtained in such an idealized setup. In contrast,
if the waveguide interaction is not chiral (� = 0, π ) the state
is given by

|ψ (τ )〉�=0,π = 1
2 (|AB〉 + |BA〉 + |AA〉 + |BB〉)

= 1
2 (|A〉 + |B〉)X (|A〉 + |B〉)XX , (31)

which is a separable state. As a consequence all detection pat-
terns of two photons are equally probable. In real experimental
settings, the directional (chiral) coupling could lie in between
these two extreme cases depending on the local electric field at
the location of the QD within the waveguide. This imperfect
chirality will lower the entanglement quality of the source,
which is quantified in the next section.

III. RESULTS

As we have seen in the previous section, the emitted
two-photon entangled state depends on the time difference τ

between the biexciton and exciton emission times. We thus
expect that any uncertainty in the emission times will affect
the entanglement quality of the state. Moreover, imperfect chi-
rality of the waveguide reduces the directionality of emission,
thereby leading to nonperfect conversion into path encoding
of the entangled state. In this section, we quantify the effect
of imperfections on the entanglement quality of the state.

To this end, we employ the concurrence C as the entan-
glement measure to characterize the quality of the state. The
concurrence of any quantum state with a density matrix ρ is
given by [22]

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (32)

where {λi} are the square root of the eigenvalues of ρρ̃ in de-
scending order and ρ̃ = (σ̂y ⊗ σ̂y)ρ∗(σ̂y ⊗ σ̂y). We calculate
the density matrix ρ that represents the path-encoded state
obtained from the biexciton cascade to be

ρ(τ ) =
∑
n,n′
m,m′

ψn,m(τ )ψ∗
n′,m′ (τ )|n, m〉〈n′, m′|. (33)

By calculating the resulting eigenvalues {λi}, we obtain the
concurrence using Eq. (32)

C(τ ) = 2

N
|ψAA(τ )ψBB(τ ) − ψAB(τ )ψBA(τ )|. (34)

Inserting the wave functions from Eq. (21) and approximating
γx = γy as discussed earlier [cf. Eq. (26)], the dependence of
C on the chiral phase � and the time delay between biexciton
and exciton emissions τ is found to be

C(�, τ ) = sin2 (�)

1 + cos (Sτ ) cos2 (�)
. (35)

We obtain perfect concurrence C = 1 when the waveguide
is perfectly chiral (� = π/2) as discussed above. Further-
more, if the waveguide is completely nonchiral (� = 0, π )
the concurrence vanishes C = 0, agreeing with the separable
state obtained in Eq. (31). In the following sections we will
independently analyze the effect of each of the imperfections
in more detail.

A. Fine-structure splitting

In this section, we analyze the effect of the FSS on the
entanglement quality of the path-entangled state. Nonzero
FSS leads to a spin flip between the exciton levels (|X±〉), and
it is therefore convenient to describe the decay in the linear
polarization basis with x- and y-polarized states, |Xx〉 and |Xy〉,
respectively [cf. Fig. 1(b)]. In this basis, the states are decou-
pled and the FSS induced spin-flip frequency S corresponds
to an energy splitting between the exciton levels. The splitting
makes the emitted photons distinguishable in energy, and cru-
cially their frequencies are correlated with their polarizations.
This leads to “which-way” information about the polarization
state, which means reduction in the degree of entanglement.
To overcome this issue Ref. [23] has proposed using electro-
optical modulators that rotate the polarization of the biexciton
and exciton photons separately to effectively erase the infor-
mation gained from the splitting in the polarization-encoded
state. A phase modulator could similarly be applied to im-
prove path-entangled states. Alternatively, narrow spectral
filtering in between the two frequency components of either
the exciton or biexciton emission can be implemented to erase
the which-path information, however, at the expense of signif-
icantly reducing the entanglement generation rate [7]. Another
approach is to implement QDs with improved symmetry in
order to obtain a smaller splitting S [24].

