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Bose gas on a two-leg ladder exhibits an interesting topological phase. We show the presence of a bosonic
symmetry-protected-topological (SPT) phase protected by Z2 × Z2 symmetry. This symmetry leads to Z4 frac-
tional quantization of the Z4 Berry phase, which is a topological order parameter to identify the bulk. Using the
Z4 Berry phase, we show that the interacting bosonic system possesses rich topological phases depending on the
particle density and strength of interaction. Based on the bulk-edge correspondence, each edge state of the SPT
phases is discussed in relation to the Z4 Berry phases. In particular, we have found an intermediate phase that
is not adiabatically connected to a simple adiabatic limit that possesses unconventional edge states, which we
numerically demonstrate by employing the density-matrix renormalization-group algorithm.
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I. INTRODUCTION

Synthetic dimension in a cold-atom system constituted by
internal states of the atom offers a promising platform on
which to simulate and investigate various states of matter [1].
An interesting lattice model has already been implemented,
that is, a two- or three-leg ladder system with an artifi-
cial gauge field [2–7]. In cold-atom experiments, interacting
systems can be implemented and their strength can be con-
trollable [8], e.g., Feshbach resonance and using dipole-dipole
interactions between dipolar atoms [9,10]. In particular, such
a system with a specific lattice geometry can be used as a
quantum simulator to realize rich topological states of matter.

In condensed-matter theory, the symmetry-protected-
topological (SPT) phase is now an attractive state as one
of topological states of matter [11]. So far, various types of
SPT phases have been discovered and also a classification
of the SPT phases has been proposed for some groups of
systems. The classification for free-fermion systems has been
explicitly given [12–14] (now called the tenfold way) and also
for interacting bosonic systems. This is listed as a catalog of
(bosonic) SPT phases by group cohomology [15,16]. These
classification schemes showed possible SPT phases, but a
demonstration of concrete examples in realistic systems is an
ongoing problem. In this work we propose a specific concrete
example of an interacting bosonic SPT phase of a two-leg
ladder system, which is feasible in real experiments.

We consider a Bose-Hubbard model with two internal
states of atoms, which can be regarded as a two-leg ladder
system. Its experimental realization may be easier than that of
a fermionic one since the temperature of the fermionic system
in an optical lattice is somewhat high and it is still a chal-
lenging problem to observe a complete quantum long-range
order, such as magnetization [17]. We assume that the bosonic
model on the two-leg ladder includes on-site and vertical
link interactions (interactions between two different internal
states) and also a hopping dimerization. Then a specific type
of bosonic interacting SPT phase appears, characterized by

fractional quantization of the Z4 Berry phase. Due to the
two-leg ladder geometry, the system has a key symmetry to
induce the SPT phase.

We find that the key symmetry is of the Z2 × Z2 type, which
consists of two types of reflection symmetry combined with
time reversal (complex conjugation). In this work we show
that the ZN Berry phase [18–32] can be used as a topological
order parameter to characterize the bosonic SPT phase. The
ZN Berry phase allows identifying rich topological phases and
is applicable to both noninteracting and interacting systems,
which is especially efficient for interacting bosonic systems.
We analytically show that the Z4 Berry phase is fractionally
quantized by the presence of the Z∗

2 × Z∗
2 equivalence, as

γ = 2πn/4 mod2π (n = 1, 2, 3, 4). The quantization is pro-
tected as long as the gap is open, even under a local twist
with the symmetry constraints. If the state is adiabatically
connected to a set of simple local clusters (a plaquette), we
may expect the ground state is short-range entangled and
topological properties are reduced to those of the simple one,
that is, we can determine the distinct value n of the Z4 Berry
phase. In this work we numerically demonstrate the presence
of the interacting bosonic SPT phases characterized by the
fractional quantization of the Z4 Berry phase coming from
the Z∗

2 × Z∗
2 equivalence. Due to the Bose-Hubbard nature,

we find rich SPT phases depending on the mean density and
strength of interaction. Furthermore, a reduction of the equiv-
alence Z∗

2 × Z∗
2 → Z∗

2 is demonstrated by the quantized Berry
phases of Z4 → Z2. Also, an eccentric intermediate phase,
which is not adiabatically connected to the simple clusters,
is demonstrated.

In relation to the Berry phase of the bulk SPT phase, we
numerically discuss edge states based on the bulk-edge corre-
spondence by using the density-matrix renormalization-group
(DMRG) algorithm. We will show some case studies. Depend-
ing on the type of edges, mean density, and chemical potential,
the density profile around the edges significantly varies, which
indicates the appearance of unconventional edge states. In
particular, we numerically find the clear edge density profile,
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FIG. 1. Labeling of the sites and the lattice structure of the model
with periodic boundary condition. Symmetry axes associated with
the reflections Ux and Uy are also shown. Note that the open system
by cutting the link at the origin [Jh = 0 at the (− 1

2 , ± 1
2 )-(+ 1

2 , ± 1
2 )

links] also respects these symmetries, which guarantees the bulk-
edge correspondence associated with the Z4 Berry phase.

which can be easily identified by higher or lower density than
that of the bulk. The appearance of the edge density profile is
favorable for the experimental detection of the bosonic SPT
phases.

The rest of this paper is organized as follows. In Sec. II
we introduce the target model. In Sec. III we analytically
show the quantization of the Z4 Berry phase by the Z∗

2 × Z∗
2

equivalence. In Sec. IV we numerically investigate the pres-
ence of the SPT phases in the model. In Sec. V we study the
system with an open boundary and numerically investigate the
presence of the edge state corresponding to the SPT phase in
the bulk. We observe the presence of the edge state where the
bulk of the system is in the Z2 × Z2 SPT phase. Section VI
provides a summary and a brief discussion of prospective
study.

II. MODEL

We consider a Bose-Hubbard model on two-leg ladder as
shown in Fig. 1. We start by considering the bosonic operator
b jx, jy with periodic or open boundary condition with

jx ≡ 1
2 , 3

2 . . . , L − 1
2 , mod L (even),

jy ≡ − 1
2 , 1

2 , mod 2. (1)

The Hamiltonian with the periodic boundary condition is
given by (see Fig. 1)

HBHM =
L/2−1∑

j=0

(Hj + Hj,int ), (2)

where.

