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Unified model for a nonlinear pulse propagation in composites and optimization of THz generation
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We describe a unified numerical model which allows fast and accurate simulation of nonlinear light prop-
agation in nanoparticle composites, including various effects such as group velocity dispersion, second- and
third-order nonlinearity, quasi-free-carrier formation and plasma contributions, exciton dynamics, scattering,
and so on. A developed software package, Simulator of Light Propagation in Composites (SOLPIC), is made
available for the community. Using this model, we analyze and optimize efficient generation of terahertz (THz)
radiation by two-color pulses in ZnO–fused-silica composite, predicting an efficiency of 3%. We compare the
role of various nonlinear effects contributing to the frequency conversion and show that the optimum conditions
of THz generation differ from those expected intuitively.
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I. INTRODUCTION

Terahertz (THz) technology has attracted a lot of atten-
tion in recent years, since it provides unique experimental
tools and techniques in nonlinear and time-domain spec-
troscopy, biology and medicine, remote sensing, security
screening, and information and communication systems (see,
e.g., Refs. [1–4]). For generation of THz radiation, different
techniques were proposed, such as two-color ionizing fem-
tosecond pulses in gases [5–10] and surface plasmas [11],
as well as optical rectification of intense ultrashort pulses in
nonlinear crystals [12–16], which provide a basis for com-
pact low-intensity devices. The needs of the THz technology
require, however, extension of the range of the available
techniques and materials, in order to provide a flexible de-
sign required in multifarious applications. Following this line,
investigations of THz generation in various media such as
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water [17], strongly magnetized plasma [18], and centrosym-
metric two-photon resonant molecular impurities [19] were
performed. Emission of terahertz radiation with broad band-
width by femtosecond photoexcitation of spintronic materials
(ferromagnetic and synthetic multiferroic heterostructures)
was also reported recently [20,21].

Nanoparticle (NP) composites were actively investigated
in the past as a nonlinear material (e.g., Refs. [22–24]), and
their particular strength lies in the flexibility of their design
leading to unusual properties such as, e.g., a negative refrac-
tive index [25]. However, surprisingly, to our knowledge they
have not attracted attention as a medium for THz genera-
tion. In this paper, we close this gap by conceptualizing a
numerical model suitable for simulation of THz generation
in nanocomposites. A range of linear and nonlinear effects
such as group velocity dispersion, second- and third-order
nonlinearity, quasi-free-carrier formation, exciton dynamics,
and so on are encompassed by the developed model. We use it
to explore THz generation by two-color pulses in nanopar-
ticle composites, to elucidate the contributions of different
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frequency conversion mechanisms, and to predict efficiencies
in the few-percent range.

The applicability of the above model is, in fact, much
broader than mere simulation of THz generation; a wide range
of nonlinear effects such as soliton dynamics and supercontin-
uum generation, frequency conversion, multilevel dynamics
and electromagnetically induced transparency, and so on can
be studied using this unified approach. With this in mind,
we have created extensive documentation of the Simulator of
Light Propagation in Composites (SOLPIC) code, and made the
code publicly available [26], in the hope that it will be useful
to the optical community for investigations of the nonlinear
processes in nanocomposites and other materials.

The paper is organized as follows. In Sec. II, we present
the numerical model, including the detailed formalism for
all the relevant mechanisms. In Sec. III, we optimize the
THz generation by two-color pulses and analyze the role of
different parameters. A summary of the paper is given in the
Conclusion.

II. THEORETICAL MODEL

We consider a composite consisting of two components,
a homogeneous host material and spherical NPs (inclusions)
randomly distributed in space. We assume a sufficiently low
(typically a few percent or below) filling fraction of the in-
clusions so that neither percolation nor interaction between
the inclusions plays a role. We consider homogeneous inclu-
sions to be sufficiently small with diameter below the light
wavelength so that effective-medium theory can be applied.
Note that we do not place any limitations on the nature of
host and inclusion materials, i.e., either of them could be a
dielectric, a metal, or a semiconductor. We do not require
point symmetry in the host material or in the inclusions, so
that the second-order susceptibility can be nonzero in either
material. The model is designed to simulate light propagation
over relatively short distances of a few millimeters, below
the damage threshold, and without back reflection; therefore
a (1+1)-dimensional [(1+1)D] treatment using the unidirec-
tional propagation equation [27] is the most suitable. We
note that in the case of THz propagation, a straightforward
extension of this treatment to (2+1)D can be required even for
relatively broad pump beams with beamwidth around 30 µm.

