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Series expansions in closed and open quantum many-body systems
with multiple quasiparticle types
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The established approach of perturbative continuous unitary transformations (pCUTs) constructs effective
quantum many-body Hamiltonians as perturbative series that conserve the number of one quasiparticle type.
We extend the pCUT method to similarity transformations—dubbed pcst++—allowing for multiple quasiparticle
types with complex-valued energies. This enlarges the field of application to closed and open quantum many-
body systems with unperturbed operators corresponding to arbitrary superimposed ladder spectra. To this end, a
generalized counting operator is combined with the quasiparticle generator for open quantum systems recently
introduced by Schmiedinghoff and Uhrig [G. Schmiedinghoff and G. S. Uhrig, SciPost Phys. 13, 122 (2022)].
The pcst++ then yields model-independent block-diagonal effective Hamiltonians and Lindbladians, allowing a
linked-cluster expansion in the thermodynamic limit similar to the conventional pCUT method. We illustrate the
application of the pcst++ method by discussing representative closed, open, and non-Hermitian quantum systems.
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I. INTRODUCTION

The investigation of collective behavior in correlated quan-
tum matter is an active research field in condensed matter and
quantum optics because it is relevant for the development of
functional quantum materials and quantum technologies [1,2].
Theoretically, the treatment of such quantum many-body sys-
tems is extremely challenging due to the exponential increase
of the Hilbert-space dimension as a function of system size.
This is particularly true for open quantum systems described
by quantum master equations because the operator-space
dimension scales quadratically with the state-space dimen-
sion [3]. Examples are Lindblad master equations where,
in contrast to Hermitian Hamiltonians and observables used
for closed systems, the associated Lindblad operator is non-
Hermitian, expressing the dissipative nature of the system
[4,5]. Additionally, non-Hermitian Hamiltonians are funda-
mentally relevant and appear further in quantum magnetism
in terms of the Dyson-Maleev representation of spin operators
[6–8]. It is therefore an important line of research to gener-
alize existing theoretical tools for closed Hermitian systems
to open quantum many-body systems, which has been pur-
sued in recent years, e.g., by quantum trajectories [9], tensor
networks [10–13], extensions of mean-field theories [14,15],
and continuous similarity transformations (CSTs) [16,17]. Of
particular interest are approaches that are able to treat large or
infinite systems so physical properties can be extracted in the
thermodynamic limit.

High-order series expansions are a powerful tool to in-
vestigate closed quantum many-body systems. Typically, one
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exploits the linked-cluster theorem to determine the ex-
act expression of physical quantities perturbatively up to
high orders in the thermodynamic limit by performing cal-
culations on finite linked clusters [18,19]. Initially, such
linked-cluster expansions determined high-temperature series
for extensive thermodynamic quantities as well as extensive
zero-temperature ground-state properties like the ground-state
energy [20]. In contrast, for nonextensive quantities like
excitation energies, linked-cluster expansions are more com-
plicated and it took until 1996 when Gelfand set up a true
linked-cluster expansion for a one-particle dispersion [21].
However, this approach violates the cluster additivity and is
therefore only applicable when the ground state and targeted
excitation subspace are characterized by different quantum
numbers. This was resolved in 2000 with the use of orthogonal
transformations on graphs so cluster additivity is restored and
linked-cluster expansions for many-particle excitation ener-
gies became possible [22,23].

Another attractive route to linked-cluster expansions for
closed quantum many-body systems—which fulfills cluster
additivity by design—is the method of perturbative continu-
ous unitary transformations (pCUTs) [24–26] allowing for the
treatment of many-particle excitation energies as well as spec-
tral densities [27]. Within the pCUT approach, a quasiparticle-
conserving (QP-conserving) and model-independent effective
Hamiltonian in second quantization is derived, with the con-
straint that the unperturbed part of the Hamiltonian has an
equidistant spectrum and is bounded from below [26]. Over
the last two decades, pCUT was indeed applied successfully
as a linked-cluster expansion, i.e., a full graph decompo-
sition has been implemented to calculate relevant matrix
elements for a large variety of correlated closed quantum
many-body systems. This includes frustrated quantum mag-
nets [28,29], models displaying topological quantum order
[30–32], and systems with long-range interactions [33,34],
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or with quenched disorder [35,36]. The latter applications
exploit the presence of an effective Hamiltonian in second
quantization using white-graph expansions [37].

The QP-conserving effective pCUT Hamiltonian is de-
fined by a single QP-counting operator corresponding to the
equidistant spectrum of the unperturbed Hamiltonian [26]. It
would therefore be desirable to generalize the pCUT approach
to multiple QP types, while keeping the method model in-
dependent, in contrast to other generalizations like enhanced
pCUT [38]. At the same time, to describe open quantum sys-
tem, a generalization of the pCUT method to non-Hermitian
Hamiltonians and Lindbladians is needed.

In this paper, we introduce generalized perturbative
CSTs—pcst++—that resolve these issues. We extend the
pCUT formalism by generalizing the counting operator to
multiple QP types. For non-Hermitian operators, we ad-
ditionally combine it with the generalized QP generator
for open quantum systems by Schmiedinghoff and Uhrig
[16], resulting in a similarity transformation. As a result,
model-independent Hamiltonians and Lindbladians are de-
rived within pcst++, allowing a linked-cluster expansion
similar to the conventional pCUT method in the thermody-
namic limit.

The paper is organized as follows. In Sec. II, we describe
the pcst++ approach and its most important properties. Several
applications of the pcst++ approach, including Hermitian and
non-Hermitian Hamiltonians as well as Lindbladians, are dis-
cussed in Sec. III. Finally, we draw conclusions in Sec. IV.

II. METHOD

This section includes all technical aspects relevant for
the pcst++ approach. We first introduce CSTs, generalizing
the method of continuous unitary transformations (CUTs)
[24,39]. For the CST, we use the generalized QP genera-
tor [16], allowing us to derive effective operators that are
block diagonal. The pcst++ approach then corresponds to a
model-independent perturbative solution of the underlying
flow equation describing the CST.

A. Continuous similarity transformations

The goal of the CST is to map the operator describing the
system, e.g., the Hamiltonian, to an effective operator that is
easier to treat. This is done in a continuous fashion. Suppose
we want to transform an operator M into a more suitable
basis. For that, we define a similarity transformation S (�) that
continuously depends on a flow parameter � ∈ [0,∞]. The
flowing operator

M(�) = S (�)MS (�)−1 (1)

is a function of the flow parameter � and is used to trans-
form the operator M = M(0) into the effective operator
Meff = M(∞). The effective operator Meff is thus equal to
M but expressed in a more suitable basis. Since the similar-
ity transformation S (�) is continuous, it has an infinitesimal
generator η(�), i.e.,

∂�S (�) = −S (�)η(�). (2)

We can express the evolution of M(�) with respect to the flow
parameter � in terms of the generator η(�). This results in the
flow equation

∂�M(�) = [η(�),M(�)]. (3)

This differential equation is typically not exactly solvable
because it corresponds to an infinite number of coupled dif-
ferential equations for the coefficients of operators appearing
in M(�). As a consequence, one has to truncate the flow
equation using appropriate truncation parameters, e.g., in a
perturbative coupling [26,27,38], in the scaling dimension
[40,41], or in the spatial extension of operators [42,43]. The
resulting finite number of differential equations can then be
solved numerically for a specific class of models.

Clearly, the resulting Meff depends on the choice of the
generator η(�). For Hermitian operators we use the QP gener-
ator [26,44] that reads

η(�)nm = sgn(Qnn − Qmm)M(�)nm, (4)

using a matrix element notation in the eigenbasis of the QP
counting operator Q that can be chosen model specifically.

