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Quantum phases of constrained bosons on a two-leg Bose-Hubbard ladder
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Bosons in periodic potentials with very strong local interactions, known as constrained bosons, often exhibit
interesting physical behavior. We investigate the ground-state properties of a two-leg Bose-Hubbard ladder by
imposing a three-body constraint in one leg and a hard-core constraint in the other. By using the cluster mean-
field theory approximation and the density matrix renormalization group method, we show that at unit filling, for
strong two-body attraction among the three-body constrained bosons, the system becomes a gapped pair-Mott
insulator where all the bosons form strong bound pairs and occupy the leg with the three-body constraint. With
increase in hopping strength, this pair-Mott insulator phase undergoes a phase transition to the gapless superfluid
phase for equal leg and rung hopping strengths. However, when the rung hopping is stronger compared to the
leg hopping, we obtain a crossover to another gapped phase which is called the rung-Mott insulator phase where
the bosons prefer to delocalize on the rungs rather than the legs. By moving away from unit filling, the system
remains in the superfluid phase except for a small region below the gapped phase where a pair superfluid phase
is stabilized in the regime of strong attractive interaction. We further extend our studies by considering the
three-body constraint in both the legs and find that the crossover from the gapped to gapped phase does not
occur; rather, the system undergoes a transition from a pair-rung-Mott insulator phase to the superfluid phase at
unit filling. Moreover, in this case, we find the signature of the pair superfluid phase on either side of this gapped
phase.
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I. INTRODUCTION

Strongly correlated bosonic systems serve as a very active
playground for the realization of novel and exotic quantum
phases of matter. These systems have gained considerable
interest in the last few decades, mainly motivated by the spec-
tacular manipulation of ultracold atoms in optical lattices [1].
Starting from the path breaking observation of the superfluid
(SF) to Mott insulator (MI) transition in such systems [2], a
plethora of interesting studies have been performed in recent
years leading to various new directions in condensed-matter
physics; atomic, molecular, and optical physics; and quantum
technologies [3–6]. Due to the versatility in terms of flexibility
in tuning system parameters and geometry, the systems of
ultracold atoms in optical lattices have been widely used for
quantum simulations of strongly correlated systems [1,7–12].
On the other hand, several other quantum simulators based
on arrays of trapped ions, superconducting circuits, optical
cavities, and photonic lattices have been proposed and built in
recent years to address many-body bosonic systems [13–22].

In this context, low-dimensional bosonic systems, in par-
ticular one-dimensional (1D) and quasi-1D lattices, are a topic
of paramount interest of research owing to the dominant role
played by the interactions and strong correlation [23]. Among
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various low-dimensional lattice models, two-leg ladder sys-
tems are particularly important because they are intermediate
to the one- and two-dimensional lattice system and can pro-
vide insights about the physics while shifting from one- to
two-dimensional lattices [24].

One of the simplest such models is the two-leg Bose-
Hubbard (BH) ladder which has been widely studied theo-
retically and has been experimentally simulated in various
artificial systems [25–37]. Starting from the study of the
combined effect of onsite interactions and rung hopping on
the SF-MI transition [38,39], a wealth of novel physics has
been discovered in the presence of superlattice potentials
[40–42], longer-range interaction [43,44], geometric frustra-
tion [31,33,45–61], lattice topology [43,62–64], and disorder
[65–67] in systems of BH ladders.

Bosons on a two-leg ladder subjected to various constraints
such as the hard-core (maximum occupation of one boson per
site) or three-body constraint (TBC—maximum occupation of
two bosons per site) with only local and/or short-range inter-
actions are known to exhibit interesting physics [23]. These
systems are significant as they can be appropriately mapped
to various spin models and variants of the Hubbard model
to mimic their physics in a bosonic platform and hence pave
the path for experimental realization. One of the interesting
manifestations of the hard-core bosons (HCBs) on a two-leg
ladder is the appearance of the gapped rung-Mott insulator
(RMI) phase for any finite rung hopping at half filling where
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FIG. 1. Schematic diagram of a two-leg Bose-Hubbard ladder
with leg-hopping J , rung-hopping J⊥, and onsite interaction U .

in each rung a hard-core boson delocalizes to form a rung sin-
glet [68]. The addition of nearest-neighbor (NN) interactions
along the legs and rungs of the ladder is known to stabilize
the charge-density wave and the supersolid phases [69]. A
study by some of us has also uncovered the existence of a
dimer rung-insulator (DRI) phase at unit filling in a system
of three-body constrained bosons on a two-leg ladder in the
presence of attractive onsite interaction and repulsive nearest-
neighbor interaction along the rungs of the ladder [70]. In
the DRI phase, strongly bound pairs of bosons delocalize
on the rungs of the ladder creating a situation similar to the
hard-core bosonic ladder at half filling. A system of two- and
three-body constrained bosons in a pair of one-dimensional
lattices coupled to each other by nonlocal attractive interac-
tions exhibits the trimer and dimer superfluid phases when
the bosons possess repulsive onsite interactions [71]. While
the ground-state properties of the BH ladder with identical
constraint on the legs are analyzed in detail, the ladder with
two different types of constraints imposed on the legs is not
well explored. It is well known that the three-body constrained
bosons in the presence of strong attractive onsite interac-
tion form bound bosonic pairs which behave like hard-core
bosons and form a pair superfluid (PSF) at unit filling [71–73].
However, when the attractive interaction becomes weaker, the
bosonic pairs break and the system becomes a superfluid. In
such a situation, coupling a three-body constrained chain with
a hard-core bosonic chain may reveal nontrivial phenomena
due to the competition between different constraints as well
as the strength of interaction and the interleg coupling.

