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In one-dimensional (1D) quantum gases, the momentum distribution (MD) of the atoms is a standard
experimental observable, routinely measured in various experimental setups. The MD is sensitive to correlations,
and it is notoriously hard to compute theoretically for large numbers of atoms N , which often prevents direct
comparison with experimental data. Here we report significant progress on this problem for the 1D Tonks-
Girardeau (TG) gas in the asymptotic limit of large N , at zero temperature and driven out of equilibrium by
a quench of the confining potential. We find an exact analytical formula for the one-particle density matrix
〈�̂†(x)�̂(x′)〉 of the out-of-equilibrium TG gas in the N → ∞ limit, valid on distances |x − x′| much larger than
the interparticle distance. By comparing with time-dependent Bose-Fermi mapping numerics, we demonstrate
that our analytical formula can be used to compute the out-of-equilibrium MD with great accuracy for a wide
range of momenta (except in the tails of the distribution at very large momenta). For a quench from a double-well
potential to a single harmonic well, which mimics a “quantum Newton cradle” setup, our method predicts the
periodic formation of peculiar, multiply peaked, momentum distributions.
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I. INTRODUCTION

In the field of ultracold quantum gases, the momentum
distribution (MD) of atoms has been a key experimental
observable since the early studies of three-dimensional Bose-
Einstein condensates [1–3]. It can be measured by Bragg
spectroscopy [3–5], time of flight [6–11], or focusing [12–15].
The MD is the Fourier transform of the one-particle density
matrix (1PDM) 〈�̂†(x)�̂(x′)〉,

n(p) =
∫

dd x
∫

dd x′e
i
h̄ p(x−x′ )〈�̂†(x)�̂(x′)〉, (1)

where the second-quantized operators �̂†(x)/�̂(x) create or
destroy one atom at position x. The MD is sensitive to
nonlocal correlations in the gas [4,5,16], especially in one-
dimensional (1D) clouds where the effects of fluctuations
and correlations are enhanced and destroy long-range order
[17–23]. Correlations in one dimension manifest themselves
in various ways in the MD, for instance as a singularity at
zero temperature, n(p) ∝ |p|1/2K−1 when p → 0 [23,24] (the
dimensionless constant K is the Luttinger parameter which
parametrizes the interaction strength [25]). The MD is also a
key observable out of equilibrium, and in one dimension it
often differs completely from its equilibrium counterpart. For
instance, in the quantum Newton’s cradle (QNC) [8], the MD
of bosons colliding in a quasi-harmonic trap evades equilibra-
tion, even after thousands of collisions. Also, when a gas of
interacting bosons is allowed to expand under a 1D geometry,
the MD evolves nontrivially and, after long expansion times,
becomes identical to the distribution of rapidities (or asymp-
totic momenta) of the initial state [26–31], a phenomenon

known as “dynamical fermionization” [32–35], which allows
to measure rapidity distributions [10,11,36].

The theoretical calculation of the MD of strongly cor-
related atomic gases is a notoriously hard problem. In
one dimension, where many experiments are described by
the Lieb-Liniger model of bosons with contact repulsion
[37,38] or by one of its fermionic/multicomponent extensions
[39–41], it is generally not possible to access the dynamics of
the MD by direct numerical simulations for large numbers of
atoms N and long times. Quantum Monte-Carlo calculations
of the MD [14,15,42] are restricted to equilibrium, while time-
dependent density matrix renormalization group simulations
[43,44] or form factor resummations [30,45–48] are always
restricted to short times and small numbers of particles. This
has prevented direct modeling of experimental data for the
MD in out-of-equilibrium setups [8,11].

The situation is more favorable in the Tonks-Girardeau
(TG) limit of hard-core bosons (infinite contact repulsion),
where an efficient numerical evaluation of the 1PDM, and
therefore also of the MD, can be obtained exploiting a time-
dependent version of Bose-Fermi mapping (BFM) [22,32,49–
53].

On the analytical side, the search for exact solutions for
the 1PDM and the MD of the TG gas is a long-standing
challenge, see Refs. [17,18,54,55] and, e.g., Sec. III A of
Ref. [24] for a review of this problem. Pioneering works
from the 1960s and 1970s [17,18,54] focused on the ground
state of the homogeneous TG gas and determined the asymp-
totic behavior of the 1PDM 〈�†(x)�(x′)〉 ∝ |x − x′|− 1

2 for
|x − x′| � L/N , where L is the system’s length—a result that
is also obtained in Luttinger liquid theory [23,24]. The case of
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a trapped gas with inhomogeneous density profile is harder,
and the first analytical results for the ground state in a har-
monic trap were obtained by Forrester-Frankel-Garoni-Witte
only in the 2000s [56–58], while the case of an arbitrary
trapping potential was cracked in 2017 [59,60] thanks to a new
“inhomogeneous Luttinger liquid” approach [61–67]. Out of
equilibrium, analytical results for the 1PDM and the MD have
so far been limited to the dynamics in a harmonic trap with
a time-dependent frequency [34,68,69]; in that special case
the 1PDM is related to the ground state one by a dynamical
symmetry [70]. A crucial open problem in this area is the
derivation of analytical results for more general quench dy-
namics.

This is precisely the purpose of this paper. Below we report
an analytical formula for the out-of-equilibrium 1PDM of the
TG gas, valid at large N and for arbitrary trapping potentials,
which is then used to evaluate the dynamics of the MD after
the quench. Our analytical formula captures the behavior of
the MD for a wide range of momenta (except in the tails of the
distribution at very large momenta), complementing known
results from Tan’s contact physics [22,71–76].