Hj = H�
j + H site

j , (3)

H�
j = −J1

v b†
2 j−1/2,−1/2b2 j−1/2,+1/2 − J2

v b†
2 j+1/2,+1/2b2 j+1/2,−1/2−J1

h b†
2 j+1/2,−1/2b2 j−1/2,−1/2 − J2

h b†
2 j−1/2,+1/2b2 j+1/2,+1/2 + H.c.,

(4)

H site
j =

∑
jx=2 j±1/2

[( ∑
jy=±1/2

U

2
n jx, jy (n jx, jy − 1) − μn jx, jy

)
+ Uin

2
n jx,+1/2n jx,−1/2

]
, (5)

Hj,int = −Jint

∑
jy=±1/2

b†
2 j−1/2, jy

b2( j+1)−1/2, jy + H.c., (6)

where n jx, jy = b†
jx, jy

b jx, jy ; L is the ladder length; Hj is a
Hamiltonian at the jth plaquette and Jint connects them;
J1
v , J2

v , J1
h , J2

h ∈ R are hopping amplitudes as shown in Fig. 1;
μ is a chemical potential; U is the on-site interaction (be-
tween the same internal states); and Uin represents interactions
between the upper and lower chains. If the upper and lower
chains are created by a different internal state, the atom is in a
realistic experimental situation such as a synthetic ladder opti-
cal lattice [2,3]. The Uin term can be regarded as an interaction
between different internal states and the J1,2

v hopping is Rabi
coupling. Note that without the synthetic ladder the target
system is also feasible in a real experimental system; such
a bosonic plaquette optical lattice [33,34] and also a model
with synthetic gauge fields have been studied theoretically
[35,36]. In what follows, we set U = Uin and μ = U/2 and a
mean density n̄ = 1

2L

∑
jx, jy

〈n jx, jy〉 is used to specify the filling
of the system. In most of our work, we focus on a strongly
correlated regime |U | > |J1(2)

h |, |J1(2)
v |, |Jint|, practically U =

20, and consider soft-core bosons, where we expect that the
ground state is always unique-gapped and also no spontaneous
symmetry breaking occurs.

III. SYMMETRY PROTECTION AND FRACTIONAL
QUANTIZATION Z4 BERRY PHASE

We introduce a Z∗
2 × Z∗

2 equivalence of the Berry phases
associated with Z2 × Z2 symmetry (two reflections) of the
ladder due to the hopping pattern and the form of the inter-
action. This Z2 × Z2 symmetry can be employed to define
a specific type of SPT phases. We then introduce a Berry
phase by setting local twists on links. This Z∗

2 × Z∗
2 equiv-

alence leads to the Z4 fractional quantization of the Berry
phase.

In what follows, we will explain the Z∗
2 × Z∗

2 equivalence
and introduce the Z4 Berry phase. The physical origin of the
Z4 quantization is special for the ladder compared with the
previous studies [18–31].

A. Z2 × Z2 symmetry

The symmetry constraint to protect a SPT phase we discuss
is a combination of two reflections with time reversal. We
consider two unitary operators Ux and Uy for reflections shown
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in Fig. 1,

UxHBHMU †
x = UyHBHMU †

y = HBHM, (7)

where two unitary operators Ux and Uy operate for the boson
operators as

Uxbjx, jyU
†
x = b− jx, jy , U 2

x = 1,

Uybjx, jyU
†
y = b jx,− jy , U 2

y = 1. (8)

Note that this symmetry protection is respected for the
periodic boundary condition and also the open boundary
condition by cutting the link at the origin [Jh = 0 at the
(− 1

2 ,± 1
2 )-(+ 1

2 ,± 1
2 ) link]. It can guarantee the bulk-edge cor-

respondence associated with Z4 Berry phase as discussed later.

B. Quantized Berry phase as a topological
local order parameter

Let us introduce the quantized Berry phase for a generic
system by introducing a set of local twists as a parameter
set. This type of quantized Berry phase is a topolog-
ical order parameter of the short-range entangled state
[18,19,21,23,28,37]. The generic strategy is as follows. By
introduction of the local twists as a set of parameters for
the Hamiltonian, the Berry phase is defined for a many-body
ground state. Although the Berry phase may take any value
generically, one may impose symmetry constraints (with the
twists), which induces quantization of the Berry phase. Due
to the quantization, this quantized Berry phase cannot be
modified by a small but finite perturbation. This implies that
the quantized Berry phase is topologically stable and works
as a local topological order parameter of the bulk. Since we
need an energy gap between the ground state (or set of ground
states as a multiplet) and the other states, this topological order
parameter is only well defined for the gapped ground state. It
picks up responses of the many-body ground state to the local
twists as perturbation. If the system is adiabatically modified
(without gap closing) and decoupled into a set of local clus-
ters, the system is short-range entangled. Since introduction
of a local gauge transformation of the bosonic, fermionic, or
spin operators inside some specific cluster does not affect the
other clusters and induces twists only inside, it characterizes
the locality. Using the twists, a Berry phase of the cluster can
be defined assuming the ground state of the cluster is unique.
Apparently, it is also considered as a Berry phase of the total
system (although the cluster is decoupled). Also, its value is
easily evaluated since the twists are gauged out (an example
is given below). Using the same twists, even with finite in-
tercluster coupling, one may define a Berry phase associated
with the many-body ground state. Note that the twists with
finite intercluster coupling cannot be gauge out. In general,
this Berry phase may take any value in modulo 2π . However,
due to symmetries the system possesses with the twists, the
Berry phase may need to satisfy several constraints, which
may result in the quantization. This is the quantized Berry
phase and then it works as a topological order parameter of
the system. Especially when the intercluster coupling is finite
but weak enough, this quantized Berry phase is a topological
order parameter of the short-range entangle state.

C. Z4 fractionalization of the ladder

Following this strategy, let us define the Z4 Berry phase for
the periodic boundary condition by introducing a set of four
twists � = (θ1, θ2, θ3, θ4) only in the plaquette at the origin
( j = 0) as shown in Figs. 1 and 2. The modified �-dependent
Hamiltonian HBHM(�) is given by replacing H�

0 → H�
0 (�),

H�
0 (�) = −J1

v e−iθ1 b†
2b1 − J1

h e−iθ2 b†
3b2

− J2
v e−iθ3 b†

4b3 − J2
h e−iθ4 b†

1b4 + H.c., (9)

where b1 = b−1/2,+1/2, b2 = b−1/2,−1/2, b3 = b+1/2,−1/2, and
b4 = b+1/2,+1/2.