The resulting effective operator fulfills [Q,Meff] = 0, thus
conserving the number of QPs. Therefore Meff is block-
diagonal, i.e., eigenstates of Q corresponding to different
eigenvalues are decoupled. If the operator Q is not Hermitian,
we use the generalized QP generator [16] by continuously
extending the sign function as

sgn(z) :=
{

0 for z = 0
z∗
|z| = e−i arg(z) else.

(5)

Like the real sign function, this extension fulfills
z · sgn(z) = |z|.

B. Generalized perturbative continuous similarity
transformations: pcst++

In certain cases, it is possible to perturbatively calculate the
effective operator Meff independent of the specific model. For
these perturbative calculations, we need that M can be split
as

M = Q + λV, (6)

with an unperturbed part Q and a perturbation V with
perturbation parameter λ. The generalization to multiple
perturbation parameters is straightforward. Furthermore, we
assume that

Q =
q∑

α=1

ε (α)Q(α), ε (α) ∈ C, (7)

where each individual Q(α) has an equidistant ladder spec-
trum, which is normalized to a spacing of 1 and bounded from
below, and that the perturbation can be decomposed as

V =
∑
m∈E

Tm, [Q, Tm] = mTm, (8)

with E a finite set of complex numbers. The index m indicates
the mapping from the eigenspace of Q with eigenvalue q to
the one with q + m when acting with Tm; it is generically not
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an integer number. For q = 1 and Hermitian operators, the
transformation reduces to the conventional pCUT [26].

The most general ansatz for the operator during the flow is

M(�) = Q +
∞∑

k=1

λk
∑
|m|=k

F (�; m)Tm,

m = (m1, . . . , mk ),

Tm = Tm1 · · · Tmk , (9)

with mi ∈ E and complex coefficient functions F (�; m). The
commutation relation from Eq. (8) leads to

[Q, Tm] = M(m)Tm, M(m) =
k∑

i=1

mi. (10)

Therefore, M(m) measures the mapping from the eigenspace
of Q with eigenvalue q to the one with q + M(m) when acting
with Tm. The (generalized) QP generator Eq. (4) reads

η(�) =
∞∑

k=1

λk
∑
|m|=k

sgn(M(m))F (�; m)Tm. (11)

The flow equation (3) is then equal to a set of recursive
differential equations for the modified coefficient functions
f (�; m) = e|M(m)|�F (�; m), reading

∂� f (�; m) =
∑

(m1,m2 )=m

e(|M(m)|−|M(m1 )|−|M(m2 )|)�

× [sgn(M(m1)) − sgn(M(m2))]

× f (�; m1) f (�; m2), (12)

where the function corresponding to the empty tuple is defined
as f (�; ()) = 0. These equations can be solved order by order
with starting conditions

f (0; m) = δ1,|m|. (13)

The resulting coefficients Cm := F (∞; m), and thus the ef-
fective operator Meff, only depend on E and not on the
specific definitions of Q or Tm. That means our generalized
transformation is at least as model independent as pCUT. This
is different for enhanced pCUT (epCUT) [38], which also
generalizes pCUT to nonequidistant unperturbed spectra but
is, however, not model independent. It is possible to include
additional degrees of freedom as variables in the prefactors
ε (α) and indices m. Of course, this introduces further com-
putational challenges and the maximally achievable order of
perturbation is smaller than for fixed complex ε (α) and m.
Consequently, to achieve higher perturbative orders, one can
always fix ε (α) to numerical values to speed up solving the
flow equation.

The effective operator can be written as

Meff = Q +
∞∑

k=1

λk
∑

M(m)=0

CmTm. (14)

Due to the restriction of the sum to M(m) = 0, Meff fulfills
[Q,Meff] = 0 and is thus block diagonal. The proof for the
band diagonality during the flow, the block diagonality of

the effective operator, and the convergence of the pcst++ fol-
lows closely the one of pCUT [26] and is explained in the
Appendix.

As pcst++ generalizes pCUT, it also realizes a linked-
cluster expansion, as discussed for pCUT in Refs. [19,27,45].
This enables us to determine physical quantities in the ther-
modynamic limit by only using finite clusters. To obtain
physical quantities, we calculate matrix elements of the form
〈s2|Meff |s1〉 with model-specific states |s1〉, |s2〉 on suffi-
ciently large finite clusters. For computation, we can rely
on the same programs used for pCUT evaluations, explained
in more detail in Ref. [26]. Therefore, we are able to de-
termine physical quantities on the same kind of lattices and
interactions equally efficient as for pCUT (e.g., long-range
interaction [33,37], 2D systems [30,46], and 3D systems
[31,32]) in the thermodynamic limit. In summary, after the
bare transformation the subsequent linked-cluster expansion
and thus the computational difference with respect to different
interactions or dimensions is equal for pCUT as for pcst++.

For Meff , it is easily possible to calculate the coefficient
functions by hand, up to second order. The resulting coeffi-
cients read

C(m1 ) =
{

1 for M((m1)) = 0

0 else,

C(m1,m2 ) =
{

1
M((m1 )) for M((m1)) = −M((m2)) �= 0

0 else.
(15)

The number of indices m and the complexity of the calcu-
lations increase drastically with increasing order. Therefore,
it is useful to automate the solving of the flow equation in a
similar fashion as for the conventional pCUT method [26].
The program we used for calculating the transformation is
freely accessible on GitHub [47].

If, in addition, observables, states, or eigenvectors are re-
quired in the effective basis, we can use pcst++ to calculate
the similarity transformation S (∞) explicitly by inserting
Eq. (11) and the ansatz

S (�) = 1 +
∞∑

k=1

λk
∑
|m|=k

G(�; m)Tm (16)

into Eq. (2) and solving for F (�; m) and G(�; m) recursively.
Alternatively, it is possible to make a similar ansatz explicitly
for a given observable.

C. Coupling of subspaces with small energy spacing

As a perturbative transformation, the series obtained by
pcst++ are limited by a certain convergence radius, depend-
ing qualitatively on the ratio between the unperturbed energy
levels and the perturbation λ. For the conventional pCUT
method, the unperturbed Hamiltonian is limited to a single
ladder spectrum, with a fixed spacing that can be normalized
to 1. Thus, for λ � 1, the perturbative approach is justified.
In contrast, the more general structure of Q in Eqs. (7) for
pcst++ allows for more versatile energy spacings in the un-
perturbed Hamiltonian depending on the ratio of the ε (α),
including arbitrary small spacings. If virtual processes with
these unperturbed energy spacings occur, the convergence
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radius is limited by them. Exemplary, this can be seen in the
second-order coefficient C(m1,m2 ) in Eqs. (15), which can be
the inverse of the unperturbed energy difference.

To increase the radius of convergence for systems with
small energy spacings in Q, we adjust the generator in Eq. (4)
by introducing the broad-step signum function

sgnD(x) :=
{

0 if |x| � D
sgn(x) else (17)

to prevent the pcst++ from decoupling subspaces with an
unperturbed energy spacing not more than D. The effective
Hamiltonian can then include processes where the unper-
turbed energy changes up to D. Thus, it does not necessarily
commute with Q and larger blocks are formed, in general.
Blocks that are decoupled by the original pcst++ might now re-
quire additional postdiagonalization. We will exemplary show
the increased convergence in Sec. III A.