II. MODEL AND QUENCH PROTOCOL

The Hamiltonian of the TG gas (with particle mass = 1) in
a trapping potential V (x) is

Ĥ =
∫

dx �̂†(x)

[
− h̄2∂2

x

2
+ V (x) + g

2
�̂†(x)�̂(x)

]
�̂(x),

(2)
with [�̂(x), �̂†(y)] = δ(x − y), and repulsion coupling g →
+∞. In that limit, two bosons cannot be at the same
position and thus display fermionic-like properties. Under
the Jordan-Wigner mapping to fermionic operators �̂

†
F (x) =

exp[iπ
∫

y<x �̂†(y)�̂(y)dy]�†(x), the Hamiltonian (2) be-

comes quadratic Ĥ = ∫ dx �̂
†
F (x)[− 1

2 h̄2∂2
x + V (x)]�̂F(x) and

local quantities (such as density and current profiles) behave
as noninteracting fermions [49]. The same does not apply to
the 1PDM. In particular, the 1PDM of hard-core bosons is
nonlocal in the fermionic basis

〈�̂†(x)�̂(x′)〉 = 〈�̂†
F (x)eiπ

∫ x′
x dy �̂

†
F (y)�̂F (y)�̂F(x′)

〉
(3)

and thus differs from the one of noninteracting fermions,
〈�̂†

F (x)�̂F (x′)〉.
In the following, we focus on the case where the TG gas is

prepared in the ground state in an arbitrary trapping potential
V (x) = V0(x). At time t = 0, the dynamics is generated by
suddenly changing the trapping potential from V0(x) to an
arbitrary V1(x), a situation routinely realized in modern cold
atom experiments [10,11,77].

III. HYDRODYNAMIC APPROACH

Our strategy for the calculation of the time-dependent
bosonic 1PDM can be summarized as follows:

(i) In this section, we establish the hydrodynamic evolu-
tion of the gas in terms of its Wigner function, related to
noninteracting fermions.

FIG. 1. (a) At time t and position x̄, the gas is in a “split Fermi
sea” state, with Fermi points {qt (sa)}2Qx̄

a=1 (Qx̄ = 2 in the figure) where
sa, a = 1, . . . , 2Qx̄ are the solutions of xt (s) = x̄. (b) The set IQx̄

(here with dQx̄ = |IQx̄ | = 4) of sequences η = {ηa}2Qx̄
a=1 such that ηa =

±1/2 and
∑2Qx̄

a=1 ηa = 1. Each sequence η is shown as a column of the
array.

(ii) In Sec. IV, we shall include long-range Gaussian quan-
tum fluctuations on top of the hydrodynamic background to
determine 〈�̂†(x)�̂(x′)〉.

A. Large N dynamics at zero temperature

For the associated fermionic model, the Wigner function is

W (x, q) = 1

2π h̄

∫
dy e

iqy
h̄

〈
�̂

†
F

(
x + y

2

)
�̂F

(
x − y

2

)〉
, (4)

and measures the phase-space fermionic occupation. In the
ground state in an initial trapping potential V (x) = V0(x), it
has a simple semiclassical limit reflecting the fact that all
single-particle states with negative energies are occupied,

W (x, q) =
h̄→0

{
1/(2π h̄) if q2

2 + V0(x) < 0,

0 otherwise.
(5)

As pointed out by many authors [44,69,78–81], the limit h̄ →
0 is a thermodynamic limit. Indeed, the number of atoms in
the cloud is N = ∫ W (x, q) dx dq, and it goes as

N ∼ 1/h̄. (6)

Therefore, in the following, we access the large N behavior
of the gas by taking the limit h̄ → 0. For simplicity, we
assume that the initial potential is such that V0(x) < 0 in
an interval x ∈ [−R, R], so that when the gas is prepared
in the ground state of Ĥ , there is a single atom cloud con-
taining N = 1

π h̄

∫ R
−R

√−2V0(y)dy atoms. The Wigner function
evolves according to the Moyal evolution equation [82–84].
Up to corrections that are subleading in 1/N ∼ h̄, this is

∂tW + q∂xW − (∂xV1)∂qW = O(h̄2). (7)

Thus, to leading order in 1/N , the dynamics of the zero-
temperature TG gas is one of an incompressible droplet in
phase space that follows the classical dynamics (7) [44,69,79–
81], see Fig. 1(a).

B. The contour and the time-dependent
Wentzel-Kramers-Brillouin phase

For our purposes, a key object is the contour of the in-
compressible droplet, i.e., the curve (x, q) that satisfies q2

2 +
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V0(x) = 0 in the initial state, and then moves along with the
droplet. We parametrize the contour in the initial state as
�0 = {(x0(s), q0(s)) ; 0 � s < 2π}. At later times, all points
on the contour �t = {(xt (s), qt (s)) ; 0 � s < 2π} evolve like
pointlike particles in the potential V1(x),

d

dt

(
xt (s)

qt (s)

)
=
(

qt (s)

−∂xV1[xt (s)]

)
. (8)

To the contour �t , we associate a time-dependent Wentzel-
Kramers-Brillouin (WKB) phase � along the contour, defined
by the differential

d� = 1

h̄
[q dx − ε dt]. (9)

Here we are locally parametrizing the contour �t as
(x, q(x, t )), and ε(x, t ) = q(x, t )2/2 + V1(x) is the energy of a
pointlike particle at position (x, q(x, t )) in phase space. Notice
that the cross-derivatives in Eq. (9) are equal thanks to the
evolution equation (8) [69]. The WKB phase � is only defined
modulo 2π and up to an additive constant, reflecting the
global U (1) invariance of the model. Notice that integrating
Eq. (9) for any fixed time gives a constant “winding number,”∫ 2π

0 d�t (s) = 2πN . In the rest of the paper, we express our
results using the following gauge choice for the WKB phase.
At time t = 0, we take

�0(s) = sgn[q0(s)]
∫ x0(s)

−R

√
−2V0(y) dy, (10)

which has a 2πN jump at the rightmost point of the cloud,
s = s


0, where s

0 is such that x0(s


0) = R. Then at time t we
define

�t (s) = �0(s) + 1

h̄

∫ t

0

(
[qτ (s)]2

2
− V1[xτ (s)]