Under these conditions, the following effects have to
be taken into account: linear dispersion including intrin-
sic and scattering losses, second- and third-order optical
nonlinearities, photoionization accompanied by ionization
losses, and plasma dynamics. In addition, transitions be-
tween excitonic states can play a significant role in the
inclusion response, in particular for the generation of new
frequencies in the THz range. Among the effects which
were neglected in this treatment are thermal effects (due to
the slow, nanosecond-scale response), coupling to phonons
(because of the relatively slow, picosecond-scale response),
Raman scattering (which is typically weaker than instanta-
neous nonlinearities), anisotropy of the host material (due to
the manufacturing limitations for composites), deviations of
the inclusion from a sphere (because of typical manufacturing
conditions), and generation of high-order harmonics (because
of the considered intensity ranges).

The following unidirectional propagation equation is used
to model the light propagation in a homogeneous medium
[27,28]:

∂E (z, ω)

∂z
= −i

(
[
√

ε(ω) − ng]ω

c
− β(ω0)

)
E (z, ω)

− iω

2c
√

ε(ω)
PNL(z, ω), (1)

where E (z, ω) = F̂E (z, t ) = ∫ ∞
−∞ E (z, t ) exp(−iωt )dt is the

Fourier transform F̂ of the electric field E (z, t ), z is the prop-
agation coordinate, ε(ω) is the linear dielectric permittivity
(generally speaking, complex-valued to include loss mecha-
nisms), ng is the group refractive index, ω0 is a characteristic
frequency of the pulse spectrum, β(ω) = √

ε(ω)ω/c, and
PNL(z, ω) is the Fourier transform of the nonlinear part of the
polarization. We would like to emphasize that no slowly vary-
ing envelope approximation was used and E (z, t ) represents
the real-valued field including the carrier oscillations. This
approach yields a unified treatment for a pulse with arbitrary
spectral content, which is particularly important for extremely
broad spectra.

A. Linear dispersion

The effective-medium theory allows us to substitute a
homogenized medium with appropriately defined effective
material parameters for the composite material. The effective
refractive index of a composite can be expressed as [28]

neff =
[

(1 − f )εh + f εi
3εh

2εh + εi

+ 2i

(
εh − εi

2εh + εi

)2( rNPω
√

εh

c

)3
]1/2

, (2)

where f is the volume filling factor of the inclusions, rNP

is their radius, and εh and εi are the frequency-dependent
dielectric functions of the host and of the inclusions, cor-
respondingly. The last term in the square brackets describes
scattering losses.

B. Second- and third-order nonlinearities

The second- and third-order nonlinear processes can also
be described in the framework of the effective-medium theory.
The expression for the effective second-order susceptibility
looks like [29]

χ
(2)
eff (ω1 = ω2 + ω3; ω2, ω3)

= (1 − f )χ (2)
h + f x(ω1)x(ω2)x(ω3)χ (2)

i , (3)

where χ
(2)
h and χ

(2)
i are the susceptibilities of host and in-

clusion materials, correspondingly. Note that we neglected
the frequency dependence of the susceptibilities of host and
inclusions, which is a good assumption far from resonances.
The quantity x(ω) is the ratio of the local field inside the
inclusion and the incident field:

x(ω) = 3εh(ω)

2εh(ω) + εi(ω)
. (4)
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Here, we note that due to photoionization as described
below, the εi(ω) and therefore x, strictly speaking, depend on
time due to buildup of plasma during the pulse. However, in
the current simulation we neglect this dependence, assuming
that the corresponding change in εi(ω) is small and that we are
far from the plasmonic resonance given by 2εh(ω) = −εi(ω).

Similarly, for the effective third-order susceptibility we
write [29]

χ
(3)
eff (ω1 = ω2 + ω3 + ω4; ω2, ω3, ω4)

= (1 − f )χ (3)
h + f x(ω1)x(ω2)x(ω3)x(ω4)χ (3)

i , (5)

where χ
(3)
h and χ

(3)
i are the susceptibilities of the host and

inclusion materials, correspondingly. The final expressions
which were used to calculate the corresponding polarizations
look like

Pχ (2) (z, ω) = (1 − f )ε0χ
(2)
h F̂E (z, t )2

+ f ε0χ
(2)
i F̂ [F̂−1{E (z, ω)x(ω)}2], (6)

Pχ (3) (z, ω) = (1 − f )ε0χ
(3)
h F̂E (z, t )3

+ f ε0χ
(3)
i F̂ [F̂−1{E (z, ω)x(ω)}3]. (7)

C. Plasma dynamics

Let us turn to the description of plasma formation and
dynamics. In the framework of SOLPIC, we consider a case
when the ionization potential Ip of the inclusions is lower
than that of the host material, so that due to the sensitive
dependence of the polarization rate on the ionization potential
we can neglect plasma formation in the host material.