In this paper we consider a two-leg BH ladder as depicted
in Fig. 1 and impose the TBC in one leg and hard-core con-
straint (HC) in the other leg. By allowing attractive onsite
interactions for the bosons residing in the leg having the TBC,
we study the combined role of onsite interaction and rung-to-
leg hopping ratio on the ground-state properties of the system.
Using an approximation method and a sophisticated numeri-
cal method we reveal that when the rung-to-leg ratio is small
an MI phase of bosonic pairs or the pair-MI (PMI) phase is
formed on the leg having the TBC imposed which undergoes
a transition to the SF phase as a function of interaction. On
the other hand, in the limit of large rung-to-leg hopping ratio,
the ground-state phase diagram exhibits a crossover from the
PMI phase to a RMI phase at unit filling as a function of the
attractive interaction. Moreover, we find the signatures of a
PSF phase by moving away from the commensurability in
the limit of strong interactions. In the end, we compare our
results by considering the TBC on both the legs where the
RMI phase does not appear at unit filling. Rather, we obtain a
phase transition from a pair rung-Mott insulator (PRMI) phase

to the SF phase at unit filling. In the following, we discuss our
results in detail.

The structure of the paper is as follows. In Sec. II, we
give the details of the system under consideration, the model
Hamiltonian, and the numerical methods used. In Sec. III, we
discuss the results where we first discuss the TBC-HC system
and then the TBC-TBC system. Finally, we summarize our
results in Sec. IV.

II. MODEL AND METHOD

The two-leg BH ladder can be described by the Hamilto-
nian

HBH = −J
∑

〈i, j〉,α
(a†

iαa jα + H.c.) − J⊥
∑

i

(a†
iaaib + H.c.)

+
∑

i,α

Uα

2
niα (niα − 1) −

∑

i,α

μαniα. (1)

Here a†
iα (aiα ) is the bosonic creation (annihilation) operator at

the ith site of the αth leg, where α (= a, b) represents the
leg index of the ladder. Uα represents the two-body onsite
interactions and μα is the chemical potential on the legs. J
and J⊥ are the hopping strengths of bosons along the legs and
rungs of the ladder, respectively. niα is the number operator
corresponding to the ith site in the αth leg. First, we impose
the TBC in leg a and HC in leg b which are achieved by
considering (a†

a)3 = 0 and (a†
b)2 = 0, respectively. It is to be

noted that for the HC in leg b, i.e., Uα=b → ∞, the term
associated to Uα=b vanishes in Eq. (1). However, due to the
TBC in leg a, Uα=a remains finite. Hereafter, we denote Uα=a

as U without loss of generality.
For the exploration of the ground-state properties of the

model shown in Eq. (1), we first employ the cluster mean-field
theory (CMFT) approach [70,71,74–77] and then the density
matrix renormalization group (DMRG) method [78–81]. Note
that the CMFT method is based on the mean-field approxi-
mation and owing to its construction this method provides a
qualitative understanding of the underlying physics with less
computing effort. However, the DMRG method is well suited
to accurately obtain the physics of low-dimensional systems
such as the one considered here.

Using the CMFT approach we can write

HBH = HC + HMF, (2)

where HC (HMF) is the cluster (mean-field) part of the Hamil-
tonian. HC is the same as Eq. (1) limited to the cluster size and
is treated exactly. Introducing the leg-dependent superfluid
order parameter and the superfluid density given by

ψiα = 〈a†
iα〉 = 〈aiα〉 (3)

and

ρs = 1

4

2∑

i=1

∑

α∈[a,b]

|ψiα|2, (4)

respectively, we write HMF as

HMF = −J
∑

〈i, j〉,α
[(a†

iα + aiα )ψ jα − ψ∗
iαψ jα]. (5)
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FIG. 2. Phase diagram of the TBC-HC system in the
J/|U |–μ/|U | plane using the CMFT approach for J⊥/J = 1
on a four-site cluster. The black (colored) region is the gapped
(gapless) region and the solid green line denotes the boundary of
the PSF phase. The color bar represents the values of the superfluid
density ρs.

We also assume equal chemical potentials for bosons in both
the legs by making μa = μb = μ and use a four-site cluster
for the CMFT calculations.

The DMRG simulations are performed in the canonical
ensemble with a fixed boson number and hence the Hamil-
tonian in Eq. (1) is explicitly independent of μ. We apply the
matrix product states based DMRG algorithm using an open
boundary condition on a system of L sites which is equivalent
to L/2 rungs. In our simulations, we have considered up to
L = 200 and bond dimensions up to 400 which we find is
sufficient to provide accurate results. Our studies are focused
on attractive onsite interaction for the bosons in the leg a. To
ensure an attractive onsite interaction between the particles,
the results are obtained by considering U = −1 which also
sets the energy scale that makes all the physical quantities
dimensionless.

III. RESULTS AND DISCUSSION

In this section, we discuss the results in detail for the TBC-
HC system, first from the CMFT analysis and then from the
DMRG analysis. Then we briefly discuss the TBC-TBC phase
diagrams for comparison.