)
dτ

+ 2πN × 1[s

t ,s



0](s), (11)

where s

t is such that xt (s


t ) = maxs[xt (s)] and 1[s

t ,s



0](s) = 1

if s ∈ [s

t , s


0] and 0 otherwise. Our convention ensures that, at
any time t , �t (s) is a continuous function of s everywhere but
at s


t , corresponding to the rightmost point of the cloud where
the atom density vanishes. There, it has a 2πN jump. Let us
briefly elaborate on the parametrization of the contour �0. We
are free to chose the coordinate s in any way we like, but we
find that the most convenient choice is such that

dx0(s)

ds
= q0(s)N , (12)

where the constant N = 1
π

∫ R
−R dx/

√−2V (x) is fixed so that

2
∫ R
−R

ds
dx0

dx0 = ∫ 2π

0 ds = 2π . That coordinate s is interpreted
as the (rescaled) time needed by an excitation originating from
the left boundary of the cloud to travel to point x0. Finally,
notice that at any given time t and position x, the contour �t

intersects the vertical axis at x some even number of times 2Qx

(Fig. 1). Let s1, . . . , s2Qx be such that xt (s1) = xt (s2) = · · · =
xt (s2Qx ) ≡ x and qt (s1) < qt (s2) < · · · < qt (s2Qx ). Locally,
the gas is in a state known as a “split Fermi state” [44,85–87]
defined by the Fermi points {qt (sa)}2Qx

a=1, see Fig. 1(b). Such
states are true local out-of-equilibrium states that clearly differ
from the ground state of the gas.

IV. ONE-PARTICLE DENSITY MATRIX

Our main result is an asymptotically exact formula for
the bosonic 1PDM at time t , which is most conveniently
expressed as a vector-matrix-vector product,

〈�̂†(x)�̂(x′)〉 =
h̄→0

C†(x) · F (x, x′) · C(x′)

=
∑

η∈IQx

∑
η′∈IQx′

[C(x)]∗η[F (x, x′)]η,η′ [C(x′)]η′ .

(13)

Here the entries of the vectors and of the matrix are labeled
by sequences η = {ηa}2Q

a=1 with ηa = ±1/2 and
∑2Q

a=1 ηa = 1,
see Fig. 1(b). We call IQ the set of such sequences, with cardi-
nality dQ = |IQ| = (2Q)!/[(Q − 1)!(Q + 1)!]. The entries of
the dQx × dQx′ matrix are

[F (x, x′)]η,η′

=
∏2Q

a<b

∣∣2 sin sa−sb
2

∣∣ηaηb ∏2Q′
c<d

∣∣2 sin s′
c−s′

d
2

∣∣η′
cη

′
d∏2Q

i=1

∏2Q′
j=1

∣∣2 sin
si−s′

j

2

∣∣ηiη
′
j

(14)

and the ones of the dQx -dimensional vector C(x) are

[C(x)]η =
(G2(3/2)√

π

)Qx

√
2

2Qx∏
j=1

∣∣∣∣ds j

dx

∣∣∣∣
1
8

e−iη j� j

2Qx∏
a<b

|qa − qb|ηaηb,

(15)
where qa ≡ qt (sa), �a ≡ �t (sa), and G(·) denotes the Barnes
G function. Our result (13) is valid as long as |x − x′| �
max[ρ(x)−1, ρ(x′)−1] where ρ(x) = 〈�̂†(x)�̂(x)〉 is the local
atom density. It becomes exact in the limit N ∼ 1/h̄ → ∞
(with positions x and x′ fixed independently of N). At equilib-
rium (V1 = V0), it coincides with the known exact results of
Refs. [56,59], and with those of Ref. [69] in the special case
of a quench from harmonic to harmonic potential—the latter
case does not display split Fermi seas and is solvable by other
methods [34,58,59]—see Appendix C. Equation (13) provides
a long sought-after, and highly nontrivial, generalization of
these exact results to a general out-of-equilibrium situation
generated by a quench with arbitrary potentials V0 and V1.

A. Brief sketch of derivation of formula (13)

We have derived formula (13) by applying the ideas of
“quantum generalized hydrodynamics” [44,88–90], a recent
theoretical framework that aims at describing quantum fluc-
tuations and correlations of 1D fluids with nearly integrable
dynamics (for introductions to generalized hydrodynamics
see, e.g., Refs. [31,91–94]). The complete derivation of for-
mula (13) is technical and is deferred to Appendices A and
B; here we sketch the main ingredients. The idea is that long-
wavelength quantum fluctuations in the fluid are encoded as
small deformations qt (s) → qt (s) + δqt (s) along the contour
�t , and promoted to quantum operators {δq̂a}2Q

a=1 measuring
the excess density of particles around the position x ≡ xt (sa)
due to the formation of a particle-hole pair [44,95]. The
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FIG. 2. Top row: evolution of the Fermi contour �t after a quartic to quadratic trap trap quench, obtained from Eq. (8). Bottom rows:
evolution of the corresponding bosonic 1PDM for x′ = 0. Full lines: analytical result of Eq. (13). Dashed lines: BFM numerics, obtained as
in Refs. [52,53]. We set V0 = 6(x/L)4 − (x/L)2 − μ with μ = 0.0028 and V1 = 1

2 ω2x2 − μ with ω = L−1, L = 600 is the system’s size. With
this choice of parameters, the system contains N = 33 particles. Time is expressed in units of τ = 2π

ω
.

effective field theory that captures the long-distance correla-
tions of the operators {δq̂a}2Q

a=1 is a Gaussian bosonic theory,
similar to a Luttinger liquid theory [25,96]. The atom anni-
hilation operator �̂(x) in the microscopic model (2) is then
formally expanded in a basis of operators Ô(x) in the effective
field theory,

�̂(x) ≈ C(x) · Ô(x) =
∑
η∈IQ

[C(x)]η[Ô(x)]η, (16)

where C(x) is an array of nonuniversal numerical coeffi-
cients (15), whose calculation is detailed in Appendix B.
The connection between {δq̂a} and Ô(x) is established via
bosonization arguments [44,85,86,97], according to which the
excess density of quasi-particles near the ath Fermi point is
related to the derivative of a chiral boson operator ϕ̂(s),

δq̂t (sa) = h̄∂ϕ̂(sa). (17)

Then the normal-ordered exponentials of the boson field,
[Ô(x)]η =∏2Qx

a=1 : e−iηaϕ̂(sa ) :, correspond to all the possible
deformations η ∈ IQ of the split Fermi sea with the lowest
possible scaling dimension of �̂, see Appendix A for more
details.