D. Special case of multiple quasiparticle types

Assume the special case of q different QP types,
each counted by an individual number operator Q(α).
Further assume that the perturbation additionally fulfills
[Q(α), Tm] = m(α)Tm with an integer m(α) for all
α ∈ {1, . . . , q}. In that case, we can replace the label
m by the redundant label m = (m(1), . . . , m(q) ) with
m = ∑q

α=1 ε (α)m(α) to get a more intuitive picture of the
perturbation operators. Physically, the index m(α) indicates
how many QPs of type α are created or annihilated by Tm.
In this notation, we can follow the same ansatz as done in
Eqs. (9) to obtain an effective operator analog to Eq. (14) as

Meff = Q +
∞∑

k=1

λk
∑

M(m)=0

CmTm. (18)

Hereby, we define the vectors m = (m1, . . . , mk ), the opera-
tors Tm = Tm1

· · · Tmk
, and the function

M(m) =
q∑

α=1

ε (α)
k∑

i=1

m(α)
i , (19)

fulfilling [Q, Tm] = M(m)Tm. As for Eqs. (10), this function
can be understood as the mapping from the eigenspace of
Q with eigenvalue q to the one with q + M(m) when acting
with Tm. In the same way, the relation [Q(α), Tm] = ∑k

i=1 m(α)
i

describes how many QPs of type α are created upon acting
with Tm.

The effective operator is again block diagonal because of
the vanishing commutator [Q,Meff] = 0 due to M(m) = 0
in Eq. (18). In contrast, the individual [Q(α),Meff] may be
nonzero because M(m) = 0 does not imply

∑k
i=1 m(α)

i = 0.
This gives rise to potential QP-type conversion, depending on
the model, as we will discuss exemplarily in Sec. III.

Due to the Jacobi identity

[Q(α), [Q(β ), • ]] − [Q(β ), [Q(α), • ]] = [[Q(α), Q(β )], • ], (20)

we can use the notation in terms of multiple QP types if
and only if [[Q(α), Q(β )],V ] = 0 for all α, β ∈ {1, . . . , q}.
This implies that V is in the subspace where [Q(α), • ] and
[Q(β ), • ] commute, which, in turn, enables us to solve the

FIG. 1. Transverse field Ising chain in a staggered magnetic field.
The magnetic field has alternating strengths h+ and h− indicated by
blue and red circles, respectively. Nearest-neighbor spins are coupled
by an Ising interaction of strength J , marked in gray.

eigenequations [Q(α), Tm] = m(α)Tm for all α ∈ {1, . . . , q} si-
multaneously. In this eigenequation, the operator Tm is an
eigenvector of the operator [Q(α), • ], corresponding to the
eigenvalue m(α).

Whenever possible, we use this notation, as it closer resem-
bles the original pCUT method.

III. APPLICATIONS

After introducing the pcst++, this section aims at showing
the versatile models that can be treated with the generalized
transformation. This includes models with different types of
QPs in separate and common Hilbert spaces (see Secs. III A
and III C, respectively), non-Hermitian Hamiltonians (see
Sec. III B), and open systems described by a Lindbladian
rather than a Hamiltonian (see Sec. III D). We keep the physi-
cal discussion on the single models rather short to focus on the
technical aspects of pcst++ and its capabilities. As the number
of terms in Eq. (14) grows very fast in perturbation order,
we used a computer program to calculate the action of the
effective operators on specific states.

A. Staggered transverse-field Ising model

As a first model, we consider the transverse-field Ising
chain with a staggered magnetic field (STFIM) about the high-
field limit, with two alternating field strengths h± = h ± δh/2,
with h, δh ∈ R, given by the Hamiltonian

HSTFIM = h+
∑
j∈+

σ z
j + h−

∑
j∈−

σ z
j − J

∑
〈i, j〉

σ x
i σ x

j . (21)

Without loss of generality, we consider the case h > δh � 0
and ferromagnetic Ising interactions J � 0. In the high-field
limit h± > J , one has two types of QPs on the alternating sets
of sites denoted by ± (see Fig. 1). As the different QP types
exist only on separate sites, the QPs live in distinct Hilbert
spaces and only couple due to the perturbation induced by the
Ising interaction.

By applying the Matsubara-Matsuda transformation [48],
we can write HSTFIM in terms of hardcore-bosonic creation
and annihilation operators of two QP types:

HSTFIM = E0 + 2h+Q(1) + 2h−Q(2)

− J[T(+1,+1) + T(+1,−1) + H.c.], (22)

with the bare ground-state energy E0 = −Nh, N the even
number of sites, the number operators

Q(1) =
∑
j∈+

b†
j,+b j,+, Q(2) =

∑
j∈−

b†
j,−b j,− (23)

for the two QP types, and the T operators given in Table I.
The number operators commute, so we can split the index
of the perturbation operators T(m1,m2 ) with respect to the two
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TABLE I. Perturbation operators of the STFIM Eq. (22). The T
operators fulfill the relation T †

(m(1),m(2) )
= T

(−m(1),−m(2) )
, as the model is

Hermitian.

m(1) m(2) Terms in Tm

+1 +1 b†
i,+b†

j,−

+1 −1 b†
i,+bj,−

−1 +1 bi,+b†
j,−

−1 −1 bi,+bj,−

QP types, as discussed in Sec. II D. The energy quanta from
the individual ladder spectra from Eqs. (23) are given by
ε (1) = 2h+ and ε (2) = 2h−.

The case δh = 0 can be solved by conventional pCUT
because the unperturbed Hamiltonian is equidistant. We there-
fore focus on the case δh > 0 and use pcst++ to calculate the
ground-state energy and the excitation energies of the two
1QP sectors. As the model is translational invariant we can
calculate the 1QP dispersion relations perturbatively exact in
momentum space in the thermodynamic limit, using Fourier
transformation and the property that pcst++ is a linked-cluster
expansion [8].

The resulting excitation gaps �± for both QP types at zero
momentum and δh > 0 up to order 6 are given by

�± = 2h± ± 2
J2

δh
∓ 2

J4

δ3
h

± 4
J6

δ5
h

. (24)

The perturbation scales with inverse powers of the unper-
turbed energy difference δh [see Eqs. (15) for comparison],
setting the scale of convergence. For δh → 0, this leads to
arbitrary small convergence radii in J , due to the divergence
of �± at δh = 0.

To increase the convergence radius, we make use of the
broad-step signum function sgnD introduced in Sec. II C. As
the two 1QP channels are not decoupled anymore by pcst++,
we postdiagonalize the combined 2 × 2 block in the thermo-
dynamic limit in momentum space.

We plot the gap of the two 1QP channels in Fig. 2 for a
fixed ratio of h/δh = 7/2, once with the original pcst++ (in
dashed lines) and once with the adjusted generator (in solid
lines) with D = 2δh to couple the subspaces of the two 1QP
sectors. The hybridization between the two QP types is given
in color code and in the inset plot to visualize the enlargement
of the hybridization for increasing perturbation. As can be
seen, the divergence of the original pcst++ directly corresponds
to an increasing hybridization of the two QP types, which
is suppressed in the original method. Using the broad-step
signum function therefore enlarges the radius of convergence
that is otherwise limited by the unperturbed energy difference
2δh.

B. Non-Hermitian staggered transverse-field Ising model

With the help of the generalized QP generator [16], it is
possible to treat non-Hermitian Hamiltonians. As an example,
we consider the same model as in the previous section but with

FIG. 2. Normalized gaps �±/2h of the two 1QP channels as
a function of J/2h and J/2δh. The unperturbed energies are set to
h/δh = 7/2. The gaps calculated with the original pcst++ are shown
as dashed lines and the ones with the broad-step signum function,
coupling the two 1QP channels, are shown as solid lines by setting
D = 2δh = 2h+ − 2h−. For the coupled channels, the hybridization
between the two types is given in the inset plot and a color code,
with blue (red) being a quasiparticle of type 1 (2) sitting on the +
(−) sites. The inset plot shows the proportion of the two QP types
(±) for the two modes, using the same color code. Thereby, the limit
+ (−) indicates a pure quasiparticle of type 1 (2).

a purely imaginary δh ∈ iR, i.e., a non-Hermitian staggered
field. This is equal to the model considered in Refs. [8,49]
up to an irrelevant constant. To increase comparability to
these works, we chose the parameters h = η and δh = 2iξ .
In contrast to pCUT, with pcst++ it is possible to treat this
problem in the high-field limit |η ± iξ | > |J|. We solve for
the ground-state energy per site,

e0 = − J2

4η
− J4

64η3

η2 − 3ξ 2

η2 + ξ 2
− η2 + 5ξ 2

η2 + ξ 2

J6

1024η5
, (25)

and the energy gaps �± of the elementary excitations at zero
momentum up to sixth order,

�± = 2(η ± iξ ) ± J2

iξ
± J4

4iξ 3
± J6

8iξ 5
, (26)

being the same result as Eq. (24), expressed with the new
variables. We exactly reproduce the results from our previous
work in Ref. [8] now using the pcst++ approach instead of
Takahashi perturbation theory [50]. While with the latter an
additional diagonalization of the resulting 2 × 2 block after
Fourier transformation is needed, pcst++ directly diagonalizes
the two bands by design.