A. The TBC-HC system

1. The CMFT phase diagram

We begin by depicting the phase diagram in Fig. 2 which
is obtained by using the CMFT approach for J⊥/J = 1 for
the TBC-HC case where we plot the superfluid density ρs

in the J/|U |–μ/|U | plane. This exhibits an insulating lobe
at ρ = 1 (black region, where ρs = 0) surrounded by the
gapless regions (colored region, where ρs 	= 0). Now looking
at the behavior of different physical quantities within the
reach of the CMFT approach we identify different quantum
phases which are depicted in the phase diagram of Fig. 2. The
gapped and gapless phases are identified from the behavior of

FIG. 3. (a) ρ, ρa, ρb, and ρs are plotted as a function of μ/|U |. (b,
c) CMFT data for the nearest-neighbor single and pair correlations
[as defined in Eq. (6)], respectively, as a function of μ/|U | for
J/|U | = 0.09 and J⊥/J = 1.

ρs (black curve) and the total density ρ = (ρa + ρb)/2 (red
curve) as a function of μ/|U | as shown in Fig. 3(a) for an ex-
emplary cut through the phase diagram at J/|U | = 0.09. The
finite plateau and vanishing of ρs at ρ = 1 for a range of values
of μ/|U | between −0.487 and −0.175 indicate the gapped
region in the phase diagram. Moving away from ρ = 1, we
find that while ρ continuously increases as a function of μ in
the region above the plateau, the change in ρ occurs in steps
and corresponds to a change of two particles at a time in the
region below the plateau. Within our CMFT approach, these
discrete jumps along with vanishing ρs in the latter region
are the characteristics of a PSF phase and the former is the
indication of the SF phase [70,71,82]. The PSF region appears
in the regime of small J/|U | values which is demarcated by
the green boundary and is sandwiched between the ρ = 1 and
0 regions in Fig. 2. The gapless SF (PSF) phase extends up
to ρ = 1.5 (ρ = 0) limits starting from the ρ = 1 lobe as can
be seen from Fig. 3(a). Note that the black regions above and
below the ρ = 1 lobe are the full (ρ = 1.5) and empty (ρ = 0)
states, respectively. In the following, we characterize these
phases in detail.

We first examine the behavior of the individual leg den-
sities, i.e., ρa and ρb in Fig. 3(a). It can be seen that, as μ

increases and the plateau region at ρ = 1 is reached, the leg
a gets populated first and the density of the leg a reaches
a value ρa ≈ 2 (blue circles). However, the density of leg b
remains close to zero, i.e., ρb ≈ 0 (green triangles). In this
case, the occupation of leg a is favored because of the TBC
and attractive nature of the interaction as compared to the HC
in leg b. With further increase in μ, the density of the system,
ρ, increases and becomes incommensurate. In this regime, ρb

starts to increase and eventually reaches its maximum value at
ρb = 1 and at the same time ρa saturates to the value ρa = 2.
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At this saturation point the total density of the system ρ = 1.5,
which is the full state. To further understand these phases, we
compute various correlation functions within the cluster such
as

Cn,a = 〈(a†
ia)n(a ja)n〉,

Cn,b = 〈(a†
ib)n(a jb)n〉,

Cn,⊥ = 〈(a†
ia)n(aib)n〉. (6)

Here n = 1 and 2 represent the single- and pair-correlation
functions, respectively. The superscripts a, b, and ⊥ represent
the correlation functions along leg a, leg b, and the rung of
the ladder, respectively. Note that due to the finite size of the
cluster considered here (i.e., four sites), only the NN correla-
tion functions are computed. Moreover, due to the hard-core
constraint in leg b, the movement of the pair along this leg and
along the rungs is not possible. Thus, only C2,a is expected to
be finite whereas both C2,a and C2,⊥ are expected to vanish.

In Figs. 3(b) and 3(c), we plot the single- and pair-
correlation functions as a function of μ/|U | for J/|U | = 0.09.
It can be seen from Fig. 3(b) that when the system is gapped
[plateau region at ρ = 1 in Fig. 3(a)], C1,a and C1,b are van-
ishingly small, whereas C1,⊥ remains finite. These features
indicate that the motion of the particles along the legs ceases
due to almost full and almost empty states of leg a and leg
b, respectively, at very small values of J/|U |. On the other
hand, all the single-particle correlations remain finite in the SF
phase although C1,a is comparatively smaller than the other
two [Fig. 3(b)]. The reason behind this is the following. In
the SF phase, due to the TBC imposed on the particles, the
leg a gets populated first leading to a larger value of ρa as
compared to ρb, as can be seen from Fig. 3(a). Hence, the
particles’ motion in leg a is restricted leading to small values
of C1,a. However, when the system is in the PSF phase, the
C1,b vanishes whereas the other two correlations remain finite.
This is because of the TBC; all the particles prefer to populate
leg a in the regime of small μ/|U | as compared to leg b
where HC is imposed. Interestingly, all the pair correlations
such as C2,a, C2,b, and C2,⊥ vanish in the gapped and gapless
phases except in the PSF phase where the C2,a remains finite
in the regime −0.525 < μ/|U | < −0.487. The formation of
the PSF phase in this regime is due to the attractive nature of
U for which the particles in leg a form bound pairs.