The reference situation corresponds to an ideal system
without fine structure splitting and perfect directional (chi-
ral) coupling (S = 0 and � = π/2). This situation is easily
understood from the level structure in Fig. 1(a), where emis-
sion occurs with two oppositely polarized circular dipoles
(σ− and σ+). With perfect chiral coupling these decay in
opposite directions creating that maximally entangled state
(|AB〉 + |BA〉)/

√
2. As a consequence, the probability of de-

tecting both photons on the same side of the waveguide
vanishes (dashed line in Fig. 2). The probability of detecting
one photon at each of the opposite ends of the waveguide
decays exponentially with the exciton spontaneous emission
rate (γ ′

x + γ ′
y )/2 (dotted line in Fig. 2) as expected from the

lifetime of the exciton states.
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(a) (b)

FIG. 3. (a) Time correlations PAA, PAB, PBA, PBB as a function of the difference in the emission time τ with a FSS of S = 4γX and waveguide
chirality of � = π/3. We observe that PAA and PBB are out of phase with each other. This may seem surprising, since the two directions are
naively the same, but occurs due to an interplay between the imperfect chirality and the sign of the FSS (see text). This effect was experimentally
observed in Ref. [12]. Inset: Concurrence C of the state as a function of the difference in emission times τ . The concurrence oscillates between
0 and 1, as the state evolves. (b) Color map of the concurrence C of the state as a function of the difference in phase � and the difference
in emission times τ . The concurrence oscillates in time for a given chirality, with the exception of perfect chirality (� = π/2, which gives
C = 1) and nonchiral waveguide coupling (� = 0, π , which gives C = 0). The “×” markers indicate the points investigated in Fig. 4(a).

We now consider a scenario where the FSS creates an
asymmetry between the exciton levels (S �= 0), while the
chiral coupling is still ideal (� = π/2). This generates an os-
cillation between two maximally entangled states as discussed
below Eq. (30). The corresponding probabilities of the various
detection patterns is shown with the dash-dotted and solid
lines in Fig. 2. The amplitude of oscillations decays exponen-
tially with the time constant set by the exciton spontaneous
emission rate. As discussed in the previous section, although
the emitted state changes over time, it remains maximally
entangled, i.e., C(τ � 0) = 1, and it is a superposition of
standard Bell states.

B. Imperfect chirality

We now analyze the joint effect of both imperfect chirality
(� �= π/2) and nonzero FSS (S �= 0). An example of the
detection probability for this situation is shown in Fig. 3(a).
Curiously, the probabilities PAA and PBB are out of phase,
meaning that with a given time delay there is a difference in
the probabilities of detecting two photons at the two ends of
the waveguide. This effect happens due to an interplay of the
imperfect chirality and the FSS. A decay from the biexciton
state and subsequent detection of the photon at one end creates
a coherent superposition between the two exciton states |Xx〉
and |Xy〉 with a phase ∓� depending on where the photon was
detected. The subsequent dynamics induced by the FSS S may
then evolve the state towards or away from the relative phase
±�, which gives the maximal emission in the same direction.

With nonperfect chirality, the concurrence C of the path-
entangled, biphoton state emitted by the biexciton cascade
is reduced since the imperfect chirality limits the directional
coupling of the QD emission. The dependence of C(τ ) on
� is shown in Fig. 3(b). We observe that C is independent
of τ only if � = nπ/2, where n is a nonzero integer. If
n is even, C(τ � 0) = 0 and corresponds to the completely

nonchiral case. If n is odd, we reproduce the results of the
perfect chiral case that results in a maximally entangled state
with C(τ � 0) = 1 as discussed in the previous subsection.
For partial chirality � �= π/2, the FSS induces oscillations
between nonmaximally entangled states and C oscillates as
a function of the detection time τ . In general, C is below
unity except for Sτ = π , where the concurrence is unity for
all � �= 0, π .

C. Timing jitter

In this section we analyze the effect of uncertainty in the
timing of photodetection events on the entanglement quality.
We model the uncertainty in detection time by averaging the
density matrix (33) elements ρn,n′,m,m′ with a Gaussian proba-
bility distribution with standard deviation σ

ρ̄n,n′,m,m′ (τ ) =
∫ ∞

0
dτ ′ exp

[
− (τ ′ − τ )2

2σ 2

]

× ψn,m(τ ′)ψ∗
n′,m′ (τ ′). (36)

The time-averaged density matrix ρ̄(τ ) is then given by

ρ̄(τ ) = 1

N̄ (τ )

⎛
⎜⎜⎜⎜⎜⎝

ρ̄AAAA(τ ) ρ̄AAAB(τ ) . . . ρ̄AABB(τ )

ρ̄ABAA(τ ) . . .
...