C. Spin-one transverse-field Ising model
with single-ion anisotropy

The different QP types are not restricted to separate Hilbert
spaces but can also share one. This enables us to study
models with a more complicated local structure of the un-
perturbed Hamiltonian. As an example, we investigate the
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FIG. 3. (a) ATFIM having local states |0〉, |+1〉, |−1〉 with un-
perturbed energies 0, D + h, D − h, respectively, and perturbative
Ising couplings of strength J . (b) Effective spin-1/2 model on a
ladder according to Eq. (34). The excited states |+1〉 , |−1〉 from
the spin-1 model in (a) are mapped to hardcore bosons realizing two
different QP types, colored in blue and red, respectively. The Ising
couplings are realized by effective four-particle interactions, as given
in Table II.

spin-1 transverse-field Ising model with single-ion anisotropy
(ATFIM),

HATFIM =
∑

j

[
D

(
Sz

j

)2 + hSz
j

] − J
∑
〈i, j〉

Sx
i Sx

j , (27)

which is illustrated in Fig. 3(a). In the following, we consider
the Ising interaction as a perturbation. By tuning the real pa-
rameters D, h ∈ R, we can model any local three-level system
with arbitrary energy spacings for the unperturbed Hamilto-
nian HATFIM(J = 0). We use the eigenstates of the operators
Sz as our basis, i.e., locally Sz |0〉 = 0 and Sz |±1〉 = ± |±1〉.
In this basis:

Sx
j = 1√

2
(|0〉〈+1| j + |0〉〈−1| j + H.c.). (28)

For the discussion, we restrict ourselves to the parameter
regime D > h > 0, the other parameter subspaces can be
treated analogously. Within this regime, the unperturbed local
ground state is |0〉 and the two excited states are |±1〉. We
define their annihilation operators as

aj,± = |0〉〈±1| j (29)

and the respective creation operators as their adjoint operators.
We write the counting operators of the two QP types as

Q(1) =
∑

j

a†
j,+a j,+, Q(2) =

∑
j

a†
j,−a j,−. (30)

In contrast to Sec. III A, the creation and annihilation opera-
tors of different QP types at the same site do not commute:

[a j,α, a†
j,β ] = δα,β − a†

j,βa j,α − δα,β

∑
γ

a†
j,γ a j,γ . (31)

Instead, they fulfill mutual hardcore-bosonic statistics. Re-
gardless of that, the operators Q(1) and Q(2) commute so we
can split the index of the perturbation operators T(m1,m2 ) with
respect to the two QP types, as discussed in Sec. II D.

We again use the translational invariance of the model to
calculate the 1QP dispersions perturbatively in momentum

space. The resulting excitation gaps �± for D > h > 0 and
J > 0 at momentum k = 0 up to order 4 are given by

�±|D �=±2h = D ± h − J ± J2 2D2 − h2

4Dh(D ∓ h)

± J3 8D4 ∓ 8D3h ± Dh3 + h4

16D2h(D ∓ h)2(D ± h)

∓ J4[8D9 ∓ 24D8h ± 32D6h3 + 34D5h4

∓ 72D4h5 + 27D3h6 − 7Dh8 ± 6h9]

× [64D3h3(D ∓ h)3(D ± h)2(D ∓ 2h)]−1 (32)

�+|D=2h = 3h − J + 7J2

8h
+ 67J3

192h2
− 133J4

4608h3
. (33)

Although, we have calculated the general expression up to
order 6, the gaps are given only up to lower order to keep
the expressions compact. Higher orders for fixed D, h ratios
can be calculated easily, while the general analytical result, as
shown here, gets hard to calculate for higher orders. Again
the perturbation scales with powers of unperturbed energy
differences, corresponding to virtual processes in the pertur-
bation theory. Therefore, for special parameter configurations
of D, h, like D = 2h starting in fourth order, we again obtain
QP conversions surrounded by artificial divergences, which
we can solve with the broad-step signum function in Eq. (17).

Instead of working with the spin-1 model directly, we can
also establish a mapping from the spin-1 model on a chain
to two effective spin-1/2 degrees of freedom distributed on a
ladder, as visualized in Fig. 3(b), where each rung corresponds
to the two QP types on one site. Therefore, the QP types are
again defined on distinct Hilbert spaces. This effectively re-
duces the model to the class of systems discussed in Sec. III A.
Each spin-1/2 degree of freedom is denoted as |↑〉, |↓〉 and
the local states on each rung are given by |↓↓〉 := |0〉 for the
local ground state and as |↑↓〉 := |+1〉 and |↓↑〉 := |−1〉 for
the two corresponding excited states. To restrict the local four-
dimensional Hilbert space to the three-dimensional subspace
of the spin 1, we use projection operators. The Hamiltonian
reads

HATFIM = (D + h)Q(1) + (D − h)Q(2)

− J

2
(T(2,0) + T(0,2) + T(1,1) + T(1,−1) + H.c.),

(34)

with Q(1) = ∑
j n j,+, Q(2) = ∑

j n j,−—using the number

operators n j,± = b†
j,±b j,±—and the T operators given in

Table II, with b j,± (b†
j,±) being the annihilation (creation)

operator of the respective spin-1/2 on rung j. Note that the
two-site interactions of the Ising coupling are modeled as
effective four-site interactions due to the projectors (1 − nj,±),
to stay within the local three-dimensional subspace.

To summarize, this example opens up a large class of
systems with arbitrary local spectra, previously not accessible
by pCUT. By mapping the single local excitations to different
QP types with mutual hardcore-bosonic statistics, as given in
Eq. (31), we can establish a general procedure to calculate
series expansions around these local spectra.
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TABLE II. Perturbation operators of the ATFIM (34). The omit-
ted T operators are given by the Hermitian conjugate of the above
expressions.

m(1) m(2) Terms in Tm

2 0 b†
i,+b†

j,+(1 − ni,−)(1 − nj,−)

0 2 b†
i,−b†

j,−(1 − ni,+)(1 − nj,+)

b†
i,+b†

j,−(1 − ni,−)(1 − nj,+)
1 1 + b†

i,−b†
j,+(1 − ni,+)(1 − nj,−)

1 −1 b†
i,+bj,−(1 − ni,−) + bi,−b†

j,+(1 − nj,−)

0 0 b†
i,+bj,+(1 − ni,−) + b†

i,−bj,−(1 − ni,+)

D. Dissipative transverse-field Ising model

To show how versatile pcst++ is, we consider the Lindbla-
dian of the transverse field Ising model with local decay. The
coherent part of the dynamics is governed by the Hamiltonian

H = h
∑

j

σ z
j − J

∑
〈i, j〉

σ x
i σ x

j (35)

and the dissipative part by the local jump operators

Lj = σ−
j , (36)

acting on each spin j separately, with dissipation rate �. Both
parts are illustrated in Fig. 4(a). Combined, the time evolution
of the density matrix is given by the Lindblad equation

iρ̇ = [H, ρ] + i�

2

∑
j

[
2L†

j ρLj − {L†
j L j, ρ}]. (37)

To purify this equation, we represent the basis vectors |ϕ〉〈ψ |
in operator space by basis vectors |ϕ,ψ〉〉 := |ϕ〉 ⊗ |ψ〉∗ in
Liouville space. The purification of an operator M is de-
fined as |M〉〉 := ∑

|ϕ〉,|ψ〉 〈ϕ|M |ψ〉 |ϕ,ψ〉〉. The Lindbladian
in Liouville space is retrieved via |iρ̇〉〉 = L |ρ〉〉 and reads

L = h
∑

j

(
σ z

j ⊗ 1−1 ⊗ σ z
j

)−J
∑
〈i, j〉

(
σ x

i σ x
j ⊗ 1−1 ⊗ σ x

i σ x
j

)

+ i�

2

∑
j

(2σ−
j ⊗ σ−

j − σ+
j σ−

j ⊗ 1 − 1 ⊗ σ+
j σ−

j ).