We now examine the effect of J⊥/J on the gapped phase
at ρ = 1. In Fig. 4, we plot only the gapped lobes in the
J/|U |–μ/|U | plane at ρ = 1 for different values of J⊥/J (=
1, 2, 3, 4, 5, and 6). With increase in J⊥/J , we find that the
gapped lobes gradually expand and eventually for J⊥/J = 6
the gap does not close at all. In this limit, the system remains
gapped as a function of J/|U | which indicates a ceasing of
the gapped-gapless transition after a certain J⊥/J ratio. Now,
in order to understand the emergence of the gap in the limit
of large J/|U | for J⊥/J = 6, we look at the behavior of ρ

(red square), ρs (black star), ρa (blue circle), and ρb (green
triangle) as a function of μ along the cut at J/|U | = 0.3.
From Fig. 5, we identify the plateau at ρ = 1 (ρs = 0) as
the gapped phase. Compared to the small J/|U | (or strong
|U |) limit, here we see a completely different feature. In this
case, both the legs start getting populated simultaneously after

FIG. 4. CMFT phase diagram of the TBC-HC ladder in the
J/|U |–μ/|U | plane for different J⊥/J ratios. Here the curves rep-
resent the boundary of the gapped phase(s) at ρ = 1.

μ/|U | ≈ −2.4 due to the dominant hopping strength (or weak
onsite interaction) and also ρa > ρb for the entire range of
μ due to the constraints imposed. In the plateau region, the
individual leg densities ρa ≈ 1.5 and ρb ≈ 0.5 [see Fig. 5(a)].
We also see a continuous change in ρa in the shoulder regions
which rules out the presence of any PSF phase. Further, we
plot the correlation functions in Fig. 5 which shows that C1,⊥
dominates over both C1,a and C1,b in the plateau region. The
strong C1,⊥ in the plateau region (i.e., the gapped region) is the
indication of an RMI phase of hard-core bosons. However, in
the gapped region, we see a finite single-particle correlation

FIG. 5. (a) ρ, ρa, ρb, and ρs are plotted as a function of μ/|U |. (b,
c) CMFT data for the nearest-neighbor single and pair correlations
[as defined in Eq. (6)], respectively, as a function of μ/|U | for
J/|U | = 0.3 and J⊥/J = 6.
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FIG. 6. DMRG data showing the gapped regions for the TBC-
HC ladder at ρ = 1 for J⊥/J = 1 (blue dot-dashed lines), 2 (red
dashed lines), and 3 (green solid lines). The boundaries represent the
extrapolated values of μ+ and μ− with L = 80, 120, 160, and 200.

in both the legs which is the nature of an SF phase within the
CMFT approach. On the other hand, the pair correlations C2,b

and C2,⊥ vanish throughout and C2,a remains finite though
small due to the second-order hopping processes in the gapless
region [see Fig. 5(c)].

From the above CMFT analysis, it is inferred that in the
limit of small J⊥/J , a phase transition from a gapped to
gapless phase occurs when ρ = 1 as a function of J/|U |.
However, for large J⊥/J , the gap remains finite throughout as
a function of J/|U |. Although the gapped phases at small and
large J/|U | values exhibit finite rung correlations, for the latter
case the rung correlation is strong and the leg correlations
remain finite. Moreover, we find the signatures of a PSF phase
below the gapped lobe when J/|U | is small.

It is to be noted that within the CMFT approach, it is
difficult to clearly identify the nature of these phases and
therefore in the following we employ the DMRG method to
concretely establish these quantum phases.

2. The DMRG phase diagram

In this part of the paper, we discuss the analysis based on
the DMRG simulations of the model shown in Eq. (1) for the
TBC-HC system. The primary focus of our DMRG simulation
is to examine the nature of these gapped phases that arise at
ρ = 1 from the CMFT analysis. To this end, we first obtain the
gapped regions in the J/|U |–μ/|U | plane for different values
of J⊥/J such as J⊥/J = 1 (blue dot-dashed lines), J⊥/J = 2
(red dashed lines), and J⊥/J = 3 (green solid lines) in Fig. 6.
The boundaries of these regions are obtained by computing
the chemical potentials as

μ+ = (EN+2 − EN )/2, μ− = (EN − EN−2)/2 (7)

where EN is the ground-state energy of the system with N
bosons and the gap is defined as G = μ+ − μ−. Here we
consider two-particle excitation energies in the calculation
because of the possibility of boson pair excitation around the
gapped region due to the attractive nature of the interaction U .
Similar to the CMFT results, we obtain that when J⊥/J = 1

FIG. 7. Excitation energy gap G for (a) J⊥/J = 1,
(b) J⊥/J = 2, and (c) J⊥/J = 3 at ρ = 1 with L =
80, 120, 160, 200, and ∞ (light to deep color). (d) The derivative
of the extrapolated values of the gap, i.e., GL→∞ with respect to
J/|U | for different J⊥/J ratios. (e) The system size dependence of G
for J/|U | = 0.07 (magenta line with diamonds) and J/|U | = 0.15
(black line with triangles) for J⊥/J = 3. (f) Kink positions in GL→∞,
i.e., (J/|U |)kink vs J⊥/J ratios. The blue star marks the gap-closing
critical point for J⊥/J = 0 shown in Fig. 8.

(blue dot-dashed lines), a transition from a gapped to gap-
less phase occurs after a critical J/|U | ≈ 0.19. However, the
situation becomes interesting when J⊥/J = 2 where the gap
decreases, attains its minimum value near J/|U | ≈ 0.6, and
increases again for higher J/|U | values. This behavior is more
prominent for the case of J⊥/J = 3 (green solid curve).