...
. . .

...

ρ̄BBAA(τ ) . . . . . . ρ̄BBBB(τ )

⎞
⎟⎟⎟⎟⎟⎠,

(37)

where N̄ = ∫ ∞
−∞ dτ ′ exp[−(τ ′ − τ )2/(2σ 2)]N is a normaliza-

tion constant equal to the probability density of the detection
time and N is given by Eq. (25). From this density matrix we
can then calculate the concurrence C.

Figure 4(a) shows the dependence of the concurrence C
on the detection timing jitter σ at different combinations of
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(a)

(b)

(c)

FIG. 4. (a) Concurrence C of the state as a function of the de-
tection timing jitter, quantified by the Gaussian RMS width σ , for
several values of chirality � and time difference τ [the selected
values are marked with “×” symbols in Fig. 3(b)]. (b) Concurrence
C of the state for different degree of chirality, quantified by the
phase �, with a timing jitter of σ = 0.3/γX . The concurrence can
be larger at negative than positive time intervals (shaded region) since
such events effectively have less timing uncertainty than those with
positive time intervals (see main text). (c) Corresponding probability
density N̄ of the detection time for the situation analysed in (b).
Note that the probability density quickly approaches zero for τ < 0
(shaded region) in contrast to the increase in concurrence. Through-
out the figure we assume a nonzero FSS of S = 4γX .

chirality and time delay. As seen in the figure the concur-
rence drops when the uncertainty in detection time becomes
comparable to the oscillation period 1/S. This highlights the
importance of keeping track of the time dependence for the
quality of the final path-entangled state. Unlike the jitter-free
case, even systems with perfect chirality (� = π/2) exhibit
C < 1 for nonzero values of σ since we do not know precisely
which state we have. The asymptote of C with increasing
time jitter is observed to depend only on the phase �, i.e.,
when the time jitter is comparable to or larger than the spread
in emission time; the precise time of the detection is not
important. Figure 4(b) shows the time evolution of C for a
fixed timing jitter σ = 0.3/γX for different values of the chiral
phase and S = 4γX . Note that a peculiar effect occurs for
� = π/2 [Fig. 4(b)], where we observe that C increases at
negative time delays (gray shaded region). Since the emission
of the exciton always occurs after the biexciton emission
(tX − tXX = τ > 0), negative detection intervals (τ < 0) cor-
respond to the case where the emission of the photon must
have occurred close to τ = 0, i.e., with minimal time delay,

but was measured to be at a negative value due to the time
jitter. Therefore the uncertainty in the emission time, which
is otherwise given by the detection time jitter, is effectively
reduced for negative detection times, leading to a higher con-
currence. The probability of measuring the state at negative
time intervals, however, decays very rapidly as τ decreases,
as shown in Fig. 4(c). The larger concurrence at small pos-
itive time delays (0 < τ � σ ) compared to later times can
be understood with similar arguments. On the other hand for
� = π/4 and � = π/8 the fidelity in the absence of time
jitter is lower around τ = 0 than at later times, cf. Fig. 3(b).
As a consequence the peak concurrence still occurs around
Sτ = π . The probability density in Fig. 4(c) decays with the
decay rate γX of the exciton states. On top of this it oscillates
with increasing amplitude as the system becomes less chiral
(� → 0). The reason is that the polarization of waveguide
modes becomes linear as the system loses chirality. After the
decay of the biexciton, the polarization of the exciton state
rotates due to the FSS S and may thus be more or less aligned
with the waveguide polarization. In contrast, for the chiral
case the waveguide polarization is circular and the rotation
of the polarization does not affect the decay rate.

D. Asymmetric exciton decay

In the experiments presented in Ref. [12], the decay rates
of the x- and y-polarized exciton levels were nearly identical
(i.e., γx ≈ γy). However, in general these two decay rates may
differ depending on the position of the QD in the waveguide,
with the asymmetry more dominant at locations with a low
degree of directional emission, i.e., far from perfect chirality.
In this section we analyze how this asymmetry can affect the
quality of entanglement.