As pointed out in Refs. [44,88–90], the Hamiltonian gov-
erning the dynamics of these quantum fluctuations has the
quadratic form Ĥ [�t ] = (π h̄/N )

∫
ds (∂sϕ̂)2 and it is sen-

sitive only to the comoving coordinate s along the contour
of the phase-space droplet W (x, q). This, together with the
convenient choice of parametrization (12) of the contour in
the initial state, leads to the following simple form for the

equal-time boson-boson function [44,89]:

〈ϕ̂(sa)ϕ̂(sb)〉 = − ln

(
2i sin

sa − sb

2

)
. (18)

Our formula (13) is then obtained by applying Wick’s theorem
for the field ϕ̂(s).

B. Numerical check of formula (13)

In Fig. 2 we compare the analytical result (13) to a numer-
ical calculation of the 1PDM for N = 33, performed using
time-dependent BFM, see, e.g., Refs. [52,53]. We study a
quench from a double-well (quartic) potential V0(x) to a
simple-well (quadratic) potential V1(x), see the caption of
Fig. 2 for specific parameters. We find that the agreement is
excellent, with most of the asymptotic features of our analyt-
ical formula present already for N = 33. Our formula for the
1PDM has a UV divergence at x = x′ (dash-dotted lines) remi-
niscent of the standard Luttinger liquid result 〈�̂†(x)�(x′)〉 ∝
|x − x′|−1/2, present also at equilibrium [56–58]. In the mi-
croscopic description of the TG gas there is no divergence,
since 〈�̂†(x)�̂(x′)〉 → ρ(x) when x′ → x. There is no con-
tradiction since our asymptotic formula is obtained from a
large-scale quantum hydrodynamic approach, so it does not
apply at distances |x − x′| smaller than the interparticle dis-
tance ∼ρ(x)−1. Additional spikes emerge during the time
evolution, at the positions of the turning points of the contour
�t , i.e., where the number of local Fermi seas changes from
one to two (dotted lines). The origin of these short-distance
spikes is similar to the divergence at x = x′: they are inherent
to the large-N field-theoretic approach we are following, al-
though they are absent from the microscopic system. Again,
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FIG. 3. Evolution of the MD for the quartic to quadratic trap quench of Fig. 2. Full lines: prediction obtained from Eq. (13). Dashed lines:
BFM numerics. We rescaled the MD and the momenta in terms of � = √

h̄/ω, where ω is the frequency of V1. Arrows point at the large
symmetric peaks at p �= 0.

this reflects the fact that our asymptotic formula does not
apply on distances smaller than ∼ρ(x)−1 near the positions
of the turning point. In practice, these spikes can simply be
removed via local linear interpolation (as discussed in Ap-
pendix D).

C. Application to the calculation of the MD

Finally, we compute the out-of-equilibrium MD of the 1D
TG gas, by taking the double Fourier transform (1) of formula
(13). In Fig. 3, we report our result for the MD corresponding
to the 1PDM in Fig. 2 (with spikes removed by local linear
interpolation), compared with BFM numerics [52,53]. The
agreement is excellent on a wide range of momenta. Small de-
viations are observed on the large momentum tails of the MD
since our formula does not capture the short-distance behavior
of the 1PDM. This inaccuracy can be reduced by improving
the UV regularization, or by combining our approach with
Tan’s contact physics [22,71–76] and local density approxi-
mation (as done, for instance, in Ref. [30]).

Physically, we observe the dynamical appearance of two
large symmetric peaks at nonzero momenta in the MD (ar-
rows in Fig. 3), which are a consequence of the oscillating
tails of the 1PDM (Fig. 2). Interestingly, we note that the
experimentally measured MD in the original QNC experiment
[8] also displayed such peaks (although a direct comparison
with the data of Ref. [8] is not possible, as the quenching
protocol is different: dynamics is imparted by a Bragg pulse
as opposed to a quench of the trapping potential). These peaks
are a fundamental qualitative nonequilibrium feature of the
gas, which essentially reflect the fact that the cloud is made
of a fraction of atoms going to the left, and the same fraction
of atoms going to the right. In addition to these large peaks
at nonzero momenta, we observe the formation of intriguing
smaller structures in the MD, which evolve into smaller peaks
or oscillations, e.g., at t = 0.45τ ; so far we have not found a
simple explanation for these smaller oscillations.

V. CONCLUSION

Motivated by the long-standing problem of the compu-
tation of the MD in strongly correlated ultracold gases,
especially in 1D Bose gases, we derived an analytical
formula—Eq. (13)—for the 1PDM of the out-of-equilibrium
TG gas at large N , applicable for a gas initially prepared in
its ground state in a trapping potential V0(x), with dynamics

imparted by a quench V0(x) → V1(x). This result extends,
in a very nontrivial way, some milestone results about the
1PDM of the TG gas that were obtained only at equilibrium
[18,54,56,58,59] or in the very special case of a frequency
quench in a harmonic potential [34]. By comparing with BFM
numerics, we have established that our formula provides a
quantitatively accurate and reliable method to compute the
MD in a wide range of momenta. It captures dynamical
features of the MD observed in experiments that had so far
remained unexplained.
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APPENDIX A: LOW-ENERGY EXPANSION
OF THE BOSONIC FIELD

In this Appendix, we discuss the derivation of the low-
energy expansion of the bosonic field in Eq. (16). For a better
exposition, we briefly recall the strategy for an equilibrium
configuration before considering the generic case out of equi-
librium. We refer to, e.g., Refs. [23,25,63,64] for a detailed
derivation of the equilibrium results which follow.