To understand this behavior of the gap further, we plot
G as a function of J/|U | for J⊥/J = 1, 2, 3 in Figs. 7(a)–
7(c), respectively, for ladders of different lengths L =
80, 120, 160, and 200 along with the extrapolated values at
the thermodynamic limit GL→∞ (light to deep color lines).
It can be seen that while for J⊥/J = 1 [Fig. 7(a)], GL→∞
vanishes after a critical J/|U | ≈ 0.19, for J⊥/J = 2 [Fig. 7(b)]
and J⊥/J = 3 [Fig. 7(c)], GL→∞ always remains finite as a
function of J/|U |. However, in the latter two cases, GL→∞ first
decreases, reaches a minimum, and then increases, exhibiting
a gapped to gapped phase transition. Note that a similar behav-
ior is also seen in the CMFT results for a comparatively strong
J⊥/J (see Fig. 4) although the feature of the gap reaching a
minimum is not clearly visible. Interestingly, in all the three
cases, the gaps for all lengths exhibit a kink (change in slope)
at a particular value of J/|U | which is also seen in the μ−
curves shown in Fig. 6. This appearance of the kink in G is
more prominent in the case of J⊥/J = 3. The change in slope
in the gap G can be seen as a discontinuity in the derivative
−dGL→∞/d (J/|U |) which is shown in Fig. 7(d) for all the
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FIG. 8. DMRG phase diagram of the TBC-HC system for
J⊥/J = 0. The phase boundaries represent the extrapolated values of
μ+ and μ− with L = 80, 120, 160, and 200. The upper inset shows
the system size dependence of the gap G for J/|U | = 0.12. The lower
inset shows the behavior of ρa (magenta diamonds) and ρb (black
triangles) with respect to J/|U |. Here we consider the total density
of the sites in the range L/4 to 3L/4 on a system of size L = 200.

three cases of J⊥/J considered. We find that the gap G is
almost system size independent up to the kink positions after
which they separate from each other. The system size inde-
pendence can be seen from Fig. 7(e) where we have plotted G
as a function of L for J/|U | = 0.07 (magenta diamonds) and
J/|U | = 0.15 (black triangles) which correspond to two arbi-
trary points before and after the kink location, respectively, for
J⊥/J = 3 as an example.

This particular feature of almost length independence of
gap G can be understood by going to the J⊥ = 0 limit. In
Fig. 8, we show the phase diagram for J⊥ = 0 by plotting
the μ± as a function of J/|U |. In this situation, the system is
composed of two isolated legs. In the limit of small J/|U | (i.e.,
strong attractive U ), due to the TBC in leg a, all the bosons
form stable bound pairs and occupy the leg a. At ρ = 1, the
leg a achieves a full state and leg b remains empty which
is indicated by the values ρa = 2 (magenta diamonds) and
ρb = 0 (black down triangles) as shown in the lower inset of
Fig. 8. Since the possible excitations in the system are in the
form of bound pairs only, at unit filling (ρ = 1), the system
exhibits a gap and the ground state is a Mott insulator of pairs
of bosons [72] and we call it a PMI phase. With increase in
J/|U |, the stable bound pairs tend to break and single-particle
excitation becomes energetically favorable in the system after
a critical J/|U | ≈ 0.17. Due to the single-particle excitation,
the boson occupation probability in leg b becomes finite and
the system becomes gapless at ρ = 1. At this point, a sharp
deviation in ρa and ρb from the value 2 and 0, respectively,
occurs as shown in the inset of Fig. 8. Note that within the
gapped phase, the gap remains almost independent of length
(see the upper inset of Fig. 8) as the ground state is an almost
exact state at this limit of interaction.

When J⊥ is turned on, the single-particle excitations be-
come feasible for smaller values of J/|U | as compared to
the decoupled leg limit due to the enhanced kinetic energy

FIG. 9. Average nearest-neighbor correlation functions and on-
site densities for (a) J⊥/J = 1 and (b) J⊥/J = 3. Here the averaging
is done by considering the lattice sites in the range L/4 to 3L/4 on a
system of size L = 200. The start and end points of the shaded gray
areas in both (a) and (b) represent the kink position in the gap and
the point of the minimum gap, respectively.

in the system. This behavior is indicated by the length in-
dependence of gap G up to the kink position as shown in
Figs. 7(a)–7(c). For clarity, we have plotted the values of
(J/|U |)kink that correspond to the kink positions for differ-
ent values of J⊥/J in Fig. 7(f) which shows a decrease in
(J/|U |)kink with increase in J⊥/J . We have also shown the
critical J/|U | for J⊥ = 0 (blue star) for comparison. However,
contrary to the decoupled leg limit (J⊥ = 0), for finite J⊥
the gap due to the PMI state does not close immediately
after (J/|U |)kink. This is because, even though the strength of
J/|U | > (J/|U |)kink is large enough to create single-particle
excitation, populating leg b is energetically not favorable. Fur-
ther increasing J/|U | (or in other words decreasing |U |), the
PMI phase completely melts and the probability of occupying
the leg b increases leading to a gap closing scenario. We see
this behavior of vanishing of G as a function of J/|U | when
J⊥/J = 1 as depicted in Fig. 6 (blue dot-dashed lines).