By imposing a constraint θ1 + θ2 + θ3 + θ4 ≡ 0 (mod2π ),
this set of twists is specified by the point in the 3-torus, T 3 =
{(θ1, θ2, θ3, θ4) | θ1 + θ2 + θ3 + θ4 ≡ 0, θi ∈ R, mod2π}, as
shown in Fig. 3. We use this extended notation using four
parameters to specify the 3-torus, which is useful to discuss
the Z4 symmetry of the ladder (discussed below).

Identifying the equivalent points, any path connecting the
vertices Pi (i = 0, 1, 2, 3) defines loops � as shown in Fig. 3.
Then assuming the ground state is unique (the gap remains
open) on the loop, the Berry phase is defined as

iγ� =
∫

�

〈ψ |dψ〉 ≡
∫ s f

si

ds〈ψ (s)| d

ds
|ψ (s)〉, (10)

where |ψ (�)〉 is a ground state of HBHM(�)
[HBHM(�)|ψ (�)〉 = |ψ (�)〉E (�)] and s is any parameter
that specifies the loop, � = {�(s) | s ∈ [si, s f ]}. The Z4 Berry
phase �α is defined by four special paths as

�0G1 = −→
P0G + −→

GP1,

�1G2 = −→
P1G + −→

GP2,

�2G3 = −→
P2G + −→

GP3,

�3G0 = −→
P3G + −→

GP0, (11)

where

−→
P0G =

{
(θ, θ, θ,−3θ )

∣∣∣∣ θ ∈
(

0,
2π

4

)}
,

−→
P1G =

{
(−3θ, θ, θ, θ )

∣∣∣∣ θ ∈
(

0,
2π

4

)}
,

−→
P2G =

{
(θ,−3θ, θ, θ )

∣∣∣∣ θ ∈
(

0,
2π

4

)}
,

−→
P3G =

{
(θ, θ,−3θ, θ )

∣∣∣∣ θ ∈
(

0,
2π

4

)}
. (12)

As for the twisted Hamiltonian, the reflections Ux and Uy,
which make the untwisted Hamiltonian invariant, operate as
(see Fig. 2)

UxHBHM
(
θ1, θ2, θ3, θ4; J1

v , J2
v , J1

h , J2
h

)
U −1

x

= HBHM
(−θ3,−θ2,−θ1,−θ4; J2

v , J1
v , J1

h , J2
h

)
,

UyHBHM
(
θ1, θ2, θ3, θ4; J1

v , J2
v , J1

h , J2
h

)
U −1

y

= HBHM
(−θ1,−θ4,−θ3,−θ2; J1

v , J2
v , J2

h , J1
h

)
, (13)
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FIG. 2. Two reflections for the Hamiltonian HBHM after introducing the twists in a single plaquette at j = 0.

where the relevant parameter dependence is explicitly shown.
If J1

v = J2
v , the twisted Hamiltonian on the loop is mapped as

	xHBHM(�)|−−→
P0G

	−1
x = HBHM|−−→

P0G
(�),

	xHBHM(�)|−−→
P1G

	−1
x = HBHM|−−→

P3G
(�),

	xHBHM(�)|−−→
P2G

	−1
x = HBHM|−−→

P2G
(�),

	xHBHM(�)|−−→
P3G

	−1
x = HBHM|−−→

P1G
(�), (14)

where

	x = UxK, 	y = UyK, (15)

FIG. 3. Three-dimensional parameter space in which
to define the Z4 Berry phases. By using an extended
notation, the point in the space is specified by (θ1, θ2, θ3, θ4),
where θ1 + θ2 + θ3 + θ4 ≡ 0 (mod2π ), P0 = (0, 0, 0, 0),
P1 = (2π, 0, 0,−2π ), P2 = (0, 2π, 0, −2π ), P3 = (0, 0, 2π, −2π ),
and G = (2π/4, 2π/4, 2π/4, 2π/4). Identifying the equivalent
points P0, P1, P2, and P3, this is a 3-torus T 3.

which implies

	xHBHM(�)|�0G1	
−1
x = HBHM|�0G3 (�),

	xHBHM(�)|�1G2	
−1
x = HBHM|�3G2 (�),

	xHBHM(�)|�2G3	
−1
x = HBHM|�2G1 (�),

	xHBHM(�)|�3G0	
−1
x = HBHM|�1G0 (�). (16)

Note that, in general, as for the parameter-independent an-
tiunitary operator 	 = UK , where UU † = 1, the Berry con-
nection of the state |ψ	〉 = 	|ψ〉 is 〈ψ	|dψ	〉 = −〈ψ |dψ〉
since 〈ψ |dψ〉 is pure imaginary. Then using the abbreviations
γ0 ≡ γ�0G1 , γ1 ≡ γ�1G2 , γ2 ≡ γ�2G3 , and γ3 ≡ γ�3G0 , we further
write

−γ0 ≡ γ0 + γ1 + γ2,

−γ1 ≡ −γ2,

−γ2 ≡ −γ1,

−γ3 ≡ −γ0. (17)

By using the apparent relation γ0 + γ1 + γ2 + γ3 ≡ 0 mod2π

due to the cancellation of the four paths, the relations above
are summarized as

γ0 ≡ γ3, (18)

γ1 ≡ γ2. (19)

This naturally implies a partial quantization

γi + γ j = 0, π (mod2π ) (20)

for any i �= j except (i, j) = (0, 3), (1, 2).
Similarly, if J1

h = J2
h , we have the relations

	yHBHM(�)|−−→
P0G

	−1
y = HBHM|−−→

P2G
(�),

	yHBHM(�)|−−→
P1G

	−1
y = HBHM|−−→

P1G
(�),

	yHBHM(�)|−−→
P2G

	−1
y = HBHM|−−→

P0G
(�),

	yHBHM(�)|−−→
P3G

	−1
y = HBHM|−−→

P3G
(�). (21)
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This implies

	yHBHM(�)|�0G1	
−1
y = HBHM|�2G1 (�),

	yHBHM(�)|�1G2	
−1
y = HBHM|�1G0 (�),

	yHBHM(�)|�2G3	
−1
y = HBHM|�0G3 (�),

	yHBHM(�)|�3G0	
−1
y = HBHM|�3G2 (�) (22)

and then

−γ0 ≡ −γ1,

−γ1 ≡ −γ0,

−γ2 ≡ γ0 + γ1 + γ2 ≡ −γ3,

−γ3 ≡ −γ2, (23)

which are summarized as

γ0 ≡ γ1, (24)