The contribution from the plasma is determined by the
average displacement 〈d〉(z, t ) of the electron from the equi-
librium position in the parent “molecule,” whereby by a
“molecule” we denote an atom or a group of atoms of the
solid-state material which can provide a single ionization
event. Furthermore, it is determined by the relative ionization
of the solid state ρ(z, t ), which is the ratio of the conduction-
band electron density to the density of “molecules”:

Pplasma(z, ω) = −NmoleF̂ [〈d〉(z, t )ρ(z, t )]. (8)

Here, Nmol is the concentration of the molecules, and
e = 1.6 × 10−19 is the electron charge. The above expression
would be valid in a homogeneous medium; however, as it
refers to a polarization which occurs inside of NPs, in contrast
to averaged macroscopic polarization, in the case of effective-
medium theory it has to be additionally multiplied by x(ω).
For the origin of this factor and further details, see Ref. [29].

The dynamics of the quantity 〈d〉(z, t )ρ(z, t ) is given by
[30]

∂ (〈d〉(z, t )ρ(z, t ))
∂t

= 〈v〉(z, t ) + x0�(t ), (9)

where 〈v〉 is the average velocity of electrons and x0 �
−Ip/eE (t ) is the initial displacement of the electron imme-
diately after the ionization event, Ip being the band gap. It
can be shown that the second term describes the energy loss
of the pulse due to the photoionization. The dynamics of

〈v〉(z, t )ρ(z, t ) is given by Newton’s second law as

∂ (〈v〉(z, t )ρ(z, t ))
∂t

= −eE (z, t )

me
ρ, (10)

where me is the effective electron mass near the bottom of
the conduction band. Here, we neglect the initial displacement
and velocity of the electron just after the ionization.

The dynamics of the relative plasma density ρ is given by

∂ρ

∂t
= �(F̂−1[x(ω)E (z, ω)]), (11)

where x(ω)E (z, ω) is the local field inside of inclusions,
which determines the photoionization rate �.

D. Ionization rate

Depending on the relation between the frequency of pump
light and the ionization potential of inclusions, we consider
two models for the ionization rate. For the case when the
energy of pump photons is much smaller than the ionization
potential, the photoionization occurs either in a multiphoton
regime or in a tunneling regime, as determined by the intensity
and the Keldysh parameter. Here we utilize so-called Yudin-
Ivanov model [31], which provides a formalism for both of
these regimes in a unified way. This model was initially de-
veloped for isolated atoms; its use for solid states is justified
in the case of a negligible anharmonicity of the bands in the
center of the Brillouin zone.

The cycle-resolved ionization rate � is given (in atomic
units, that is, with frequency ω, time t , and field E measured in
the corresponding Hartree units ωa = 0.26 rad/as, ta = 24.2
as, xa = 0.0529 nm, and Ea = 514.2 V/nm) by

�(z, t ) = π

τT
exp

(
−σ0

〈2E (z, t )2〉
ω3

)[
2κ3√

〈2E (z, t )2〉

]2Z/κ

× exp

[
−E (z, t )2

2ω3
σ1

]
. (12)

Here, τT = κ/E (z, t ), κ = √
Ip/(h̄ωa), σ0 = 1

2 (γ 2 +
1
2 ) ln C − 1

2γ
√

1 + γ 2, γ = ωτT , Z is the effective

atomic charge, C = 1 + 2γ
√

1 + γ 2 + 2γ 2, and σ1 =
ln C − 2γ /

√
1 + γ 2. The quantity 〈E (z, t )2〉 is the averaged

value of the squared electric field over the past few periods (5
fs is assumed in this paper).

The Yudin-Ivanov model was initially derived for gases; its
applicability for solid states, while generally justified for ma-
terials with tight binding, is not strictly established. We have
benchmarked the Yudin-Ivanov model by comparing it with
the numerical solution of the time-dependent Schrödinger
equation in the single-active-electron approximation [32]. In
this approach the empirical pseudopotential method was used
for describing the electron band structure of ZnO [33]. We
have found that the difference in the ionization rates does
not typically exceed one order of magnitude. This difference
is, in fact, not very significant: Because of the thresholdlike
behavior of the ionization rate, it leads to only a slight shift in
the intensity at which strong plasma generation is reached.