(38)

FIG. 4. (a) Dissipative transverse-field Ising model. The neigh-
boring spin-1/2 particles are coupled with an Ising interaction of
strength J and subject to a transverse magnetic field with strength
h and local dissipation with rate �. (b) Equivalent model on a ladder
according to the purified Lindbladian from Eq. (38). Blue (+) sites
correspond to σ j ⊗ 1 and red (−) sites to 1 ⊗ σ j .

TABLE III. Perturbation operators of the Lindbladian (38).

m(1) m(2) Terms in Tm

−2 −2 σ−
i σ−

j ⊗ 1 − σ−
i σ−

j ⊗ σ z
i σ z

j

+2 −2 −1 ⊗ σ−
i σ−

j + σ z
i σ z

j ⊗ σ−
i σ−

j

+2 +2
σ+

i σ+
j ⊗ 1 + σ z

i σ+
j ⊗ σ−

i + σ+
i σ z

j ⊗ σ−
j

+ σ z
i σ z

j ⊗ σ−
i σ−

j

−2 +2
−1 ⊗ σ+

i σ+
j − σ−

i ⊗ σ z
i σ+

j − σ−
j ⊗ σ+

i σ z
j

− σ−
i σ−

j ⊗ σ z
i σ z

j

0 0
σ+

i σ−
j ⊗ 1 + σ−

i σ+
j ⊗ 1 + σ z

i σ−
j ⊗ σ−

i

+ σ−
i σ z

j ⊗ σ−
j − 1 ⊗ σ+

i σ−
j − 1 ⊗ σ−

i σ+
j

− σ−
i ⊗ σ z

i σ−
j − σ−

j ⊗ σ−
i σ z

j

0 −2
− σ z

i σ−
j ⊗ σ−

i − σ−
i σ z

j ⊗ σ−
j + σ−

i ⊗ σ z
i σ−

j

+ σ−
j ⊗ σ−

i σ z
j

+2 0 −σ z
i σ+

j ⊗ σ−
i − σ+

i σ z
j ⊗ σ−

j − 2σ z
i σ z

j ⊗ σ−
i σ−

j

−2 0 σ−
i ⊗ σ z

i σ+
j + σ−

j ⊗ σ+
i σ z

j + 2σ−
i σ−

j ⊗ σ z
i σ z

j

This model is illustrated in Fig. 4(b), with the blue sites (+)
[red sites (−)] corresponding to the Hilbert space on the left
[right] side of the tensor product.

In the following, we use pcst++ to investigate the limit
|J| � |h|, |�|. The two terms in the unperturbed part with
prefactors h and � commute, so we can choose

Q(1) = 1

2

∑
j

(
σ z

j ⊗ 1 − 1 ⊗ σ z
j

)
,

Q(2) =
∑

j

(σ+
j σ−

j ⊗ 1 + 1 ⊗ σ+
j σ−

j − 2σ−
j ⊗ σ−

j ), (39)

with ε (1) = 2h and ε (2) = −i�/2 and write the perturba-
tion operators Tm with two indices. Further separation of
Q into more summands is not possible, because Q(1) is the
only operator commuting with σ−

j ⊗ σ−
j . The perturbation—

decomposed into eigenbasis operators Tm, as discussed in
Sec. II D—is listed in Table III.

Even though the perturbation is Hermitian, we have that
T †

(m1,m2 ) �= T(−m1,−m2 ), in contrast to the models before.
We can work in a common local bi-orthonormal eigenbasis

for both Q(1) and Q(2), labeled by their respective eigenvalues
q(1), q(2) on site j. The right eigenvectors |q(1), q(2)〉 and the
corresponding left eigenvectors 〈q(1), q(2)|L are given by

|0, 0〉 := |↓↓〉〉, |−1, 1〉 := |↓↑〉〉,
〈0, 0|L := 〈〈↓↓| + 〈〈↑↑| , 〈−1, 1|L := 〈〈↓↑|,
|0, 2〉 := |↑↑〉〉 − |↓↓〉〉, |+1, 1〉 := |↑↓〉〉,

〈0, 2|L := 〈〈↑↑| , 〈+1, 1|L := 〈〈↑↓|. (40)

Without perturbation, the vector |ss〉 := ⊗ j |0, 0〉 given by
|0, 0〉 on each rung is the stationary state of the Lindbladian
and, at the same time, the only eigenvector of Q(1) and Q(2)

corresponding to eigenvalue 0. Thus, we consider it as the
reference state and introduce hardcore-bosonic annihilation
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and creation operators

a j,∗ := |0, 0〉〈0, 2|Lj , a j,± := |0, 0〉〈±1, 1|Lj ,

a‡
j,∗ := |0, 2〉〈0, 0|Lj , a‡

j,± := |±1, 1〉〈0, 0|Lj . (41)

Note that ‡ does not indicate adjunction since some left eigen-
vectors are not adjoint to their respective right eigenvectors
[see, e.g., |0, 0〉 and 〈0, 0|L in Eq. (40)]. Now we can rewrite
the counting operators (39) in terms of those hardcore bosons
as

Q(1) =
∑

j

(a‡
j,+a j,+ − a‡

j,−a j,−),

Q(2) =
∑

j

(2a‡
j,∗a j,∗ + a‡

j,+a j,+ + a‡
j,−a j,−), (42)

and the perturbation operators listed in Table IV.
We have calculated the effective Lindbladian up to order 6.

Here we explicitly give the pcst++ transformed Lindbladian up
to second in normal ordered form

L(2,J )
eff = L(2,J )

eff,+ + L(2,J )
eff,−, (43)

TABLE IV. Perturbation operators of the Lindbladian (38) ex-
pressed in the eigenbasis from Eq. (40). These operators are defined
via combinations of certain terms, such that the total m is correct,
i.e., a change of m = (±1, +1) can be achieved via a‡

j,± or a‡
j,∗aj,∓

and a change of m = (±1,−1) via aj,∓ or a‡
j,±aj,∗.

m(1) m(2) Terms in Tm

±2 −2 ∓2a‡
i,±ai,∗aj,∓ ∓ 2ai,∓a‡

j,±aj,∗

±2 +2 ±(a‡
i,± + a‡

i,∗ai,∓)(a‡
j,± + a‡

j,∗aj,∓)

0 0

(a‡
i,+ + a‡

i,∗ai,−)(aj,+ + a‡
j,−aj,∗)

+ (ai,+ + a‡
i,−ai,∗)(a‡

j,+ + a‡
j,∗aj,−)

− (a‡
i,− + a‡

i,∗ai,+)(aj,− + a‡
j,+aj,∗)

− (ai,− + a‡
i,+ai,∗)(a‡

j,− + a‡
j,∗aj,+)