At equilibrium, it is well known that the bosonic field
allows for a low-energy expansion in terms of operators of
an asymptotic field theory, namely,

�̂(x) = B(x) Ô(x) + less relevant operators, (A1)

where B(x) is a dimensionful nonuniversal coefficient and we
defined the vertex operator as

Ô(x) =
∏

a=1,2

∣∣∣∣dxt (sa)

ds

∣∣∣∣
−�/2

: e− i
2 ϕ̂(s1 ) :: e− i

2 ϕ̂(s2 ) : . (A2)

Here, ϕ̂(s) ∈ R/(2πZ) is a compact chiral bosonic field liv-
ing along the contour and parametrizing the chiral density
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FIG. 4. Microscopic configuration of momenta for the Tonks-
Girardeau gas before and after the removal of a particle. (a) Single
Fermi sea (Q = 1): the particle loss leads to the change of parity sec-
tor of the quantized momenta. Each Fermi point is “pushed inwards”
of the amount +1/2 as encoded by the action of the Luttinger fields
ϕ̂(s). (b) Split Fermi sea: the single particle loss can be realized in
dQ different configurations, each corresponding to a set of values
η = {ηa = ±1/2} to assign to each Fermi point qa depending on
whether qa is moved inwards (ηa = +1/2) or outwards (ηa = −1/2)
with respect to the initial configuration.

fluctuations around the Fermi points as δq̂(s) = h̄∂sϕ̂(s), see,
e.g., Refs. [23,89] for further details. The coordinates s1, s2

denote the positions along the contour of the Fermi points
q(s1) = −q(s2) satisfying x ≡ x(s1) = x(s2), and � = 1/4 is
the scaling dimension of the vertex operator. Notice that, in
writing Eq. (A1), we considered only the low-energy excita-
tions corresponding to a change in the particle number N →
N − 1 and we neglected Umklapp processes which would
contribute to the low-energy expansion (A1) with vertex oper-
ators of higher scaling dimensions.

At equilibrium, one finds the symmetry of Fermi points
s1 = 2π − s2, thanks to which the total WKB phase �0(s1) +
�0(s2) simply vanishes [cf. Eq. (11)]. In the case out of
equilibrium with a single Fermi sea (Q = 1), we find a similar
expression but the condition on the WKB phases is no longer
valid. Therefore, Eq. (A1) modifies as

�̂(x) ≈ C(x) Ô(x), (A3)

where we defined

C(x) = B(x)
∏

a=1,2

∣∣∣∣dxt (sa)

ds

∣∣∣∣
−1/8

exp

[
− i

2
�t (sa)

]
(A4)

and

Ô(x) = : e− i
2 ϕ̂(s1 ) :: e− i

2 ϕ̂(s2 ) : . (A5)

We observe that, in our convention, the action of the fields
ϕ̂(sa=1,2) is to “push inwards” the Fermi contour of an amount
+1/2 such that the combined action of the two fields de-
scribes the loss of one atom operated by �̂(x) and the
consequent change of parity in the quantization of the modes,
see Fig. 4(a).

At this point, in generalizing the expression (A3) to an
arbitrary number Q of Fermi seas, there are dQ possible

configurations of the split Fermi sea in which a particle can
be removed, see Fig. 4(b). We denote each of these configura-
tions with a 2Q-dimensional vector η satisfying

ηa = ±1/2,

2Q∑
a=1

ηa = 1 (A6)

such that the total action of the fields ϕ̂(sa) correctly reproduce
the action of the operator �̂(x). Since each configuration η

contributes to the low-energy expansion of �̂ with equal scal-
ing dimension � = 1/4, a sum over configuration is required
and Eq. (A3) becomes

�̂(x) ≈ C(x) · Ô(x) =
∑
η∈IQ

[C(x)]η[Ô(x)]η, (A7)

where

[C(x)]η = Bη(x)
2Q∏

a=1

∣∣∣∣dxt (sa)

ds

∣∣∣∣
−1/8

e−iηa�t (sa ) (A8)

and

[Ô(x)]η =
2Q∏

a=1

: e−iηaϕ̂(sa ) : . (A9)

Notice that in the case Q = 1, we obtain a single configuration
η = {+1/2,+1/2} and Eq. (A7) reduces to (A3). The cal-
culation of the (dimensionful) nonuniversal coefficient Bη(x)
appearing in Eq. (A8) is discussed below.

APPENDIX B: CALCULATION OF
THE NONUNIVERSAL AMPLITUDES

As previously discussed in Refs. [63,64,98,99], the nonuni-
versal coefficient Bη can extracted from the field form factor
of the microscopic model at finite N, L as

Bη(x) = lim
N,L→∞

(
L

2π

)Q/4

×
∣∣〈{q(η)

i

}N−1

i=1

∣∣�̂(0)
∣∣{k j

}N

j=1

〉∣∣√〈{
q(η)

i

}N−1

i=1

∣∣{q(η)
i

}N−1

i=1

〉√〈{k j}N
j=1|{k j}N

j=1

〉 ,
(B1)

where the limit N, L → ∞ is taken with fixed ratio N/L =
ρ(x), with ρ(x) being the particle density at position x.
The state |{ki}〉 is a reference state for the microscopic
model, while |{q(η)

i }〉 is an excited state depending on the
particular configuration η which is considered. For arbitrary
values of momenta of the in (I = {ki}N

i=1) and out (Jη =
{q(η)

i }N−1
i=1 ) states, the field form factor in Eq. (B1) for the

Tonks-Girardeau gas is [100]

G(I|Jη )

≡ |〈Jη|�̂(0)|I〉|√〈Jη|Jη〉
√〈I|I〉

= 2N−1

LN− 1
2

∏
1�a<b�N |ka − kb|

∏
1�c<d�N−1

∣∣q(η)
c − q(η)

d

∣∣∏N
i=1

∏N−1
j=1

∣∣ki − q(η)
j

∣∣ ,

(B2)
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with I ⊂ 2π
L (Z + 1/2) and Jη ⊂ 2π

L Z, assuming even N . In
detail:

1. Single Fermi sea (Q = 1)

Let |{k j}〉 be the ground state of the microscopic model
having N particles, specified by the set of momenta

k j = 2π

L

(
−N + 1

2
+ j

)
, j = 1, . . . , N (B3)

and |{qi}〉 the excited state obtained by removing a particle
from the ground state and specified by the momenta

qi = 2π

L

(
−N

2
+ i

)
, i = 1, . . . , N − 1. (B4)

For out-of-equilibrium configurations, we notice that a uni-
form boost � of the momenta in (B3) and (B4) does not
modify the value of B [cf. Eqs. (B1) and (B2)]. By evaluating
Eq. (B2) with the sets of momenta in (B3) and (B4), we obtain

G
({qi}N−1

i=1

∣∣{k j}N
j=1

) = L−1/2 G2(3/2)G(N )G(N + 1)

G2(N + 1/2)
, (B5)

and by expanding the Barnes G function for large N as
G(N )G(N+1)
G2(N+1/2) ∼ N1/4, we recover the known result (see, e.g.,

Refs. [18,101])

B(x) = G2(3/2)

(2π )1/4
[ρ(x)]1/4. (B6)

By combining the scaling dimensions of the nonuniversal
amplitude B ∝ ρ1/4 with � = 1/4 of the vertex operator in
(A3), we recover the correct scaling dimension �� = 1/2 of
the bosonic field.