For the special case where the energy of pump photons
is around two ionization potentials, it is preferable to use
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the two-photon formalism [34] and write the cycle-resolved
ionization rate � [in Système International (SI) units] as

�(z, t ) = 2e4x4
aν

h̄4ω2
0[(2ω0 − Ip/h̄)2 + ν2]

〈E (z, t )2〉E (z, t )2,

(13)
where ν is the relaxation constant of the two-photon transition.

We also note that for situations where a significant portion
of the pump spectrum lies beyond the band gap, it might be
necessary to include one-photon absorption. This is not the
case in the current pump consideration.

E. Contribution by excitons

Finally, we include the nonlinear polarization due to exci-
tons in the treatment. We consider multiple excitonic levels
and utilize the standard Bloch equations for the description of
the ionization. The dynamics of the density matrix ρe is given
by (see, e.g., Ref. [34])

ih̄
∂ρe

∂t
= [H, ρe], (14)

where H = H0 + Hint . Here, H0 is the Hamiltonian of the
system in the absence of excitation given by the diagonal
elements corresponding to the exciton energies, and Hint is the
interaction Hamiltonian, whose components Hint,i j are related
with the corresponding dipole transition moments of excitons
eMi j :

Hint,i j = eMi jF̂
−1[E (z, ω)x(ω)]. (15)

In addition, polarization decay (decay of the off-diagonal
elements of ρe) with decay time T2 and decay of the population
to the ground state with decay time T1 are included. In order to
avoid numerical instabilities, the normalization of the density
matrix ρ is performed every few steps in time, by (a) enforcing
0 � ρe,ii � 1, (b) enforcing Tr(ρe) = 1, and (c) adjusting the
nondiagonal elements which exceed the maximum possible
value determined by the corresponding level populations.

The excitonic polarization is then defined in a standard way
as

Pexc(z, ω) = x(ω)F̂ [ f Tr(ρeM )]. (16)

We solve the propagation equation using an extended
split-step method, whereby each of the contributions to the
polarization is treated subsequently, which allows us to reduce
the accumulation of numerical error. Nonlinear steps are per-
formed using the Runge-Kutta approach, the order of which
can be selected between 1, 2, and 4. A fixed step of the grid
both in time and in the propagation coordinate is used. The
appearance of numerical artifacts during the propagation is
monitored by tracing the total pulse energy as well as the
total energy absorbed at the boundaries of the numerical time
window.

F. Benchmarking of the model

In order to establish the reliability and accuracy of the
developed model and the numerical code, we have performed
benchmarking against the available experimental and numeri-
cal data. A large number of investigations have been devoted
to THz generation in gaseous systems, as contrasted with the

limited results available for composites. Therefore we have
chosen to benchmark our code against one of the cases of
THz generation in a noble gas related to plasma generation
[35]. In agreement with the parameters given in Ref. [35],
we have considered two-color excitation with 30-fs pulses at
815 and 407 nm with peak intensities of 100 and 20 TW/cm2,
correspondingly, with no temporal delay between the pulses.
Propagation over the focal region of 1 cm through argon at a
pressure of 0.79 atm, in accordance with the setup of Ref. [35],
was simulated. We predict a THz generation efficiency of
0.85 × 10−4, which is in reasonable agreement with the ex-
perimental efficiency of 0.54 × 10−4, given the uncertainty
inherent to photoionization processes [36]. In addition, we
have compared the widths of the THz spectra. Our simulations
predict a 108 THz width, while in Ref. [35] a 75 THz spectral
width was observed, with quite satisfactory agreement given
that the experimental spectral width was reduced by absorp-
tion in the elements of the detection apparatus.

