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Nonequilibrium steady states and critical slowing down in the dissipative Bose-Hubbard model
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Motivated by recent experiments, we study the properties of large Bose-Hubbard chains with single-particle
losses at one site using classical field methods. We construct and validate a compact effective model that reduces
computations to only a few sites. We show that in the mean-field approach the description captures the stationary
states of the dissipative mode very well. Not only is there good quantitative agreement in the hysteresis loop,
but the dark soliton state can be reproduced as well due to the preservation of the U(1) symmetry. Bimodality
of the steady states, observed on longer timescales, is studied using the truncated Wigner method. We compare
the switching statistics and derive the effective Liouvillian gap as a function of the tunneling, showing that the

effective description underestimates fluctuations.
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I. INTRODUCTION

In practice quantum systems are subject to dissipation,
leading to decoherence and loss of entanglement. Studies in
recent years have, however, shown that for some systems a
well-chosen coupling to its environment can have a bene-
ficial effect and drive it to desired highly entangled states
[1-3]. Combining such engineered dissipation with internal
or external driving has led, in a variety of systems, to ex-
otic nonequilibrium steady states (NESSs) that cannot be
reached in closed systems [4—11]. Properties of these NESSs
often greatly differ from the thermal equilibrium states of the
Hamiltonian.

While dissipation times in photonic systems are often sim-
ilar to other relevant timescales [12—16], the intrinsic losses in
configurations of ultracold atoms are slow on their character-
istic timescales. They offer, in general, all-round controllable
setups, well isolated from the environment, with a great adapt-
ability of the microscopic parameters through external fields.
Additional losses can therefore be introduced by externally
engineering dissipation, giving good control over the relative
importance of dissipative and Hamiltonian dynamics. One
particular experimental implementation of a lossy atomic sys-
tem was realized on a cigar-shaped Bose-Einstein condensate
(BECQ), tightly confined along the x and y axes and having a
periodic potential along the z direction [17-19]. Particle losses
around one potential minimum in the center were induced by
ionizing atoms with a focused electron beam. Tunneling from
a large sequence of highly occupied wells towards the dissi-
pative site provides an effective drive that leads to long-lived
steady states. Evidence of a first-order phase transition was
observed in this setup.

Theoretically, Reeves and Davis [20] pioneered the mod-
eling of this experimental setup within a classical field
description. Because the full three-dimensional system is
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numerically quite involved, they reduced the modeling to a
few lattice sites along the z direction while keeping the full
two-dimensional structure in the transverse direction [20],
demonstrating, a close analogy with a resonantly driven non-
linear optical cavity [4]. A detailed understanding of the
validity of the reduction in the z direction is, however, miss-
ing. In this work, we wish to fill this gap by considering
the complementary problem of a one-dimensional (1D) Bose-
Hubbard chain with losses in the central site, as shown
schematically in Fig. 1. This system is simple enough to
allow for a full numerical study within the truncated Wigner
approximation (TWA) and therefore constitutes a good start-
ing point for the development of models that truncate the
number of lattice sites. The aim of this work is the con-
struction of a minimal effective description that captures not
only the same steady-state physics but also the dynamics and
quantum-fluctuation-induced switches between the branches
of the bistability [19].

The problem of localized particle loss in small Bose-
Hubbard chains has been studied extensively over the past
several years. Spontaneous symmetry breaking was reported
in photonic dimers with additional coherent driving [21-23].
Discrete breathers were mainly analyzed in trimers and small
extended arrays [7,24,25]. Larger chains with dissipation on
one site were studied for small occupations in the Mott-
insulator regime [26,27], for large particle numbers in the
noninteracting limit [28] and the weakly interacting regime
[29,30], and, recently, even for spinless fermions [31,32].
The continuous counterpart was also the topic of theoretical
studies [33-35].

The structure of this paper is as follows. In Sec. II we
introduce the dissipative Bose-Hubbard model (BHM) with
single-particle losses at one site. In Sec. III we study this
system in a mean-field framework, discussing the apparent
bistability. Based on these results an effective description is
introduced that shows great quantitative agreement for the
dissipative site. In Sec. IV we study the formation of a dark
soliton fixed in position by the dissipation that appears in both
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these models. In Sec. V quantum fluctuations are taken into
account using the TWA, which captures the sudden switches
between steady states. We perform a study of the characteristic
timescales of this effect and the closing of the Liouvillian
gap that is inseparably linked to this. Finally, in Sec. VI we
summarize our results.

II. THE BOSE-HUBBARD MODEL WITH LOCAL
DISSIPATION

A BEC loaded into a 1D periodic potential can, for large
lattice depths and tight trapping in the transverse directions,
be well approximated by the Bose-Hubbard model given by
[36]

L—-1 L
Agy = —J § @,,a;+He) + 5 § atataa;. (1)
j=1 j=1

Here &j. and a; denote the bosonic creation and annihilation
operators at the jth site, J is the nearest-neighbor tunneling
amplitude, and U is the on-site interaction energy.

When a quantum system is coupled to a Markovian envi-
ronment, the dynamics of its density matrix is governed by the
Lindblad master equation [37]:
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Here I'; are the quantum jump operators that represent the
effect of the coupling to the environment. For the case of
localized atomic losses on the central cite (j = c), there is a
single jump operator given by " = a, and Vi =V08jc.