γ2 ≡ γ3. (25)

This naturally implies a partial quantization

γi + γ j = 0, π (mod2π ) (26)

for any i �= j except (i, j) = (0, 1), (2, 3).
If the ladder satisfies the full Z2 × Z2 symmetries, J1

v =
J2
v and J1

h = J2
h , supplemented with the constraint γ0 + γ1 +

γ2 + γ3 = 0,

γ0 ≡ γ1 ≡ γ2 ≡ γ3 = 2π
n

4
, n ∈ Z (mod2π ). (27)

This is the Z4 quantization of the ladder. We call it the Z4 Berry
phase [21,32].

D. Plaquette limit

The quantized values (20), (26), and (27) are fixed ex-
plicitly if the system is adiabatically connected to a set of
decoupled plaquettes (Jint = 0). As for the Z4 Berry phase,
it is enough to consider a single plaquette in this case. The
twists � are gauged out (or they are induced) by the gauge
transformation [see Eq. (9)]

HBHM(�) = U�HBHMU −1
� if Jint = 0, (28)

U� = e−iφ1n1 e−iφ2n2 e−iφ3n3 e−iφ4n4 , (29)

where U�b jU
†
� = e+iφ j b j ( j = 1, 2, 3, 4), φ1(�) = 0,

φ2(�) = θ1, φ3(�) = θ1 + θ2, and φ4(�) = θ1 + θ2 + θ3,
which implies that |ψ (�)〉 = U�|ψ (0)〉. Noting that
[ni,U�] = 0, the Berry connection and the Berry phase
are given as

〈ψ |dψ〉 = 〈ψ (0)|U †
�dU�|ψ (0)〉 = −i

4∑
i=1

dφi〈ni〉0,

γ� = −i
∫

�

〈ψ |dψ〉 =
∑

i

〈ni〉0�φi, (30)

where 〈ni〉0 = 〈ψ (0)|ni|ψ (0)〉 and �φi = φi(�(s))|s f

si
. As for

the canonical loops, we have

γ0 = −2π (〈n2〉0 + 〈n3〉0 + 〈n4〉0),

γ1 = 2π〈n2〉0,

γ2 = 2π〈n3〉0,

γ3 = 2π〈n4〉0. (31)

We assume that the ground state of the total system (and thus
that of the plaquette as well) is unique. Then the total number
of bosons in the plaquette is a positive integer M = ∑4

i=1〈ni〉0.
When J1

v = J2
v , due to the Z2 invariance by Ux, 〈n1〉0 =

〈n4〉0 and 〈n2〉0 = 〈n3〉0. This implies

γ0 = −2π (M − 〈n1〉0) ≡ 2π〈n1〉0

= 2π〈n4〉0 = γ3 (mod2π ),

γ1 = γ2. (32)

Also, due to this Z2, 〈n1〉0 + 〈n2〉0 = 〈n3〉0 + 〈n4〉0 = M/2,
which implies the partial quantization

γ0 + γ1 ≡ γ2 + γ3 ≡ M

2
(mod2π ). (33)

Similarly, when J1
h = J2

h , due to the Z2 invariance by Uy,
〈n1〉0 = 〈n2〉0 and 〈n3〉0 = 〈n4〉0. This implies

γ0 = −2π (M − 〈n1〉0) ≡ 2π〈n1〉0

= 2π〈n2〉0 = γ1 (mod2π ),

γ2 = γ3. (34)

Also 〈n1〉0 + 〈n4〉0 = 〈n2〉0 + 〈n3〉0 = M/2, which implies
the partial quantization

γ0 + γ3 ≡ γ1 + γ2 ≡ M

2
(mod2π ). (35)

Then when the system is Z2 × Z2 invariant, J1
v = J2

v and J1
h =

J2
h and we have the Z4 quantization

γ0 ≡ γ1 ≡ γ2 ≡ γ3 ≡ M

4
(mod2π ). (36)

These quantized Berry phases are adiabatic invariants.

E. Another Z2 Berry phase

We also consider a set of twists in H0 by assuming the Z2

symmetry due to Ux, that is, J1
v = J2

v = Jv as

H�
0 (θ ) = −Jvb†

2b1 − J1
h e−iθ b†

3b2

− Jvb†
4b3 − J2

h e−iθ b†
1b4 + H.c. (37)

We also consider a Berry phase γ Z2 associated with this set of
twists. Due to the Z2 symmetry, it is quantized into Z2 as

γ Z2 ≡ 0, π (mod2π ). (38)

This is due to the symmetry constraint

γ Z2 ≡ −γ Z2 . (39)

A dimer limit (J1
v = J2

v = 0, Jint = 0) is the decoupled limit
for this case:

HBHM(θ ) = UθHBHMU −1
θ if Jv = Jint = 0, (40)

Uθ = e−iθn1 e−iθn3 . (41)
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In this decoupled case,

〈ψ |dψ〉 = 〈ψ (0)|U †
θ dUθ |ψ (0)〉 = −idθ (〈n1〉0 + 〈n3〉0),

γ Z2 = −i
∫

�

〈ψ |dψ〉 = 2π (〈n1〉0 + 〈n3〉0). (42)

Further, 〈n1〉0 = 〈n4〉0 and 〈n2〉0 = 〈n3〉0 due to the Z2 in-
variance by Ux. This implies 〈n1〉0 + 〈n3〉0 = 〈n2〉4 + 〈n3〉0 =
M/2. Then adiabatic continuation to this dimer limit guaran-
tees

γ Z2 ≡ 2π
M

2
≡ πM (mod2π ). (43)

IV. NUMERICAL EVALUATION OF THE Z4 SPT PHASE

In the preceding section we showed the Z4 fractional quan-
tization of the Z4 Berry phase by the Z2 × Z2 symmetry. We
now turn to the numerical demonstration of its fractional
quantization in the Hamiltonian HBHM by using diagonaliza-
tion [38] for various parameter conditions. In the numerical
calculation of the Z4 Berry phase, we employed a discrete
formula shown in Appendix A. The numerical procedure of
the Z4 Berry phase is efficient since it gives a quantized value
even if the discretization step is not so small. The characteriza-
tion of the topological phase by the quantized quantities works
well, as expected from previous works [18–32]. The fractional
quantization of the Z4 Berry phase signals the presence of the
bulk SPT phase protected by the Z2 × Z2 symmetry.