Figures 5(a) and 5(b) show the impact of asymmetry ε ≡
(γx − γy)(γx + γy) on the concurrence for the case of ε =
−0.4. As the decay rates of the x- and the y-polarized exci-
ton levels are different, one can gain which-path information
about the photon decay from the photodetection time, i.e.,
the highest decay rate would result in increased likelihood of
early detection of photon, and vice versa. This extra infor-
mation about the emission process reduces the entanglement.
Furthermore, the difference in decay rates of the biexciton
state creates a difference in populations of the |Xx〉 and |Xy〉
states. However, if the difference in the emission time is
comparable to the difference in decay rates, the which-path
information arising from the asymmetric decay rates is erased
and the entanglement is recovered. This interplay between the
difference in emission times and the asymmetry ε leads to
an optimal time delay τ that maximizes the concurrence as
observed in Figs. 5(a) and 5(b). In addition to this optimality,
we still observe that C oscillates with emission time delay due
to the nonzero S as discussed in Sec. III A.

For a systematic study of the effect of asymmetry, we
calculate the average concurrence C̄ over all τ detection times,
defined as

C̄ =
∫ ∞

−∞
P(τ )C(τ )dτ, (38)

where P(τ ) is the corresponding probability density of the
state at time τ . The dependence of C̄ on the asymmetry pa-
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(a) (b) (c)

FIG. 5. (a) Concurrence C of the state as a function of the time delay τ at different degrees of the chirality, quantified by �. The asymmetry
between the exciton decay rates is described by the parameter ε = (γx − γy )/(γx + γy ) and fixed to be ε = −0.4. The oscillations in the
concurrence due to the FSS S = 4γX are modulated by the difference in exciton decay rates. (b) Color map of the concurrence of the state
as a function of the difference in phase � and the time τ for ε = −0.4. The concurrence oscillates in time due to the FSS S, and reaches a
maximum for a nonzero time τ . This optimal difference in emission time is reached when the difference in populations of the exciton states
arising from a difference in biexciton decay rates is canceled by the faster decay of the most likely state. (c) Color map of the concurrence C̄
averaged over all emission times τ as a function of the difference in phase � and the asymmetry parameter ε with S = 4γx and a time jitter of
σ = 3/γX . We observe that the concurrence is optimal for perfectly symmetric exciton decays, as expected.

rameter ε and the phase difference � is shown in Fig. 5(c),
which highlights that C̄ is maximized for symmetric decay of
the exciton dipoles, i.e., ε = 0.

E. Dephasing noise

Electron-phonon interactions can induce dephasing pro-
cesses that will degrade the indistinguishability of photons.
These processes are nevertheless not expected to affect the
entanglement quality of the state. This is due to the two
exciton levels being symmetrically perturbed by the phononic
interaction: the dephasing of the exciton level is expected to
be induced solely by deformation potential of the quantum
dot, which is independent of its spin properties [25,26], so that
the two levels are dephased in an identical manner. Therefore
the indistinguishability of the photons emitted at the exciton
level is reduced by this effect, but it is not expected to de-
grade the entanglement quality, as witnessed experimentally
in Ref. [27].

IV. CONCLUSION

We have provided an in-depth analysis of the entangle-
ment properties of a QD biexciton cascade embedded in a

chiral nanophotonic waveguide, as experimentally realized in
Ref. [12]. We have calculated how the biexciton cascade can
deterministically prepare a path-encoded state mediated by
the chiral coupling of the waveguide. The entanglement of
the state is, however, affected by errors unavoidably present
in the experimental implementation of the system. In partic-
ular, we have shown how the time dependence of the state
induced by the FSS plays a crucial role in determining the
generated entanglement. The amount of path entanglement
generated by the biexciton cascade can strongly depend on
the emission time, while the presence of detection time jitter
reduces the concurrence of the state. Finally, imperfect direc-
tional coupling in the waveguide reduces the concurrence of
the path-encoded entangled state as well. Our work quantifies
the role of such imperfections and lays out a route to a de-
terministic source of path-encoded entangled photons of high
entanglement quality. We hope our work will motivate fur-
ther experimental improvements of this novel entanglement
source.
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