To further understand this picture at J⊥/J = 1, we com-
pute the single-particle correlation functions across all the
NN bonds along the legs as defined in Eq. (6) and plot their
average values in Fig. 9(a) as a function of J/|U |. It can
be seen that when the system is deep in the PMI phase,
i.e., when J/|U | → 0, all the average correlations vanish. As
J/|U | increases, the average NN correlations along leg a, i.e.,
C1,a

avg (red squares), and along leg b, i.e., C1,b
avg (blue circles),

remain close to zero up to (J/|U |)kink ≈ 0.13. After the kink
position in the gap, C1,a

avg and C1,b
avg start to grow due to the

increase in J/|U | even when the system is gapped. Note that
the finite values of the average NN correlations in the gapped
phase are only due to the particle-hole fluctuation and there
is no long-range correlation in the system. The absence of
long-range correlation along the legs is confirmed from the
behavior of the single-particle correlation between a pair of
sites defined as

�1,a
i, j = 〈a†

iaa ja〉 and �1,b
i, j = 〈a†

iba jb〉 (8)
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FIG. 10. The long-range correlations along leg a, �1,a(r),
and along leg b, �1,b(r), plotted as a function of distance
r = |i − j| in log-log scale for (a) J/|U | = 0.04 and J⊥/J = 1,
(b) J/|U | = 1.0 and J⊥/J = 1, (c) J/|U | = 0.04 and J⊥/J = 3, and
(d) J/|U | = 1.0 and J⊥/J = 3. The correlations are plotted for the
lattice sites in the range L/4 to 3L/4 on a system of size L = 200.

along leg a and leg b, respectively. In Fig. 10(a) we plot �1,a
i, j

(red circles) and �1,b
i, j (black pluses) for J/|U | = 0.04 and

J⊥/J = 1. The exponential decay of the correlation function
in both the legs confirms the gapped nature of the phases.
With further increase in J/|U |, the system becomes gapless at
J/|U | ≈ 0.19 and after this critical value all the average NN
correlations are finite and large. Clearly, in the gapless regime,
C1,a

avg > C1,⊥
avg > C1,b

avg. Moreover, the single-particle correlation

functions �1,a
i, j and �1,b

i, j exhibit power-law decay confirming
the SF phase as depicted in Fig. 10(b) for J/|U | = 1.0 and
J⊥/J = 1. The signature of this transition can also be seen
from the average particle densities ρa (magenta diamonds) and
ρb (black down triangles) along leg a and leg b, respectively,
as a function of J/|U | as shown in Fig. 9(a) for J⊥/J = 1.
Initially, in the PMI state, we can see ρa ≈ 2 and ρb ≈ 0.
As J/|U | increases, due to single-particle excitations, ρa (ρb)
starts to decrease (increase) from the value 2 (0) and even-
tually tends to saturate at ≈1.5 (≈ 0.5) in the SF phase. It
is to be noted that the average rung correlation C1,⊥

avg (green
triangles) remains finite due to the finite rung hopping in the
system.

On the other hand, for the ratio J⊥/J = 2, this gapped PMI
phase extends to larger J/|U | values and does not turn into
an SF phase. Rather, the system enters into another gapped
phase as a function of J/|U |. This feature is more prominent in
the case of J⊥/J = 3 as already shown in Fig. 6. In this case,
the average NN correlations behave differently as compared
to the case of J⊥/J = 1 in the regime of large J/|U |, where
C1,⊥

avg dominates over the NN leg correlations C1,a
avg and C1,b

avg
[Fig. 9(b)]. Note that even though the NN leg correlations are
finite, the long-range correlations vanish exponentially for all
values of J/|U |. We show this behavior by plotting �1,a

i, j (red

circles) and �1,b
i, j (black pluses) for two exemplary values of

J/|U | = 0.04 and 1.0 in Figs. 10(c) and 10(d), respectively,
for J⊥/J = 3. In this case also, the average leg densities ρa

FIG. 11. The complete DMRG phase diagram of the TBC-HC
system for J⊥/J = 3 in the J/|U |–μ/|U | plane. The green lines
enclose the gapped phase(s) at ρ = 1, the black lines represent the
boundaries of the vacuum (ρ = 0) and full (ρ = 1.5) states, and
the red line denotes the boundary of the PSF phase. The phase
boundaries represent the extrapolated values of μ+ and μ− with
L = 80, 120, 160, and 200. For comparison, the respective CMFT
phase diagram is shown in the inset. The important difference be-
tween these two diagrams is that the DMRG method predicts an RMI
phase which is absent in the CMFT phase diagram.

and ρb saturate to values close to 1.5 and 0.5, respectively, at
large J/|U | [Fig. 9(b)] even though the system is gapped.

These behaviors of strong rung correlation, finite gap, and
average densities approaching half-integer values are indica-
tions of an RMI phase which is exhibited by hard-core bosons
on a two-leg ladder [68]. This character of a pure HCB ladder
in the system of a TBC-HC ladder can be understood as
follows. At unit filling of the system, i.e., ρ = 1, once the leg
a having TBC achieves density ρa = 1, the remaining bosons
in the leg experience a hard-core constraint. Together with the
leg b, the system is now effectively an HCB ladder at half
filling which exhibits an RMI character. This confirms that
the gap at large J/|U | in our system is due to the RMI phase
that occurs in the limit of |U | → 0. As J/|U | decreases or in
other words |U | increases, the gap tends to decrease. However,
due to the extension of the PMI phase on the other extreme of
J/|U | the gap does not close as a function of J/|U | and the
system remains gapped throughout. This results in a crossover
from the PMI phase to the RMI phase indicated by a minimum
in the gap as can be clearly seen from Fig. 7(c).