III. NUMERICAL RESULTS AND DISCUSSION

In order to exemplify the above model and the functioning
of SOLPIC, we present in this section a simulation of THz
generation. We consider a composite of ZnO inclusions in
an amorphous SiO2 matrix. Phenomenological Sellmeier-type
expressions were used to describe dispersion on ZnO [37]
and SiO2 [38]. Absorption of photons with energies above the
corresponding band gaps was directly included; however, ab-
sorption at the phonon band was disregarded since it provides
losses in a few narrow bands, which will not significantly
influence the generated THz radiation as a whole. Simi-
larly, experimental data on second-order [39] and third-order
[40,41] susceptibility of bulk ZnO and third-order suscepti-
bility of SiO2 [42] were used. We estimated the value of T2 as
50 fs from Ref. [43] and used T1 = 2T2. For ZnO, the typical
exciton size is larger than interatomic distance, meaning that
we are dealing with Wannier-Mott-type excitons. In the case
of sufficiently small inclusions, the exciton is bounded by the
inclusion boundaries; therefore its wave functions (as well
as energy levels and dipole momenta) are better described,
instead of by a hydrogenlike potential, by a constant potential
inside a sphere [44] with a step on its boundary. We have taken
into account the five lowest excitonic levels, with the field-free
Hamiltonian H0 being given by the excitonic levels provided
by Eq. (10) of Ref. [45]. Typical values of the off-diagonal
dipole momenta, as calculated by this approach, are Hint,ii =
3 × 10−28 C m, for the same-size NPs with a radius of 2.5 nm
which are considered here and hereinafter. For the permanent
dipole momenta of ZnO, we have adopted a typical value of
Hint,i j,i �= j = 6.66 × 10−30 C m per ZnO molecule, which was
used to define the on-diagonal elements of the dipole matrix.
We used an ionization potential of 3.37 eV equal to the band
gap of ZnO to characterize the transition from valence band
to conduction band, and all the presented numerical results
correspond to the conditions below the damage threshold of
ZnO [46].

The evolution of the field profile and spectra with propa-
gation is illustrated in Fig. 1, for two-color pulsed excitation
with pump pulses around 800 and 400 nm, for the conditions
given in the caption. In Fig. 1(a), one can see that initial stages
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FIG. 1. Dependence of the spectra (a) and the electric field (b) on
the propagation length. Fifteen-femtosecond pulses at 2.26 and 4.58
fs−1 are considered, with an intensity of 1 TW/cm2 and propagation
lengths of 0.75 µm (red solid curves), 2.25 µm (green long-dashed
curves), and 6.75 µm (blue short-dashed curves). In (b), the relative
plasma density (thick magenta curve) is additionally shown for a
propagation length of 6.75 µm. A composite of ZnO inclusions with
f = 0.03 in fused silica is considered.

of the propagation are characterized by self-phase-modulation
(SPM) with typical spectral sidelobes. At later stages, the
spectrum becomes irregular and transforms into a supercon-
tinuum extending up to the absorption edge given by the band
gap. The evolution of the temporal profile, shown in Fig. 1(b),
shows a gradual reduction in the energy of the electric field,
as well as a significantly irregular envelope for longer prop-
agation. This reduction in the maximum field determines the
saturation of the THz generation efficiency and is caused both
by strong group velocity dispersion for a broad spectrum and
by energy absorption due to transition to the conduction band.
One can see from the thick magenta curve in Fig. 1(b) that
the relative plasma density reaches values of roughly 0.01
after the pulse, which is sufficient to induce significant energy
absorption.

In Fig. 2 the evolution of the spectrum in the THz range
is shown. One can see that while the THz energy increases
at early stages of propagation, for larger propagation lengths
the spectrum saturates. Losses around 15 THz and below
can also contribute to saturation of generation. After 45 µm
propagation length, the efficiency of the generation reaches
3.05%, which is sufficiently high for practical applications.

In order to determine the optimum conditions of THz
generation, in Fig. 3 we plot the dependence of the gener-
ation efficiency on the distribution of energy between the
830-nm pulse and the 412-nm pulse [Fig. 3(a)], the in-
tensity of pulses [Fig. 3(b)], and the wavelength of the
short-wavelength pulse [Fig. 3(c)]. One can see that the ef-
ficiency of THz generation is nonzero but very small for
the cases where only one of the pulses is present (energy

FIG. 2. Dependence of the spectra in the THz range on the
propagation distance. We consider 1-TW/cm2, 15-fs pump pulses at
2.26 and 4.58 fs−1, in a composite of ZnO NPs with filling fraction
of f = 0.03 in a fused-silica matrix, after a propagation length of
5 µm (red solid curve), 15 µm (green long-dashed curve), 45 µm
(blue short-dashed curve), or 50 µm (magenta long-and-short-dashed
curve).

fraction of 0 or 1). This indicates that the optical rectifica-
tion based on the second-order susceptibility of ZnO cannot
efficiently generate THz for the considered conditions and
that the dominant contribution comes from the third-order
susceptibility of ZnO NPs, the third-order susceptibility of
SiO2 being comparatively weak. In an ideal case without
pump pulse modification, the efficiency of the THz generation
is proportional to E2