2. Split Fermi sea

We now turn to the generic out-of-equilibrium situation. In
this case, typical states have the form of a split Fermi sea with
boundaries {ka}2Q

a=1 such that

Q−1∑
a=0

k2a+2 − k2a+1

2π
= N/L = ρ(x). (B7)

For even N , the quantized momenta populating the split Fermi
sea are obtained by the set

I = 2π

L

(
Z + 1

2

)
∩ ([k1, k2] ∪ · · · ∪ [k2Q−1, k2Q]), (B8)

while, after removing a particle, we have the configuration

Jη = 2π

L
Z ∩ ([k1 + η1, k2 − η2] ∪ · · · ∪

× [k2Q−1 + η2Q−1, k2Q − η2Q]). (B9)

For these sets, the form factor (B2) at large N and for ka � 1
is

G(I|Jη ) �
√

π

L

(
L

2π

) 2−Q
4
(

G2(3/2)√
π

)Q 2Q∏
a<b

|ka − kb|ηaηb,

(B10)
leading to the nonuniversal coefficient

Bη(x) =
(G2(3/2)√

π

)Q
√

2

2Q∏
a<b

|ka − kb|ηaηb . (B11)

One can easily check that for Q = 1 this expression reduces
to Eq. (B6). Plugging Eq. (B11) into Eq. (A8), we recover the
expression for the coefficient [C(x)]η appearing in Eq. (16).

APPENDIX C: FURTHER RESULTS FOR THE 1PDM

In this Appendix, we provide further results and analytical
checks of our asymptotic formula in Eq. (13) of the main text.

1. Equilibrium limit

We first show how Eq. (13) reduces to the known asymp-
totic result for the 1PDM at equilibrium, previously derived in
Ref. [59]. Using the results of Appendix A and Appendix B,
we can write the 1PDM as

〈�̂†(x)�̂(x′)〉 = B(x)B(x′) 〈Ô(x)Ô(x′)〉

= G4(3/2)√
2π

ρ(x)1/4 ρ(x′)1/4
4∏

a=1

∣∣∣∣dx0(sa)

ds

∣∣∣∣
− 1

8

× 〈: e
i
2 ϕ̂(s1 ) :: e

i
2 ϕ̂(s2 ) :: e− i

2 ϕ̂(s3 ) :: e− i
2 ϕ̂(s4 ) :〉,

(C1)

where s1, s2 denote the Fermi points x ≡ x0(s1) = x0(s2) and
s3, s4 denote those satisfying x′ ≡ x0(s3) = x0(s4). At t = 0
(i.e., for an equilibrium configuration), it is easy to see that∣∣∣∣dx0(sa)

ds

∣∣∣∣ = 1

Nρ[x0(sa)]
. (C2)

Using Eq. (16) and the relations s1 ≡ sx = 2π − s2 and s4 ≡
sx′ = 2π − s3, after simple algebra, one obtains

〈�̂†(x)�̂(x′)〉 =
(G4(3/2)√

2π

)
√

2N
| sin(sx )| 1

4 | sin(sx′ )| 1
4∣∣ sin

( sx−sx′
2

)∣∣ 1
2
∣∣ sin

( sx+sx′
2

)∣∣ 1
2

,

(C3)

recovering the result first obtained in Ref. [59].
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2. Dynamics of the 1PDM in harmonic traps

We now discuss the case of the Tonks-Girardeau gas in a harmonic potential V0(x) = 1
2ωx2 − μ and subject to a quantum

quench where the trap’s frequency suddenly changes from ω to �. For this specific setup, analytical results for the 1PDM
have been obtained in Refs. [34,69] exploiting the known exact solution for the single-particle Schrödinger equation (see, e.g.,
Refs. [102,103]). In the following, we show how our asymptotic formula (13) reduces to the known result in this limiting case.

Applying our formalism, one can easily see that the bosonic 1PDM during a harmonic-to-harmonic trap quench has the form
(hereafter h̄ = 1)

〈�̂†(x)�̂(x′)〉 = G4(3/2)√
2π

ρ(x)1/4 ρ(x′)1/4
4∏

a=1

∣∣∣∣dxt (sa)

ds

∣∣∣∣
− 1

8

e
i
2 [�t (s1 )+�t (s2 )−�t (s3 )−�t (s4 )]

×
∣∣ sin

( s1−s2
2

)∣∣ 1
4
∣∣ sin

( s3−s4
2

)∣∣ 1
4∣∣ sin

( s1−s3
2

)∣∣ 1
4
∣∣ sin

( s1−s4
2

)∣∣ 1
4
∣∣ sin

( s2−s3
2

)∣∣ 1
4
∣∣ sin

( s2−s4
2

)∣∣ 1
4

(C4)

since the problem is characterized by a single Fermi sea for
any position x and time t . Here, s1, s2 denote the Fermi
points x ≡ x0(s1) = x0(s2) and s3, s4 are obtained from x′ ≡
x0(s3) = x0(s4). This expression can be further simplified by
employing the parametrization of the initial contour

�0 : (x0(s), q0(s)) = (−R cos(s), Rω sin(s)) (C5)

where R = √
2μ/ω is the size of the cloud at t = 0. The

single-particle evolution in the harmonic trap is(
xt (s)
qt (s)

)
=
(

cos(�t ) sin(�t )/�
−� sin(�t ) cos(�t )

)(
x0(s)
q0(s)

)
, (C6)

from which one can obtain exact expressions for the Jacobian
dxt (s)/ds appearing in Eq. (C4). The WKB phase is

�t (s) = �0(s) + (2πN )1[s

t ,π](s) − q0(s)x0(s) sin2(�t )