In what follows, we set J1
v = J2

v = Jv and J1
h = J2

h = Jh.
We introduce a dimerization parameter δJ as Jint = 1 − δJ ,
with Jh = δJ , and set Jv = 1. This setting preserves the Z2 ×
Z2 symmetry. We focus on U = 20 and consider soft-core
bosons.

Varying δJ for n̄ = 0.25, 0.5, and 0.75, the Z4 Berry phase
behaves as shown in Fig. 4(a). For δJ > 0.5 and n̄ = 0.25 and
0.75, we observe the fractional quantizations γ0/2π = 1

4 and
3
4 and the Z4 Berry phase captures clear topological phase
transitions at δJ = 0.5. On the other hand, for n̄ = 0.5, the
finite fractional quantization γ0/2π = 2

4 appears even for a
finite δJ . The reason is that two dimer states residing on Jv

links on a plaquette are adiabatically connected to a plaquette
cluster state. These results of the fractional quantization signal
the presence of the bulk SPT phases of the Z2 × Z2 symmetry.
Also note that the quantization value of the Z4 Berry phase
is related to the mean density γ0/2π = n̄, which is expected
when considering a decoupled plaquette limit.

We then calculate the Z2 Berry phase. Since the model of
HBHM has inversion symmetry, the Z2 Berry phase can capture
a topological phase transition from γ Z2 = 0 to γ Z2 = π [23].
Figure 4(b) shows the behavior of the Z2 Berry phase. We ob-
serve that for the n̄ = 0.25 and 0.75 cases, the Z2 Berry phase
characterizes a topological phase transition and its topological
phase, but for n̄ = 0.5 the Z2 Berry phase does not capture the
presence of the bulk SPT phase.

We observe the effects of the interaction U . The Z4 Berry
phase exhibits an interesting behavior for n̄ = 0.75, as shown
in Fig. 4(c). While varying δJ we observe an intermediate
plateau phase with γ0/2π = 1

2 for a moderate U and δJ;
this behavior is specific to the bosonic system [39,40]. This
intermediate phase we find is interesting in that this state is

FIG. 4. (a) Behavior of the Z4 Berry phase for various mean
densities with U = 20. (b) Behavior of the Z2 Berry phase for various
mean densities with U = 20. (c) Behavior of the Z4 Berry phase
for various U with n̄ = 0.75. In the numerical diagonalization, the
maximum occupation number of the boson on a site is truncated up
to 4. For U 	 1, a superfluid phase appears where the gap is very
small and the value of the Berry phase is unstable. For all data, we
set L = 8.

not adiabatically connected to the state of the plaquette limit,
which exhibits the γ0/2π = 3

4 state.
Next, while introducing the notion of the SPT phase it is

important to focus on the symmetry of the system. In this
work the Z2 × Z2 symmetry is of our interest. If some system’s
parameter varies with the symmetry intact, we expect the SPT
phase is robust. This reflects the robustness of the quantization
of the Z4 Berry phase. Inversely, without or breaking the
symmetry in the system by some perturbation, the SPT phase
protected by Z2 × Z2 symmetry no longer appears. We verify
it numerically. To observe the importance of the Z2 × Z2 sym-
metry for the presence of the SPT phase, we introduce here a
symmetry-breaking potential (a similar numerical observation
exists in [25]). As a perturbation, we add a potential

Vp = V0

L/2−1∑
j=0

(n2 j−1/2,−1/2 + n2 j+1/2,+1/2), (44)

which breaks the Z2 × Z2 symmetry. We expect that as V0

increases, the fractional quantization of the Z4 Berry phase
collapses. In fact, we verify this expectation as shown in
Fig. 5. For each density n̄, the quantization continuously
breaks down with increasing V0. This result indicates that the
Z2 × Z2 symmetry is crucial for the existence of the SPT phase
in the bosonic system.

An interesting behavior of the Z4 Berry phase in the system
with only Ux symmetry is observed (Uy is broken). From
Eqs. (18) and (19), a certain relation of the Z4 Berry phase
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FIG. 5. Effect of the perturbation breaking the Z2 × Z2 symme-
try. We set δJ = 0.8 and U = 20. The red, blue, and green dashed
lines represent the ideal quantization values γ0/2π = 1

4 , 2
4 , and 3

4 ,
respectively. For all data, we set L = 8.

exists,

γ0 + γ1 = γ2 + γ3. (45)

Combined with the relation
∑

α γα = 0 (mod2π ), we obtain

γ0 + γ1 = 0, π (mod2π ),

γ2 + γ3 = 0, π (mod2π ). (46)

The sum of the two Z4 Berry phases is quantized. We verify
this unconventional quantization. To this end, we modify the
parameters Jint and Jh as

Jint →
{

1 − δJ ≡ J2
int (upper chain)

1 − (δJ − 0.1) ≡ J1
int (lower chain),

(47)

J2
h = δJ, J1

h = δJ − 0.1. (48)

The Hamiltonian HBHM is no longer invariant for the Z2

symmetry Uy and invariant only for the Z2 symmetry Ux. For
n̄ = 0.25, we demonstrate the quantization of the sum of the
Z4 Berry phases. Figure 6 is the numerical result. Depending
on the value of δJ , the sum γ0 + γ1 takes a value of 0 or π

and we observe a clear phase transition, while both γ0 and γ1

take some fractional values for any δJ or do not take the value
of 2π/4. Hence, we confirm the Z2 quantization of the sum of
the Z4 Berry phase as shown in Eq. (46).