0 −2
2a‡

i,−ai,∗aj,− + 2ai,−a‡
j,−aj,∗

− 2a‡
i,+ai,∗aj,+ − 2ai,+a‡

j,+aj,∗

±2 0
±(ai,∓ − a‡

i,±ai,∗)(a‡
j,± + a‡

j,∗aj,∓)
± (a‡

i,± + a‡
i,∗ai,∓)(aj,∓ − a‡

j,±aj,∗)

L(2,J )
eff,± = ± 2h

∑
j

a‡
j,±a j,± − i�

2

∑
j

(a‡
j,∗a j,∗ + a‡

j,±a j,±) ∓ J
∑
〈i, j〉

[(a‡
i,± + a‡

i,∗ai,∓)(a j,± + a‡
j,∓a j,∗) + (i ↔ j)]

+
(

∓ J2

2h
± 16hJ2

16h2 − �2
− 4i�J2

16h2 − �2

)∑
j

a‡
j,±a j,± +

(
±J2

h
∓ 16hJ2

16h2 − �2

) ∑
〈i, j〉

a‡
i,±ai,±a‡

j,±a j,±

+ 4i�J2

16h2 − �2

∑
〈i, j〉

[a‡
i,∗ai,∗a‡

j,±a j,± + (i ↔ j)] + 2i�J2

16h2 − �2

∑
〈i, j〉

(a‡
i,+ai,+ + a‡

i,−ai,−)(a‡
j,+a j,+ + a‡

j,−a j,−)

± J2

4h

∑
〈〈i, j,k〉〉

[(ai,∓ ∓ a‡
i,±ai,∗)(a‡

k,∓ ± a‡
k,∗ak,±) + (i ↔ k)](1 − 2a‡

j,+a j,+ − 2a‡
j,−a j,−)

± 2J2

4h ∓ i�

∑
〈〈i, j,k〉〉

[(a‡
i,± + a‡

i,∗ai,∓)ak,± + (i ↔ k)](a‡
j,∗a j,∗ − a‡

j,∓a j,∓)

∓ 2J2

4h ∓ i�

∑
〈〈i, j,k〉〉

[(a‡
i,± + a‡

i,∗ai,∓)a‡
k,∓ak,∗ + (i ↔ k)](1 − 2a‡

j,±a j,± − a‡
j,∓a j,∓ − a‡

j,∗a j,∗), (44)

where 〈〈i, j, k〉〉 indicates three neighboring sites with j being
the middle one. Because the effective Lindbladian is block
diagonal with respect to the eigenvalues of both Q(1) and Q(2),
we can discuss the different subspaces separately. For this
example, we select the subspaces with the smallest imaginary
part since the respective density matrices decay slowest and
are thus most relevant on large timescales. This corresponds
to low QP numbers of Q(2), as it includes decay processes.

The only stationary state of L is |ss〉, corresponding to
eigenvalue 0, as all other eigenstates have a nonvanishing
eigenvalue. Therefore, the stationary subspace corresponds to
a 1 × 1 block of Leff. Without further calculations, we see that

L(2,J )
(0,0) = 0. (45)

This actually holds for arbitrary orders because
〈ss|L Tm |ss〉 = 0 for all m, where 〈ss|L := ⊗ j 〈0, 0|L.
Interestingly, this left eigenvector is given by the vectorized
identity operator 〈〈1| = ∑

|ϕ〉〈〈ϕ, ϕ| and acting with it is
equivalent to performing the trace. This nicely combines the
facts that the left and right eigenvalues form a biorthonormal
basis and that the stationary state has trace 1 and is therefore
a valid density operator. This also implies that all other
eigenvectors of the Lindbladian have trace 0 and are not valid
density operators. However, they can be combined with the
stationary state to form other density operators.

The two 1QP subspaces correspond to the eigenvalue with
the lowest nonzero imaginary part, i.e., (q(1), q(2) ) = (±1, 1).
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The effective Lindbladians on this subspace read

L(2,J )
(±1,1) |1 j,±〉 = ±

(
2h ∓ i�

2
− J2

2h
+ 4J2

4h ± i�

)
|1 j,±〉

∓ J (|1 j−1,±〉 + |1 j+1,±〉)

∓ J2

4h
(|1 j−2,±〉 + |1 j+2,±〉). (46)

The blocks for higher QP numbers corresponding to
eigenvalues with higher imaginary parts—thus decaying
faster—contain mixtures of different creation and annihilation
operators, whose discussion is omitted here.

With this example, we have proved that pcst++ is able to
handle dissipative systems in the form of Lindbladians. This
is done by purification of the Lindblad equation and its density
matrices and expressing the dissipative part and a share of the
Hamiltonian part as a sum of ladder spectra. The second-order
results show the possibilities of discussing dissipative dynam-
ics in a perturbative fashion, focusing on slowly decaying
channels, phrased as QP excitations.

IV. CONCLUSION

In this paper, we have introduced pcst++, which generalizes
the established pCUT method to treat quantum many-body
systems by high-order linked-cluster expansions in two direc-
tions. First, it is now possible to treat multiple QP types so
one is not restricted to an unperturbed Hamiltonian with an
equidistant spectrum corresponding to a single QP counting
operator. Second, we have extended the field of application to
open quantum systems described by non-Hermitian Hamilto-
nians or Lindblad operators. As for the conventional pCUT
method, this allows the derivation of model-independent ef-
fective Hamiltonians and Lindbladians that commute with the
unperturbed part given by arbitrary complex-valued superim-
posed ladder spectra. The effective operators are therefore
block diagonal and significantly easier to treat. A linked-
cluster expansion in the thermodynamic limit is therefore still
possible by design. This includes, in particular, white-graph
expansions [37]. Because the linked-cluster expansion can
rely on the same programs for both pCUT as pcst++, we
expect application to a wide range of models, including long-
ranged or higher-dimensional models, as straightforward. The
potential limitation due to divergences arising from small
unperturbed energy differences was overcome with a tunable
generator that does not decouple these subspaces.

On the computational side, a new challenge (in contrast
to the original pCUT) is the additional degrees of freedom
introduced by arbitrary ratios of the ladder-spectrum spacings,
resulting in a need for analytical expressions of the coeffi-
cients. Although we calculated coefficients in high orders,
the pcst++ could be further optimized from deeper insights
into the actual shape of the coefficients to speed up analytical
calculations.

We expect that pcst++ will be useful in various directions
for future investigations tackling correlated closed and open
quantum systems. A naturally relevant field will be cooper-
ative quantum phenomena involving light and matter degrees

of freedom where multiple QP types as well as dissipation and
driving are naturally present.

Additional data [51] as well as the source code [47] to
calculate the pcst++ are available online.
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APPENDIX: PROOF OF THE TRANSFORMATION

In this Appendix, we prove that the pcst++ is convergent,
that the effective operator Meff [see Eq. (14)] is block diago-
nal, and that for Hermitian operators M the flowing operator
M(�) is band diagonal. Thereby, we follow closely the proofs
of pCUT [26].

Convergence. Convergence is a necessary property
because it makes the pcst++ well-defined. It is given
when the coefficients Cm = lim�→∞ F (�; m) are unique
and finite. The following proof is only performed for
M(m) = 0, while M(m) �= 0 will be discussed in the next
paragraph. It suffices to consider the limit for the functions
f (�; m) = e|M(m)|�F (�; m), since both coincide for
M(m) = 0.

Let m be arbitrary with M(m) = 0 and (m1, m2) = m be
an arbitrary breakup. By using M(m1) + M(m2) = M(m) = 0,
we conclude that M(m1) = −M(m2). Using that the coeffi-
cient function is given by

f (�; m) =
∑

(m1,m2 )=m

∫
e−2|M(m1 )|�

× 2 · sgn(M(m1)) f (�; m1) f (�; m2)d�, (A1)

every term in this sum is either vanishing for M(m1) = 0
or contains an exponentially decaying term for M(m1) �= 0.
Thus, the only nonzero contribution to Cm is the constant of
integration.