+ (q0(s)2 − x0(s)2)

4�
sin(2�t ), (C7)

where s

t satisfies xt (s
) = maxs[xt (s)] and

�0(s) =
{

f (s), if s ∈ [0, π );

−2πN + f (s), if s ∈ (π, 2π ];
(C8)

with

f (s) ≡
∫ s

0
ds

dx0(s)

ds
q0(s) = ωR2

2
[s − cos(s) sin(s)]. (C9)

By plugging these results into Eq. (C4), we obtain a closed
expression for the 1PDM which is showed in Fig. 5. Notice
that, in the quantum generalized hydrodynamics framework,
correlations are expressed in terms of those in the initial state
via Eq. (8). In Refs. [34,69], due to the exact solvability of the
model, the isothermal coordinates at position x and time t can
be written as a function of time

s±(x, t ) = π ± arccos

(
x

Rb(t )

)
, (C10)

with b(t ) =
√

1 + (ω2 − �2) sin2(�t )/�2, resulting in the
expression for the bosonic 1PDM

〈�̂†(x)�̂(x′)〉 = G4(3/2)√
2π

e−i ḃ(t )
2b(t ) (x2−x′2 )

√
b(t )

ρ(x)
1
4 ρ(x′)

1
4

|(x − x′)/b(t )| 1
2

,

(C11)

first derived in Ref. [34] by Minguzzi and Gangardt.
One can easily show that this result is obtained from
Eq. (C11) using the coordinate (C10) and adding the phase
(�[s+(t )] + �[s−(t )])/2, see Ref. [69] for the details of this
calculation.

In Fig. 5, the analytical predictions for the 1PDM in
Eqs. (C4) and (C11) are compared with time-dependent BFM
numerics, showing excellent agreement.

FIG. 5. Top panel: snapshot of the Fermi contour �t during a
quantum quench in the harmonic trap’s frequency ω → �, obtained
from the solution of Eq. (7) of the main text. Bottom panels: real and
imaginary part of the time-evolved 1PDM for x′ = 0. We show the
analytical results in Eq. (C4) (full line) and Eq. (C11) (dashed line)
against BFM numerics (markers) obtained with the method discussed
in Ref. [52,53]. In the figures, we set V0 = 1

2 ω2x2 − μ with ω = 2/L,
μ = 0.1 and V1 = 1

2 �2x2 − μ with �/ω = 2, L = 600 is the size
of the system. With this choice of parameters, the system contains
N = 30 particles. Time is set to t = 0.225τ , in units of τ = 2π

�
.
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FIG. 6. Illustration of the ring state in phase space, correspond-
ing to an excited state of N � 1 hard-core particles in a harmonic
potential, where the single-particle orbitals of the harmonic oscillator
are filled from level M to M + N − 1. The aspect ratio is R/r =√

1 + N/M. The red dots indicate the point s = π according to the
parametrization below. At these points, the WKB phases undergo a
discontinuity as commented in the text.

3. An example with split Fermi seas

In this subsection, we provide an explicit example of
calculation of the 1PDM for a configuration of the Wigner
function W (x, q) containing split Fermi seas. Specifically, we
consider the ring state depicted in Fig. 6, obtained as the
excited state of a hard-core quantum gas in a harmonic trap
of frequency ω with N � 1 particles filling the orbitals from
M to M + N − 1. For this state, we find a pair of Fermi con-
tours having opposite chirality, which we denote as �i (inner)
and �o (outer), respectively. A convenient parametrization for
these curves is given by

�o : (xo(s), qo(s)) = (−R cos s, ωR sin s) (C12)

�i : (xi(s), qi(s)) = (r cos s, ωr sin s), (C13)

where R =
√

2h̄
ω

(N + M ), and r =
√

2h̄
ω

M. For each contour,
one finds the WKB phase

�o(s) = (N + M )
[
s − 1

2 sin(2s)
]
, (C14)

�i(s) = M
[−s + 1

2 sin(2s)
]
. (C15)

These phases undergo a discontinuity for s = π (red dots
in Fig. 6), where �o jumps by 2π (N + M ) and �i jumps by
−2πM.

In the region with a split Fermi sea, i.e., for −r < x < r,
we label the four Fermi points as

q1 < q2 < q3 < q4, (C16)

corresponding to coordinates

s1 = π + arccos
x

R
, s4 = π − arccos

x

R
(C17)

on the outer contour, and coordinates

s2 = 2π − arccos
x

r
, s3 = arccos

x

r
(C18)

on the inner contour. Away from this region, i.e., for r < |x| <

R, one finds a single Fermi sea with coordinates s1, s4 given
in (C17).

The 1PDM is obtained using the formula in Eq. (13):

〈�̂†(x)�̂(x′)〉ring = C†(x) · F (x, x′) · C(x). (C19)

For the dQx -dimensional vector C†(x) we have the following
results (hereafter h̄ = ω = 1):

(1) If r < |x| < R (i.e., Qx = 1):

C†(x) =
(

G2(3/2)√
2π

)
× 2

1
4

where the phase simplifies since �o(s1) + �o(s4 = 2π −
s1) = 0.

(2) If |x| < r (i.e., Qx = 2):

C†(x) =
(G2(3/2)√

π

)2
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp ( i
2 [−�1+�2+�3+�4])

(R2−x2 )
1
4

exp ( i
2 [�1−�2+�3+�4])

(r2−x2 )
1
4

exp ( i
2 [�1+�2−�3+�4])

(r2−x2 )
1
4

exp ( i
2 [�1+�2+�3−�4])

(R2−x2 )
1
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C20)

where we used the shorthand �o(sa=1,4) = �a and
�i(sb=2,3) = �b.

For the dQx × dQx′ matrix F (x, x′), we find the following:
(1) If r < |x| < R and r < |x′| < R:

F (x, x′) = R1/2
(
1 − x2

R2

)1/8(
1 − x′2

R2

)1/8

|x − x′|1/2 . (C21)

(2) If r < |x| < R and |x′| < r:

F (x, x′) =
(G2(3/2)√

π

)2
√

2

⎛
⎝

0
R

1
2

((
1− x2

R2

)(
1− x′2

R2

)
1− x′2

r2

)1/8

2
1
4 |x−x′| 1

2

R
1
2

((
1− x2

R2

)(
1− x′2

R2

)
1− x′2

r2

)1/8

2
1
4 |x−x′| 1

2
0

⎞
⎠.