In addition, we expect that the bulk SPT phases appear in
the spinless free-fermion system. In Appendix B we confirm

FIG. 6. The δJ dependence of the Z4 Berry phase in the system
with only Ux symmetry. Even for δJ > 0.4, γ0/2π and γ1/2π �= 1

4 .
For all data we set the interaction as U = 20 and L = 8.

FIG. 7. The μ dependence of the total density in the system with
the periodic boundary condition. The total number of the lattice site
is Ltot = 2L = 64 (L = 32) and Ntot is the total particle number. We
set Jint = 0.1, Jh = 0.9, and U = 20.

the presence of the SPT phase, which is also characterized by
the fractional quantization of the Z4 Berry phase.

Before going to the next section, we show the DMRG
calculation allowing the change of the particle number in the
system to consolidate the presence of the bulk SPT phases
as shown in Fig. 5(a). We employ the DMRG algorithm by
using the TeNPy library [41]. In the calculation, we vary the
chemical potential μ in the system with the periodic boundary
condition. The total number of lattice sites is Ltot = 2L and
the total particle number is denoted by Ntot. In the DMRG
calculation throughout this work, we take the bond dimension
to be 80–120, truncate the singular values less than 10−4 in
the update of the matrix product state, and set the conver-
gence condition of the ground-state energy, �E < 10−5Jv .
The results are shown in Fig. 7, for the same parameters as
in Fig. 4(a). We find some plateaus with the total particle
number constant. The results indicate that the density on each
plateau corresponds to that of each bulk SPT phase as shown
in Figs. 7(a) and 7(b); each state on each plateau is gapped and
incompressible. This is reminiscent of the appearance of the
magnetization plateaus [23,42] and the density plateaus of the
Mott insulator in the conventional Bose-Hubbard model [43].

V. EDGE STATES IN BOSONIC SPT PHASES

In general, the bulk-edge correspondence is to read out the
information of the bulk from various edge states for various
forms of the edge. Conversely, if a nontrivial bulk state exists,
then one introduces an edge in the system and some edge state
appears. It is possible to predict the form of the edge state
from inferring what states appear by cutting the decoupled
plaquette in this system.

For the bosonic system in this work, if we believe the
presence of the bulk-edge correspondence, some bosonic edge
state can appear for some edge shape. However, it is difficult
to directly deduce the presence and detailed properties of
the edge state since the bosonic system we are considering
is complex due to the ladder geometry, the presence of the
interactions, the vertical hoppings, and the soft-core boson
nature. It is difficult to identify some symmetries that would
characterize the appearance of edge states as they appear in
free fermions (cf. chiral symmetry). Even in this situation,
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FIG. 8. Schematic image of the introduction of a vertical edge.
This open boundary system is invariant under both Ux and Uy

when we set an experimentally feasible edge shape of interest,
we can confirm at least numerically, on a case-by-case, what
edge states appear. Thus, we perform such a study in the
following.

To detect some edge state, we also employ the DMRG
algorithm [41]. We impose here an open boundary condition
and analyze two cases: a vertical edge case and a diagonal
edge case. For both cases, we employ the simulation allowing
the change of particle number in the system (grand-canonical
ensemble), that is, we vary the chemical potential μ and ob-
serve density properties of both bulk and edges. We expect
that edge states (if they appear) are different from those of a
conventional free-fermion system with a certain topological
phase. In particular, we note that, in general, bosonic systems
with an open boundary do not necessarily have a zero-energy
edge state, e.g., due to the lack of chiral symmetry. This
has already been reported in interacting bosonic systems and
numerically verified in the context of the topological Mott
insulator [44] and Haldane insulator [45].

A. Vertical edge case

We first focus on the system with a vertical edge as shown
in Fig. 8. The edge is simply introduced by cutting a single
plaquette at j = 0 in the periodic system. The boundary pre-
serves both Ux and Uy symmetries.

We start by observing the behavior of the total density Ntot

obtained by summing over the local density of all sites with
varying μ. The total number of lattice sites is Ltot = 2L. The
result is shown in Figs. 9(a) and 9(b). We observe how the
behavior of the total density of the periodic case as shown
in Fig. 7 changes by introducing edges. Like for the periodic
boundary calculations in Fig. 7, we find some plateaus with
the total density constant. For each plateau, the bulk states cor-
respond to the bulk SPT phases with a different Z4 Berry phase

FIG. 9. The μ dependence of the total density Ntot/Ltot. Here
Ltot = 2L = 64 (L = 32). We set Jint = 0.1 and Jh = 0.9.

FIG. 10. Density distribution under the diagonal edge for (a) μ =
−0.448, (b) μ = −0.44498, (c) μ = −0.452, (d) μ = −0.95, and
(e) μ = −1. In the data of (d), the edge state is created on the left
and right edge sites. The bulk part includes Ltot − 4 sites (here we set
L = 32).

(the density distribution will be shown later). Interestingly,
we find two more small plateau regimes around μ = −0.45,
where the particle distribution on the edges is specific, as
shown later.

Now we study the local density distribution for specific
μ’s on each plateau and what type of edge state appears. The
distribution at μ = −0.448 in the rightmost small plateau in
Fig. 9(b) is shown in Fig. 10(a). The bulk part has n̄ = 0.25,
corresponding to the phase with γα/2π = 1

4 , and the left and
right edge sites appear empty (localized holes). No bosonic
edge state appears. Next we focus on the μ = −0.4498 case;
this point is in the second (very) small plateau from the right
in Fig. 9(b). As shown in Fig. 10(b), we find here that a
localized edge state at the right edge sites appears. This state
is close to a single bonding state forming on the rung of a
ladder,1 1√

2
[b†

1 + b†
2]. The bulk SPT phase with γα/2π = 1

4

remains. Specifically, the whole of the wave function can
be written as |ψR(μ = −0.4498)〉 ∼ 1√

2
[b†

1,R + b†
2,R]|bulk〉,

where |bulk〉 is the bulk SPT state. This edge state is expected
from the decoupled plaquette limit for n̄ = 0.25. If we
cut the single plaquette into two halves, some bondinglike
states can appear. Also, we expect that at μ = −0.4498,
the ground state is twofold degenerate, that is, the state
|ψL(μ = −0.4498)〉 ∼ 1√

2
[b†

3,L + b†
4,L]|bulk〉 is also another

ground state. Here, in practice, our DMRG calculation
chooses just the right edge state |ψR(μ = −0.4498)〉. In
fact, note that, due to the presence of degenerate states, the
true observed local density is obtained as 〈nj〉 = Tr(ρgsn j ),
where ρgs = 1

2 [|ψR(μ = −0.4498)〉〈ψR(μ = −0.4498)| +

1Strictly, the edge state is not a strict bonding state due to small Jint ,
1√
2
[b† + b†]. However, our numerical result shows that the edge state

is much close to the bonding state. Thus, we call such a close state
an edge state in this section.
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FIG. 11. Schematic image of a diagonal edge. We set |Jh| �
|Jint|. This open boundary system is invariant under UxUy and not
invariant under the individual Ux and Uy. The total number of lattice
sites of the system is Ltot = 2L + 2.

|ψL(μ = −0.4498)〉〈ψL (μ = −0.4498)|]. Then the densities
of the left and right edge sites are all the same, i.e., 0.25.