Block diagonality. That the effective operator Meff is
block diagonal, i.e., fulfilling [Q,Meff] = 0, is an essential
aspect of the pcst++. Because of Eqs. (10) and (14), we prove
this aspect by showing that M(m) �= 0 implies Cm = 0. It
suffices to prove by induction that the functions f are of the
form ∑

μ�0

Pμ(�; m)e−μ� (A2)

with non-negative integers μ and polynomials Pμ(�; m).
This then implies by definition that the functions
F (�; m) = e−|M(m)|� f (�; m) are exponentially decaying
for M(m) �= 0.

The first-order results are given by f (�; (m1)) = 1 and are
thus of the form (A2). As an induction hypothesis, we assume
that the statement holds for all m with |m| < k. Now let m
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be arbitrary with |m| = k. Because of Eq. (12), the coefficient
function is given by

f (�; m) =
∑

(m1,m2 )=m

∫
e(|M(m)|−|M(m1 )|−|M(m2 )|)�

× [sgn(M(m1)) − sgn(M(m2))]

× f (�; m1) f (�; m2)d�. (A3)

The term |M(m)| − |M(m1)| − |M(m2)| is always nonpos-
itive and, thus, together with the induction hypothesis, the
integrand is of the form discussed above. Together with the
starting condition, the coefficient function is of the form

f (�; m) = P0(�; m) +
∑
μ�1

Pμ(�; m)e−μ�. (A4)

Band diagonality. To say that the flowing operator M(�)
is band diagonal during the flow means that |M(m)| > εmax

implies F (�; m) = 0. This threshold value εmax must be
independent on � or the order. Having this property fulfilled is
not necessary but computationally desired because it reduces
the number of nonzero coefficient functions. Here we prove it
for Hermitian operators, where the threshold value εmax is the
largest element of E . Band diagonality does not hold when
using the complex signum function (5); we will not show that
here.

It suffices to prove by induction that M(m) > εmax im-
plies that f (�; m) = 0, which implies per definition that
F (�; m) = 0. The first-order contributions are trivially band
diagonal, which is our induction base case. As an induc-
tion hypothesis, we assume that the statement holds for all
m with |m| < k. Now let m be arbitrary with |m| = k and
M(m) > εmax positive. According to our induction hypoth-
esis, for Eq. (12) only terms with |M(m1)|, |M(m2)| � εmax

contribute, as |m1|, |m2| < k. Thus, we know that M(m1) and
M(m2) are positive due to εmax < M(m) = M(m1) + M(m2).
Therefore, the term does not contribute at all because of
the prefactor containing sgn(M(m1)) − sgn(M(m2)) = 0. We
conclude with Eq. (12) that ∂� f (�; m) = 0 and with the
starting conditions also f (�; m) = 0 and F (�; m) = 0. The
same holds analogously for arbitrary m with |m| = k and
M(m) < −εmax negative.

Broad-step signum function. The shown proofs were made
for the generator defined with the generalized sign function in
Eq. (5). For the broad-step signum function sgnD, introduced
in Sec. II C, the proofs can be performed in an analogous way.
It turns out that convergence is still preserved, while the block
diagonality is no longer fulfilled, as [Q,Meff ] �= 0 in general.
Instead, we can prove the softened property that Cm = 0 for
|M(m)| > D, again showing decoupling of subspaces with
sufficient distant eigenvalues. Lastly, the band diagonality is
not fulfilled, again increasing the needed number of calcula-
tions, analogous to the non-Hermitian case.

[1] J. P. Dowling and G. J. Milburn, Quantum technology: The
second quantum revolution, Phil. Trans. R. Soc. A 361, 1655
(2003).

[2] A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J.
Eisert, D. Esteve, N. Gisin, S. J. Glaser, F. Jelezko, S. Kuhr,
M. Lewenstein, M. F. Riedel, P. O. Schmidt, R. Thew, A.
Wallraff, I. Walmsley, and F. K. Wilhelm, The quantum tech-
nologies roadmap: A European community view, New J. Phys.
20, 080201 (2018).

[3] S. Banerjee, Open Quantum Systems (Springer, Singapore,
2018).

[4] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2007).

[5] R. Cleve and C. Wang, Efficient quantum algorithms for sim-
ulating Lindblad evolution, in ICALP 2017, LIPIcs, Vol. 80
(Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 2017), pp. 17:1–17:14.

[6] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
Hermitian physics and PT symmetry, Nat. Phys. 14, 11 (2018).

[7] H. Y. Ling and B. Kain, Topological study of a Bogoliubov–de
Gennes system of pseudo-spin-1/2 bosons with conserved mag-
netization in a honeycomb lattice, Phys. Rev. A 105, 023319
(2022).

[8] L. Lenke, M. Mühlhauser, and K. P. Schmidt, High-order series
expansion of non-Hermitian quantum spin models, Phys. Rev.
B 104, 195137 (2021).

[9] A. J. Daley, Quantum trajectories and open many-body quan-
tum systems, Adv. Phys. 63, 77 (2014).

[10] S. R. White and A. E. Feiguin, Real-Time Evolution using the
Density Matrix Renormalization Group, Phys. Rev. Lett. 93,
076401 (2004).

[11] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Matrix Product
Density Operators: Simulation of Finite-Temperature and Dis-
sipative Systems, Phys. Rev. Lett. 93, 207204 (2004).

[12] M. Zwolak and G. Vidal, Mixed-State Dynamics in One-
Dimensional Quantum Lattice Systems: A Time-Dependent
Superoperator Renormalization Algorithm, Phys. Rev. Lett. 93,
207205 (2004).

[13] A. Kshetrimayum, H. Weimer, and R. Orús, A simple ten-
sor network algorithm for two-dimensional steady states, Nat.
Commun. 8, 1291 (2017).

[14] J. Jin, A. Biella, O. Viyuela, L. Mazza, J. Keeling, R. Fazio, and
D. Rossini, Cluster Mean-Field Approach to the Steady-State
Phase Diagram of Dissipative Spin Systems, Phys. Rev. X 6,
031011 (2016).

[15] H. Landa, M. Schiró, and G. Misguich, Multistability of Driven-
Dissipative Quantum Spins, Phys. Rev. Lett. 124, 043601
(2020).

[16] G. Schmiedinghoff and G. S. Uhrig, Efficient flow equations for
dissipative systems, SciPost Phys. 13, 122 (2022).

[17] L. Rosso, F. Iemini, M. Schiró, and L. Mazza, Dissipative flow
equations, SciPost Phys. 9, 091 (2020).

[18] R. R. P. Singh, M. P. Gelfand, and D. A. Huse, Ground States of
Low-Dimensional Quantum Antiferromagnets, Phys. Rev. Lett.
61, 2484 (1988).

[19] M. Gelfand, R. Singh, and D. Huse, Perturbation expansions for
quantum many-body systems, J. Stat. Phys. 59, 1093 (1990).

013323-10

https://doi.org/10.1098/rsta.2003.1227
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1038/nphys4323
https://doi.org/10.1103/PhysRevA.105.023319
https://doi.org/10.1103/PhysRevB.104.195137
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1038/s41467-017-01511-6
https://doi.org/10.1103/PhysRevX.6.031011
https://doi.org/10.1103/PhysRevLett.124.043601
https://doi.org/10.21468/SciPostPhys.13.6.122
https://doi.org/10.21468/SciPostPhys.9.6.091
https://doi.org/10.1103/PhysRevLett.61.2484
https://doi.org/10.1007/BF01334744


SERIES EXPANSIONS IN CLOSED AND OPEN QUANTUM … PHYSICAL REVIEW A 108, 013323 (2023)

[20] B. G. Nickel, in Phase Transitions Cargese 1980, edited by M.
Levy, J. C. Le Guillou, and J. Zinn-Justin (Plenum Press, New
York, 1982).