830(Etot − E830), where E830 is the energy
of the pulse at 830 nm and Etot = E830 + E412 is the total
energy of the pulses. The maximum efficiency is then reached

FIG. 3. Dependence of the THz generation efficiency on the
energy fraction of the 800-nm pulse (a), the intensity of each of
the pump pulses (b), and the wavelength of the second-harmonic
pulse (c). A composite of ZnO NPs with f = 0.03 in fused silica is
considered. In (a), 15-fs pulses at 2.26 and 4.58 fs−1 are considered,
with a total intensity of 2 TW/cm2 and propagation length of 50 µm.
In (b) we consider 15-fs (red dashed curve) and 150-fs (green solid
curve) pulses at 2.26 and 4.58 fs−1. In (c), 1 TW/cm2, 15-fs pulses
are considered, with an IR pulse frequency of 2.26 fs−1 and propa-
gation length of 50 µm.
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FIG. 4. Spectra in the THz range with (a) the plasma contribution
on (green solid curve) and off (red dashed curve) and (b) the exciton
contribution on (red solid curve) and off (green long-dashed curve),
as well including both the exciton contribution and the permanent
dipole moment (blue short-dashed curve). We consider 1-TW/cm2,
15-fs pump pulses at 2.26 and 4.58 fs−1, in a composite of ZnO
inclusions with filling fraction of f = 0.03 in a fused-silica matrix,
after propagation lengths of 10 µm (a) and 0.75 µm (b).

at E830/Etot = 1/3; however, as shown in Fig. 3(a), maxi-
mum numerical efficiency is achieved for E830/Etot = 0.5.
This could be due to strong SPM-induced spectral spread-
ing of high-frequency pulses during the propagation, which
needs to be compensated by a relatively higher value of
E412. The predicted optimum is in perfect agreement with
the results of Ref. [47], where for gases and for relatively
low intensity the maximum THz generation efficiency is also
achieved at E830/Etot = 0.5 (a2/a0 = 1 in terms of Ref. [47]).
In Fig. 3(b), the dependence of the efficiency on the pulse
intensity is shown, exhibiting saturation and a decrease after a
certain intensity as well as lower efficiencies for longer pulses.
We attribute these features to a detrimental contribution of
the accumulated plasma, which grows with intensity and
pulse duration [cf. Fig. 4(a)]. In Fig. 3(c), the dependence of
the efficiency on the wavelength of the short-wavelength pulse
exhibits several maxima. Note that while one might expect
optimum THz generation for 415 nm, which would corre-
spond to generation of frequencies near zero, our simulations
in fact predict a minimum around this value, determined most
probably by phase mismatch and losses below 15 THz. We
note that in agreement with our results, a similar multiple-
peak dependence of the efficiency on frequency was observed
also in the context of gas targets [48].

Finally, in order to access the role of plasma and excitons in
the THz generation in composites, in Fig. 4 we compare the

spectra for a plasma contribution [Fig. 4(a)] and an exciton
contribution [Fig. 4(b)] that are switched on and off. One can
see that the plasma contribution is significant, both due to the
contribution to the refractive index and due to losses, and the
absence of a plasma contribution leads to a notable (more than
twofold) increase in the efficiency. On the other hand, from
Fig. 4(b) one can see that exciton polarization does not pro-
vide a strong contribution to the efficiency for the considered
parameters. Also, additionally including the permanent dipole
momenta, described in the model above, does not significantly
increase the efficiency of THz generation, as indicated by the
blue short-dashed curve in Fig. 4(b), which is close to the red
solid and green long-dashed curves. We note, however, that
this conclusion is of limited generality; for other parameters of
the medium, excitons can provide the key mechanism of THz
generation (see, e.g., Refs. [49,50] and references therein).

IV. CONCLUSION

In this paper we have established a comprehensive nu-
merical model for the simulation of light propagation in
composites, including all the relevant physical effects for
a broad range of parameters, such as linear dispersion of
the composite, second- and third-order nonlinear effects, the
plasma contribution, the exciton contribution, and so on. The
model was applied to simulate the generation of THz radiation
in a ZnO-SiO2 composite. We have performed optimization
of the frequency conversion process, predicting an efficiency
of 3.05%. We show that the simulations provide insights
into the optimization, such as the power distribution between
the pump pulses, which would not be accessible intuitively.
We hope that the numerical model and the corresponding
software solution will contribute to the capacity of simulations
in the area of nonlinear optics.
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