We next show in Fig. 10(c) the distribution at μ = −0.452
in the third plateau from the right in Fig. 9(b). There, at both
edges, the localized edge states appear. Varying μ induces
the additional appearance of the edge state. The bulk SPT
phase remains. The state is |ψ (μ = −0.452)〉 ∼ 1

2 [b†
3,L +

b†
4,L][b†

1,R + b†
2,R]|bulk〉.

We further show the smaller μ case. The distribution at
μ = −0.495 in the leftmost plateau in Fig. 9(b) is shown in
Fig. 10(d). The bulk state changes to n̄ = 0.5, corresponding
to the SPT phase with γα/2π = 2

4 , and remains the edge
state at both edges. The state is |ψ (μ = −0.452)〉 ∼ 1

2 [b†
3,L +

b†
4,L][b†

1,R + b†
2,R]|bulk〉, where |bulk〉 is the SPT phase with

n̄ = 0.5. This numerical result indicates that for the change
of μ around the plateau jumps, μ ∼ −0.48, the bulk state
changes rather than the edge state. We expect that the reason is
a large density fluctuation due to the bosonic nature. It is diffi-
cult to find some types of edge states expected from the decou-
pled plaquette limit for n̄ = 0.5, compared to the low-density
region.

Finally, we observe in Fig. 10(e) the distribution at μ =
−1 in the left plateau in Fig. 9(a). The bulk part has n̄ =
0.75, corresponding to the phase with γα/2π = 3

4 . As in the
previous case shown in Fig. 10(d), the single edge state re-
mains at both edges. The state is |ψ (μ = −1)〉 ∼ 1

2 [b†
3,L +

b†
4,L][b†

1,R + b†
2,R]|bulk〉, where |bulk〉 is the SPT phase with

n̄ = 0.75. From this result, the bulk state tends to change
rather than the edge state around the plateau jumps (μ ∼
−0.98).

Summarizing the results of the vertical edge case, we ob-
serve that the appearance of the edge state close to the bonding
state, identified by the difference in density from that of the
bulk (mean density n̄), depends on the Z4 SPT phase in the
bulk with different mean density n̄. In particular, for the bulk
SPT phase with γα/2π = 1

4 , some types of edge state appear
by fine-tuning μ. These states are predicted from the state of
the decoupled plaquette limit.

B. Diagonal edge case

We now study the diagonal edge case. The shape of the
edges is shown in Fig. 11. Note that this edge geometry cannot
be obtained by a periodic ladder ring as in the vertical edge
shown in Fig. 8, but is obtained by cutting an infinite ladder.
Here the length of the bulk part is L and the total number
of lattice sites is Ltot = 2L + 2. In contrast to the vertical
edge case, the boundary condition breaks individual Ux and

FIG. 12. The μ dependence of the total density Ntot/Ltot. Here
Ltot = 2L + 2 = 62 (L = 30). We set Jint = 0.1 and Jh = 0.9.

Uy symmetries, but the Ux × Uy symmetry remains. We focus
on the density distribution for each single site for the case
|Jh| > |Jint| and numerically investigate whether some edge
states appear. For the diagonal edge, the sites on the edges
do not couple to another site in the vertical direction, that is,
there are no vertical hopping and interactions, implying that
a localized particle edge state or hole around the edges can
appear.

We start by observing the behavior of the total density Ntot

obtained by summing over the local density of all sites with
varying μ. The result is shown in Figs. 12(a) and 12(b). Like
the calculations of the periodic boundary condition in Fig. 7,
we find some plateaus with the total density constant. For each
plateau the bulk states correspond to the bulk SPT phases with
a different Z4 Berry phase. Interestingly, we find one more
plateau around μ = −0.49, where the particle distribution on
the edges is specific, as shown later.

We further show some local density distributions for spe-
cific μ’s on each plateau. The distribution at μ = −0.47 in
the rightmost plateau in Fig. 12(b) is shown in Fig. 13(a).
The bulk part has n̄ = 0.25, corresponding to the phase with
γα/2π = 1

4 , and a single hole appears at the left and right
edge sites. A localized particle edge state does not appear.

FIG. 13. Density distribution under the diagonal edge for (a)
μ = −0.47, (b) μ = −0.495, (c) μ = −0.51, and (d) μ = −1.02.
The white cross represents a site where the particle occupation is not
prohibited due to the diagonal edges. The bulk part includes 2L sites
(here we set L = 30).

013319-9



YOSHIHITO KUNO AND YASUHIRO HATSUGAI PHYSICAL REVIEW A 108, 013319 (2023)

The reason is that if such a particle exists for finite Jint, the
particle tends to intrude on the bulk part due to the low density,
but once the particle enters the bulk (which is likely to occur
due to the low density of the bulk), the state is energetically
unstable due to the presence of interactions. Next we show
in Fig. 13(b) the distribution at μ = −0.495 in the middle
plateau in Fig. 12(b). The bulk part has n̄ = 0.5, correspond-
ing to the phase with γα/2π = 2

4 , and we observe a single hole
at the left and right edge sites. However, upon a little decrease
in μ, this plateau is swept and another plateau appears. See
the distribution at μ = −0.51 shown in Fig. 13(c). The bulk
SPT state remains the same as the case of Fig. 13(b). Inter-
estingly, a localized particle edge state appears at the left and
right edge sites, which are greatly localized at the edge sites.
Further, note that the localized particle edge state can be a
gapless localized particle since the gap between the leftmost
and middle plateaus in Fig. 13(b) is 1/L and for L → ∞, the
gap is closed.