[21] M. P. Gelfand, Series expansions for excited states of quantum
lattice models, Solid State Commun. 98, 11 (1996).

[22] S. Trebst, H. Monien, C. J. Hamer, Z. Weihong, and R. R. P.
Singh, Strong-Coupling Expansions for Multiparticle Excita-
tions: Continuum and Bound States, Phys. Rev. Lett. 85, 4373
(2000).

[23] W. Zheng, C. J. Hamer, R. R. P. Singh, S. Trebst, and
H. Monien, Linked cluster series expansions for two-particle
bound states, Phys. Rev. B 63, 144410 (2001).

[24] F. Wegner, Flow-equations for Hamiltonians, Ann. Phys. 506,
77 (1994).

[25] J. Oitmaa, C. Hamer, and W. Zheng, Series Expansion
Methods for Strongly Interacting Lattice Models (Cambridge
University Press, Cambridge, 2006).

[26] C. Knetter and G. Uhrig, Perturbation theory by flow equations:
Dimerized and frustrated S = 1/2 chain, Eur. Phys. J. B 13, 209
(2000).

[27] C. Knetter, K. P. Schmidt, and G. S. Uhrig, The structure of
operators in effective particle-conserving models, J. Phys A 36,
7889 (2003).

[28] K. Coester, W. Malitz, S. Fey, and K. P. Schmidt, Quantum
disorder and local modes of the fully-frustrated transverse field
Ising model on a diamond chain, Phys. Rev. B 88, 184402
(2013).

[29] E. Wagner and W. Brenig, Two-triplon excitations of the Kitaev-
Heisenberg bilayer, Phys. Rev. B 104, 115123 (2021).

[30] J. Vidal, R. Thomale, K. P. Schmidt, and S. Dusuel, Self-duality
and bound states of the toric code model in a transverse field,
Phys. Rev. B 80, 081104(R) (2009).

[31] M. Mühlhauser, M. R. Walther, D. A. Reiss, and K. P. Schmidt,
Quantum robustness of fracton phases, Phys. Rev. B 101,
054426 (2020).

[32] M. Mühlhauser, K. P. Schmidt, J. Vidal, and M. R. Walther,
Competing topological orders in three dimensions, SciPost
Phys. 12, 069 (2022).

[33] S. Fey, S. C. Kapfer, and K. P. Schmidt, Quantum Criticality of
Two-Dimensional Quantum Magnets with Long-Range Interac-
tions, Phys. Rev. Lett. 122, 017203 (2019).

[34] P. Adelhardt, J. A. Koziol, A. Schellenberger, and K. P.
Schmidt, Quantum criticality and excitations of a long-range
anisotropic XY chain in a transverse field, Phys. Rev. B 102,
174424 (2020).

[35] M. Hörmann, P. Wunderlich, and K. P. Schmidt, Dynamic
Structure Factor of Disordered Quantum Spin Ladders, Phys.
Rev. Lett. 121, 167201 (2018).

[36] M. Hörmann and K. P. Schmidt, Dynamic structure fac-
tor of Heisenberg bilayer dimer phases in the presence of
quenched disorder and frustration, Phys. Rev. B 102, 094427
(2020).

[37] K. Coester and K. P. Schmidt, Optimizing linked-cluster
expansions by white graphs, Phys. Rev. E 92, 022118
(2015).

[38] H. Krull, N. A. Drescher, and G. S. Uhrig, Enhanced pertur-
bative continuous unitary transformations, Phys. Rev. B 86,
125113 (2012).

[39] S. D. Głazek and K. G. Wilson, Renormalization of Hamiltoni-
ans, Phys. Rev. D 48, 5863 (1993).

[40] M. Powalski, G. S. Uhrig, and K. P. Schmidt, Roton Mini-
mum as a Fingerprint of Magnon-Higgs Scattering in Ordered
Quantum Antiferromagnets, Phys. Rev. Lett. 115, 207202
(2015).

[41] M. Powalski, K. P. Schmidt, and G. Uhrig, Mutually attract-
ing spin waves in the square-lattice quantum antiferromagnet,
SciPost Phys. 4, 001 (2018).

[42] T. Fischer, S. Duffe, and G. S. Uhrig, Adapted continuous
unitary transformation to treat systems with quasiparticles of
finite lifetime, New J. Phys. 12, 033048 (2010).

[43] N. A. Drescher, T. Fischer, and G. S. Uhrig, Truncation errors
in self-similar continuous unitary transformations, Eur. Phys. J.
B 79, 225 (2011).

[44] A. Mielke, Flow equations for band-matrices, Eur. Phys. J. B 5,
605 (1998).

[45] C. Knetter, Perturbative continuous unitary transformations:
Spectral properties of low dimensional spin systems, Ph.D.
thesis, Universität zu Köln, 2003.

[46] J. Dorier, K. P. Schmidt, and F. Mila, Theory of Magnetization
Plateaux in the Shastry-Sutherland Model, Phys. Rev. Lett. 101,
250402 (2008).

[47] L. Lenke, A. Schellenberger, and K. P. Schmidt,
FAU-kpslab/pcstpp_CoefficientGenerator: v1.0.0 (2023),
doi:10.5281/zenodo.7866584.

[48] T. Matsubara and H. Matsuda, A lattice model of liquid helium,
Prog. Theor. Phys. 16, 416 (1956).

[49] C. Li, G. Zhang, X. Z. Zhang, and Z. Song, Conventional
quantum phase transition driven by a complex parameter in a
non-Hermitian PT − symmetric Ising model, Phys. Rev. A 90,
012103 (2014).

[50] M. Takahashi, Half-filled Hubbard model at low temperature,
J. Phys. C: Solid State Phys. 10, 1289 (1977).

[51] L. Lenke, A. Schellenberger, and K. P. Schmidt, Raw data
to “Series expansions in closed and open quantum many-
body systems with multiple quasiparticle types” (2023),
doi:10.5281/zenodo.7801684.

013323-11

https://doi.org/10.1016/0038-1098(96)00051-8
https://doi.org/10.1103/PhysRevLett.85.4373
https://doi.org/10.1103/PhysRevB.63.144410
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1007/s100510050026
https://doi.org/10.1088/0305-4470/36/29/302
https://doi.org/10.1103/PhysRevB.88.184402
https://doi.org/10.1103/PhysRevB.104.115123
https://doi.org/10.1103/PhysRevB.80.081104
https://doi.org/10.1103/PhysRevB.101.054426
https://doi.org/10.21468/SciPostPhys.12.2.069
https://doi.org/10.1103/PhysRevLett.122.017203
https://doi.org/10.1103/PhysRevB.102.174424
https://doi.org/10.1103/PhysRevLett.121.167201
https://doi.org/10.1103/PhysRevB.102.094427
https://doi.org/10.1103/PhysRevE.92.022118
https://doi.org/10.1103/PhysRevB.86.125113
https://doi.org/10.1103/PhysRevD.48.5863
https://doi.org/10.1103/PhysRevLett.115.207202
https://doi.org/10.21468/SciPostPhys.4.1.001
https://doi.org/10.1088/1367-2630/12/3/033048
https://doi.org/10.1140/epjb/e2010-10723-6
https://doi.org/10.1007/s100510050485
https://doi.org/10.1103/PhysRevLett.101.250402
https://doi.org/10.5281/zenodo.7866584
https://doi.org/10.1143/PTP.16.416
https://doi.org/10.1103/PhysRevA.90.012103
https://doi.org/10.1088/0022-3719/10/8/031
https://doi.org/10.5281/zenodo.7801684