After having a clear idea about the gapped phases at unit
filling, we focus on understanding the nature of the phases at
incommensurate densities. We stress that the gapped phases
in the regime of small values of J/|U | for all the cases of
J⊥/J are similar in nature. Therefore, to have a complete
picture, we consider the case of J⊥/J = 3 and depict the phase
diagram of the system using the DMRG method in Fig. 11.
Here the gapped region at ρ = 1 is enclosed between the solid
green lines and the empty (ρ = 0) and full (ρ = 1.5) states are
marked by the solid black lines. Within the gapped region, the
PMI and RMI phases exist at two opposite limits of J/|U | and
there is a crossover between them signaled by the minimum
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FIG. 12. DMRG data showing the ρ vs μ/|U | plot for
J/|U | = 0.04 and J⊥/J = 3 for a system of size L = 80. The regions
above and below the plateau are enlarged in the insets for clarity
which show the signatures of the SF phase (upper inset) and the PSF
phase (lower inset), respectively.

gap. The regions below and above the ρ = 1 gapped region
are found to be gapless SF phases with off-diagonal long-
range order. However, in the limit of small J/|U | or strong
attractive interaction, we obtain a PSF phase sandwiched be-
tween the ρ = 1 and 0 gapped phases. The occurrence of the
PSF phase is due to the favorable condition for strong bound
pair formation in leg a in the regime of small J/|U |. On the
other hand, increasing density away from ρ = 1 gives rise to
the SF phase as the leg b starts to get populated where the HC
is imposed. This feature is confirmed by plotting the particle
density ρ as a function of μ/|U | in Fig. 12 for a cut through
the phase diagram of Fig. 11 at J/|U | = 0.04. The plateau at
ρ = 1 is due to the gap in the system. However, below the
plateau at ρ = 1, the density of the system changes in steps of
two particles at a time as a function of μ/|U | indicating the
PSF phase (lower inset in Fig. 12). Above the ρ = 1 plateau,
the SF phase is indicated by an increase in density in steps of
one particle at a time which is depicted in the upper inset of
Fig. 12. The μ/|U | values corresponding to the beginning and
end points of the two-particle jumps in density denote the two
boundary points of the PSF phase. We extract the boundary of
the PSF phase (red line in Fig. 11) by analyzing the ρ − μ/|U |
plots at different cuts through the phase diagram shown in
Fig. 11.

To further substantiate the PSF phase we compare the
single- and pair-correlation functions as a function of dis-
tance r = |i − j| along leg a for ρ = 0.5 and J/|U | = 0.04
in Fig. 13. When the system is in the PSF phase the single-
particle correlation function �1,a(r) (red circles) decays
exponentially whereas the pair-correlation function �2,a(r)
(black squares) exhibits a power-law decay indicating the
off-diagonal long-range order.

The PSF-SF phase transition point as a function of J/|U |
is further confirmed by looking at the behavior of the fidelity
susceptibility defined as

χFS(J ) = lim
(J−J ′ )→0

−2 ln |〈�(J )|�(J ′)〉|
(J − J ′)2

(9)

FIG. 13. The single-particle correlation �1,a(r) and the pair-
correlation function �2,a(r) for leg a plotted as a function of
distance r = |i − j| in log-log scale at ρ = 0.5 for J/|U | = 0.04 and
J⊥/J = 3. We consider the lattice sites in the range L/4 to 3L/4 on a
system of size L = 200.

where |�(J ′)〉 is the ground-state wave function for a slightly
changed value (J ′) in the leg hopping (J). We plot χFS/L as
a function of J/|U | in Fig. 14 for ρ = 0.5 and J⊥/J = 3. The
divergence of χFS(J ) around J/|U | ≈ 0.102 and increase in
peak height [χmax

FS (J )] with increase in system size as shown in
the main panel and in the inset, respectively, in Fig. 14 indicate
the PSF-SF phase transition [83–85].

From the above study, it is understood that in the limit of
large J⊥/J and large J/|U |, the TBC-HC case exhibits the
RMI phase at unit filling which is a character of the HC-HC
ladder at half filling. Moreover, the system also exhibits the
PMI phase for small J/|U | and a PSF phase below the PMI
phase which are not possible to stabilize in the HC-HC ladder.

FIG. 14. Fidelity susceptibility χFS/L as a function of J/|U | for
L = 40 (red squares), L = 80 (blue circles), and L = 120 (green
triangles) for J⊥/J = 3. The divergence of the peak heights for
increasing system size indicates the transition between the PSF and
SF phases. Here the density of the system is fixed at ρ = 0.5. The red
points in the inset denote the peak height of the fidelity susceptibility
vs system size and the black line marks the fitted line.
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FIG. 15. CMFT phase diagram of the TBC-TBC ladder in the
J/|U |–μ/|U | plane for J⊥/J = 3 on a four-site cluster. The color
bar represents the values of ρs and the solid green line denotes the
boundaries of the PSF phases.

It is to be noted that for J⊥/J = 3, the CMFT approach does
not capture the RMI phase at higher values of J/|U | which
can be seen from the CMFT phase diagram shown in the inset
of Fig. 11.