Finally, we observe in Fig. 13(d) the distribution at μ =
−1.02 in the left plateau in Fig. 12(a). The bulk part has
n̄ = 0.75, corresponding to the phase with γα/2π = 3

4 , and
interestingly a localized particle edge state appears at the left
and right edge sites. No hole appears at the edges between the
rightmost and middle plateaus as shown in Fig. 13(b).

Summarizing the results of the diagonal edge case, some
particle edge state greatly localized on the single edge site
appears by fine-tuning μ. In general, the presence of interac-
tions reveals unconventional behaviors of the particle density
around the edges. However, on some stable plateaus, we nu-
merically find the presence of clear localized particle edge
states, where the local density in the bulk takes a specific
constant related to the value of the Z4 Berry phase.

The presence of the localized particle edge state can be
identified as a higher value of density than that of the bulk.
Finally, we comment that the local density distributions in-
cluding edge sites for both the vertical and diagonal edge
cases presented in this section are observable in real experi-
ments since a recent experimental technique using a quantum
gas microscope can take a snapshot of the local density in an
optical lattice and has already identified the presence of edge
states from the density profile [46].

VI. CONCLUSION

We have proposed a concrete example of interacting SPT
phases defined by Z2 × Z2 symmetry in a Bose-Hubbard
model on a two-leg ladder. The system considered in this
work is feasible for real experiments such as cold atoms in an
optical lattice. We showed that the Z2 × Z2 symmetry coming
from the lattice geometry leads to a fractional quantization
of the Z4 Berry phase. The Z4 Berry phase acts as an effi-
cient topological order parameter for the interacting bosonic
system. We numerically demonstrated the presence of the
bosonic bulk Z4 SPT phases characterized by the fractional
quantization of the Z4 Berry phase. The phase structure is rich
depending on the boson density and strength of interaction,
etc. Based on the expectation of the presence of the bulk-edge
correspondence, we investigated whether or not some edge
states appear for two cases by using the DMRG calculation

allowing the change of particle number (grand-canonical en-
semble): the vertical edge case and the diagonal edge case. In
the vertical edge case, we observed the appearance of the edge
state close to the bonding state by fine-tuning μ. In particular,
for the bulk SPT phase with γα/2π = 1

4 , some types of edge
states appear by fine-tuning μ. These states are predicted from
the state of the decoupled plaquette limit. In the diagonal edge
case, some particle edge states greatly localized on the single
edge site appear by fine-tuning μ, where the bulk states is of
course the SPT phase.

As a future direction of study it would be interesting to
extend the ladder geometry to a two-dimensional lattice and
to investigate whether some higher-order topological phase
[28,47–49] exists based on this Z2 × Z2 type of symmetry.
Finally, even though we focused on the Z4 Berry phase
throughout this work, it would be interesting to consider addi-
tional symmetry-breaking terms with time dependence. Then
Berry curvature based on this Z4 Berry phase can be intro-
duced and may lead to some source of topological pumping.
This issue would be important.
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APPENDIX A: DISCRETE VERSION OF Eq. (10)

To calculate Eq. (10) numerically, we employ a discrete
formulation, often used in the numerical calculation for the Z2

Berry phase and Chern number [50]. The discretized version
of Eq. (10) is given as

γ� = Im ln
M∏

k=1

〈ψ (sk )|ψ (sk+1)〉, (A1)

where the parameter s is discretized as s → sk = �sk + si,
with �s = (s f − si )/M and k = 1, . . . , M. We take the num-
ber of discretization M = 24, which is sufficient to observe
the stable quantization behavior.

FIG. 14. Single-particle spectrum for (a) Jh = δJ and Jint = 1 −
δJ and (b) Jh = 1 − δJ and Jint = 1 + δJ . For both cases, we set
Jv = 1.
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APPENDIX B: FREE SPINLESS FERMION SYSTEM

The SPT phase protected by the Z2 × Z2 symmetry can be
defined in a free-spinless-fermion system. We calculate the
single-particle spectrum of the system for two different pa-
rameter sets of J1 and J2 with the periodic boundary condition.
The results are shown in Fig. 14. In Fig. 11(a) where we set
Jint = 1 − δJ and Jh = δJ , at δJ = 0.5 the first and second
gaps are closed and reopened for δJ > 0.5. When the system’s
Fermi energy resides in the first gap, the filling is 1

4 and there
we observe the Z4 Berry phase γ /2π = 1

4 , while with the
Fermi energy in the second gap, the filling is 3

4 and there we
observe the Z4 Berry phase γ /2π = 3

4 .

We further show another different parameter set where
Jint = 1 − δJ and Jh = 1 + δJ . The spectrum is shown in
Fig. 11(b). We observe that the first and third gaps appear
for δJ > 0, while the second gap opens at δJ = 0.5. With the
Fermi energy in the first gap, the filling is 1

4 and there we
observe the Z4 Berry phase γ /2π = 1

4 ; with the Fermi energy
in the second gap, the filling is 2

4 and there we observe the
Z4 Berry phase γ /2π = 2

4 ; and with the Fermi energy in the
second gap, the filling is 3

4 and there we observe the Z4 Berry
phase γ /2π = 3

4 . From these results, the free-fermion system
also exhibits the various SPT phases protected by the Z2 × Z2

symmetry.
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Koepsell, P. Bojović, R. Verresen, F. Pollmann, G. Salomon,
C. Gross, T. A. Hilker, and I. Bloch, Nature (London) 606, 484
(2022).

[47] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys. Rev.
B 96, 245115 (2017).

[48] Y. You, J. Bibo, and F. Pollmann, Phys. Rev. Res. 2, 033192
(2020).

[49] D. González-Cuadra, Phys. Rev. B 105, L020403 (2022).
[50] T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn. 74, 1674

(2005).

013319-12

https://doi.org/10.1103/PhysRevLett.110.260405
https://doi.org/10.1103/PhysRevA.101.063626
https://doi.org/10.1038/s41586-022-04688-z
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevResearch.2.033192
https://doi.org/10.1103/PhysRevB.105.L020403
https://doi.org/10.1143/JPSJ.74.1674