(3) If |x| < r and r < |x′| < R:

F (x, x′) =
(G2(3/2)√

π

)2
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

R
1
2

((
1− x2

R2

)(
1− x′2

R2

)
1− x′2

r2

)1/8

2
1
4 |x−x′| 1

2

R
1
2

((
1− x2

R2

)(
1− x′2

R2

)
1− x′2

r2

)1/8

2
1
4 |x−x′| 1

2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

013324-9



SCOPA, RUGGIERO, CALABRESE, AND DUBAIL PHYSICAL REVIEW A 108, 013324 (2023)

(4) If r < |x| < R and r < |x′| < R:

F (x, x′) = K(x) ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r
1
2√

2|x−x′| 1
2

× · · · 0 0 r
1
2√

2|x−x′| 1
2

× · · ·

0 R
1
2√

2|x−x′| 1
2

× · · · R
1
2√

2|x−x′| 1
2

× · · · 0

0 R
1
2√

2|x−x′| 1
2

× · · · R
1
2√

2|x−x′| 1
2

× · · · 0

r
1
2√

2|x−x′| 1
2

× · · · 0 0 r
1
2√

2|x−x′| 1
2

× · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× K(x′), (C22)

where

K(x) = diag

⎛
⎜⎜⎜⎜⎜⎜⎝

( 1−x2/r2

1−x2/R4

) 1
8( 1−x2/R2

1−x2/r4

) 1
8( 1−x2/R2

1−x2/r4

) 1
8( 1−x2/r2

1−x2/R4

) 1
8

⎞
⎟⎟⎟⎟⎟⎟⎠

(C23)

and we omitted the full expression of the nonvanishing ele-
ments in (C22) for a better exposition. In Fig. 7, we show
the result for the 1PDM of the ring state with M = 20 and
N = 20, compared to BFM numerical calculations performed
with the method of Ref. [52,53].

Importantly, we observe that the matrix F (x, x′) ∝ |x −
x′|−1/2 and it diverges in the limit of coincident points x → x′,
as expected within a field theory description. Moreover, addi-
tional power-law divergences of the 1PDM arise when one of
the two points |x|, |x′| = r, i.e., when we pass from two to four
Fermi points and vice versa. These divergences are related to
the limit of coincident momenta qa → qb in a split Fermi sea
at given position x (and consequently sa → sb) and affect both
the nonuniversal amplitude of Eq. (B11) (which is notoriously
ill-defined in the presence of nondistinct momenta) and the
propagator of Eq. (18). Both these types of divergences affect-
ing the 1PDM can be regularized as explained in Appendix D.

APPENDIX D: REGULARIZATION OF THE 1PDM

We finally discuss the regularization procedure for the
divergences appearing in the 1PDM. Although all these di-
vergences have a similar origin, we find it convenient to start

FIG. 7. 1PDM density matrix for the ring state of Fig. 6 with
ω = 1, x′ = 8, and M = N = 20. The black full line shows the result
obtained using Eq. (C19) and it is compared with BFM numerical
results (red circles). We observe an overall excellent agreement of
the two curves with divergences at x = x′ (dash-dotted axes) and for
x = ±r (dotted axes).

from the divergence arising when x → x′ and later move to
the regularization of the secondary peaks of the 1PDM. As al-
ready commented in the main text, this divergence g1(x, x′) ≡
〈�̂†(x)�̂(x′)〉 ∝ |x − x′|−1/2 characterizes the asymptotic be-
havior of the 1PDM already in homogeneous systems at
equilibrium, which is indeed expected to break down at mi-
croscopic scales |x − x′| � ρ−1. Nevertheless, short-distance
expansions for the 1PDM have been systematically worked
out for the Tonks-Girardeau gas exploiting Fisher-Hartwig
conjecture (see Refs. [55,56]). For instance, the first terms of
this expansion read as

g1(r ≡ 2πx/L, 0) = ρ

{
1 − (N2 − 1)

24
r2 + N (N2 − 1)

72π
|r|3

+ (3N4 − 10N2 + 7)

5760
r4 + O(|r|5)

}
.

(D1)

Since in the limit x → x′ our assumptions are compatible with
a locally homogeneous fluid, one can then easily remove the
divergence at x � x′ by employing the expansion in Eq. (D1)

FIG. 8. Example of regularization of the 1PDM of Fig. 2 of the
main text for x′ = 0 and at time t = 0.3τ (thick full line). As one
can see, by employing a simple linear interpolation scheme for the
removal of the divergences, one finds already a very good agreement
of the regularized 1PDM (thin full line) with the time-dependent
BFM numerical data (dashed line).
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around the region |x − x′| � ρ(x)−1. In practice, we experi-
enced that even retaining only the few lowest terms in the
expansion is enough to obtain a very good matching with the
exact numerical data, see Fig. 8.

Next, secondary peaks arise at turning points s∗ on the
Fermi contour (i.e., when the number Q of Fermi seas as a
function of real space position x undergoes a discontinuity).
Although these divergences manifest in the underlying field
theory description in a similar fashion of that at x = x′, we find
their regularization through a short-distance expansion similar
to that in Eq. (D1), a nontrivial calculation. Nevertheless,
we observe that by employing a simple linear interpo-
lation scheme for these divergences, namely, by linearly

interpolating the values of g1(x, x′) away from the divergence
at |x − xt (s∗)| � δ, with δ a constant ∼O(1), we are already
able to regularize the asymptotic result for the 1PDM in
Eq. (13) of the main text with good accuracy, see Fig. 8.
Indeed, this is also confirmed by the good agreement that
we obtained for the MD of Fig. 3 of the main text, where
the large momentum tails display only small deviations from
the numerical data. These deviations can be minimized by
improving our regularization scheme for the secondary peaks
or by combining our asymptotic approach with local density
approximation (see Ref. [30]), which is expected to become
exact at large momentum. We plan to investigate these aspects
in future publications.
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