After obtaining the ground-state properties of the TBC-HC
system, we now focus on studying the TBC-TBC case in the
remaining part of the paper for comparison.

B. The TBC-TBC system

We now extend our studies for a system with TBC imposed
in both the legs of the ladder. In this case, |U | is finite in both
the legs and because of its attractive nature bound pairs tend
to form in each leg for stronger values of |U |. In the limit of
small J/|U | (strong attractive U ) the bound pairs behave like
hard-core bosons due to the TBC and the system approaches
the limit of the HC-HC ladder. Therefore, at ρ = 1, due to
the presence of finite J⊥/J , we get the RMI phase of the pairs
which we call the PRMI phase where a pair of bosons gets
localized in each rung of the ladder.

We obtain the ground-state phase diagram of this system in
the J/|U |–μ/|U | plane for J⊥/J = 3 by using both the CMFT
and the DMRG approaches which are shown in Figs. 15 and
16, respectively. In this case, we get qualitatively similar phase
diagrams using both the methods. In the phase diagrams, the
gapped lobe at ρ = 1 indicates the PRMI phase. The full
and empty states are indicated by the ρ = 2 and 0 regions,
respectively. Note that in both the phase diagrams, the gapped
PRMI phase no longer survives with increase in J/|U | and
the system becomes a gapless superfluid. The physics be-
hind the emergence of the PRMI-SF phase transition can be
understood as follows. When J/|U | is small but finite, the
pairs formed due to the attractive onsite interaction can move
only along the rungs since the rung hopping is dominant over
the leg hopping. However, further increase in J/|U | starts to
break the pairs into individual particles and they start moving
along the legs as well. Thus, the gap decreases and eventually
vanishes and the system becomes a gapless superfluid as can
be seen from the phase diagrams of Figs. 15 and 16. It is

FIG. 16. The DMRG phase diagram for the TBC-TBC ladder in
the J/|U |–μ/|U | plane for J⊥/J = 3. The green lines enclose the
gapped phase at ρ = 1, the black lines represent the boundaries of
the vacuum (ρ = 0) and full (ρ = 2) states, and the red lines denote
the boundaries of the PSF phases. Here the phase boundaries rep-
resent the extrapolated values of μ+ and μ− with L = 80, 120, and
160.

interesting to note that unlike the TBC-HC ladder, in this case,
the gap does not remain finite forever and the RMI phase of
independent bosons is absent at ρ = 1. Moreover, similar to
the TBC-HC case here also we find the signatures of the PSF
phases. In this case, however, due to the TBC on both the legs,
we see the appearance of the PSF phase in the regions above
and below the PRMI phase in the limit of small J/|U |. The
PSF phases are indicated by the green and and red lines in
Figs. 15 and 16, respectively.

IV. CONCLUSIONS

In this paper, we have analyzed the ground-state properties
of a BH ladder with a three-body constraint in one leg and
a hard-core constraint in the other leg. We have obtained the
ground-state phase diagrams by considering attractive onsite
interaction for the bosons occupying the leg having the three-
body constraint for different ratios of rung-to-leg hopping
strengths. We have obtained a PMI phase to the SF phase
transition at unit filling as a function of the ratio between
the leg-hopping and onsite interaction when the rung-to-leg
hopping ratio J⊥/J = 1. However, when J⊥/J = 3, we have
obtained a crossover from the gapped PMI phase to the gapped
RMI phase. By moving away from unit filling, we have found
the signatures of the PSF phase below the PMI region and the
rest of the regions are found to be in the SF phase. We have
extended our studies by imposing TBC on both the legs and
have found a phase transition from the gapped PRMI phase
to a gapless SF phase at unit filling for J⊥/J = 3. Moreover,
we have obtained the PSF phase in either side of the PRMI
phase by moving away from unit filling. Our studies are based
on the CMFT method complemented by the DMRG method.
While we find that the CMFT method captures the qualitative
picture of the phase diagram, it fails to provide quantitatively
accurate results as compared to the DMRG method.
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Our system provides the detailed ground-state properties
of the constrained ladder in the presence of onsite interaction.
Although the system under consideration is simple, it reveals
interesting behavior due to the competition between different
constraints, hopping strengths, and onsite attractive interac-
tion. This analysis promises to be an interesting platform to
reveal physics in the presence of nonlocal interaction and also
in the context of topological phase transitions in the presence
of interaction in the ladder systems.

The model discussed in our analysis is purely bosonic
where both hard-core and three-body constrained bosons are
considered. The ladder geometries have been achieved in dif-
ferent quantum simulators such as optical lattices [25] and
superconducting circuits [36,37]. Hard-core bosons have been
realized in the laboratory in ultracold atomic systems loaded
in optical lattices [86]. Several proposals are in place for tun-
able three-body interactions as well as three-body constraints
[87]. Numerous studies have been performed to understand

the effects of three-body constraints in bosonic systems in
optical lattices [71–73,88]. On the other hand systems of
superconducting circuits also promise tunable two- and three-
body interactions in bosonic systems [89]. In such systems,
the hard-core and three-body constraints can be achieved by
considering two-level (qubits) and three-level (qutrits) sys-
tems. Therefore, our studies on constrained bosons on two-leg
ladders can be of relevance to experiments involving ultracold
atoms in optical lattices as well as superconducting circuits.
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