This system features only losses and no compensating
driving. The true steady state of the system at infinite time
is therefore trivially empty. At intermediate times, however,
the modes surrounding the central site will act as a reservoir,
making the lossy site effectively a driven-dissipative system.
Competition between the losses and the Bose-Hubbard dy-
namics, which tends to level the particle number in all sites,
drives the system in a good approximation to a NESS [18-20].
In the following, we will call the quasisteady state at inter-
mediate times simply the steady state of the system, with
the timescale over which this state exists becoming longer
with increasing system size L and tending to infinity in the
thermodynamic limit.

III. MEAN-FIELD DESCRIPTION

Typically, quantum fluctuations play an important role in
1D systems [24-27]. An appropriate description of this sys-
tem taking into account fluctuations is therefore given in
Sec. V. For weak interactions and large particle numbers,
however, the main features of the steady state can be under-
stood within a mean-field description, in which each site is
assumed to be in a coherent state. Within this approximation,
the master equation reduces to a discrete Gross-Pitaevskii
equation (GPE) for the coherent-field amplitudes o; = (a;):
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FIG. 1. Schematics of the experiment. Losses at a tunable rate y
take place on a single site of a BEC loaded into a 1D optical lattice.
For sufficiently large lattice depths, only nearest-neighbor tunneling
and on-site interactions contribute significantly to the dynamics. The
highly occupied modes to the left and right of the dissipation act as
reservoirs, inducing large particle streams to account for the losses.

The complex amplitudes are numerically time evolved accord-
ing to this GPE using the DIFFERENTIALEQUATIONS.JL package
in the JULIA programming language [38]. Calculations are
performed for large chains (L ~ 10?) deep in the superfluid
regime for an initial occupation per site ng = 700.

A. Bistability

In analogy with experimental observations [18], the mean-
field theory predicts bistable behavior, illustrated in Fig. 2,
where we show the relative particle number of the lossy site
for an adiabatic ramping up and down of the tunneling rate.
At a tunneling rate of zero, the central site is decoupled, such
that the dissipation will simply empty it within a time of the
order of y~'. When, on the other hand, the tunneling is very
large, particle currents can easily compensate for the losses,
resulting in a steady state with large occupation. At interme-
diate tunneling rates, the occupation depends on the system
history. When starting from a central site with low occupation,
the large interaction energy difference between the central site
and its first neighbor prevents tunneling in the same way as
in the self-trapping regime of the bosonic Josephson junction
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FIG. 2. Normalized steady-state occupation of the central dis-
sipative mode in the Bose-Hubbard array at different tunneling
strengths J with a fixed dissipation rate y/uo = 0.21. Starting at
J < Jmin (U > Jmax), With increasing (decreasing) tunneling strength,
the solution follows the lower (upper) branch. A sudden discontinu-
ous jump to the opposing branch occurs when the bistable regime is
left.
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[39—42]. Modes on both sides of the dissipative system remain
mostly undepleted. When, on the other hand, starting from a
central site with the same occupation as its neighbors, the tun-
neling is efficient, and the relative occupation remains close
to 1.

With a slow adiabatic increase of J starting from zero, the
system will move along the lower stable branch. The opposite
happens when starting at large tunneling strengths and sweep-
ing down along the upper stable branch. For large and small
values of J both branches overlap, but for Ji,in < J < Jnax the
system is bistable.

The hysteretic behavior is in direct analogy with that of the
coherently driven nonlinear resonator, which is, at the mean-
field level, described by [4]
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where w, is the driving frequency. The connection between
the Kerr model (4), which can be solved analytically for the
NESS, and our Bose-Hubbard system is readily made by
neglecting the back-action of the central site on its nearest
neighbors. The amplitude of the neighboring sites is then
equal to /ng, and their frequency is given by the chemical
potential po = Uny [43], such that o4 = /nge~'/". Sub-
stitution in Eq. (3) yields exactly Eq. (4) with F = 2J /ng and
hawg = po.

B. Incoherent pumping model

The simplification of the dynamics from the full GPE to the
coherently driven nonlinear resonator is particularly attractive
in view of modeling the experiments in Refs. [18,19], which
consist of an array of two-dimensional gases, and worked out
by Reeves and Davis [20] since it then allows us to reduce
the dynamics of a three-dimensional to a two-dimensional
system.

While, at the qualitative level, there is a good correspon-
dence between the GPE model of the whole chain and the
coherently driven resonator, there are significant quantitative
differences in the shape of the hysteresis, which is visible in
Fig. 3(a). The most salient discrepancies are the overestima-
tion of the upper bistability threshold and the density on the
upper bistability branch. The latter is, in particular, unphysical
because the coherently driven model predicts a larger occupa-
tion on the dissipative site than on the neighboring sites.

In order to obtain a more accurate reduced description for
a Bose-Hubbard system with local dissipation, we develop
a model that is inspired by descriptions of exciton-polariton
condensates, in which the losses are compensated by the
gain from an incoherent reservoir [5,13]. From the above
discussion of the bistability, it is clear that the resonant tun-
neling between the lossy site and its neighbors is an essential
ingredient of the dynamics. Keeping the amplitude of the
first neighbors fixed leads to artifacts such as overfilling. We
therefore want to treat them as dynamical variables while
approximating the contribution from further away modes by
a single driving term. In order to maintain the U(1) symmetry,
we model them as incoherent pumping baths.

We start by looking at a small trimer (L = 3), schemati-
cally shown in Fig. 4, with losses in the central mode, ¢ = 2,
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FIG. 3. Comparison of the lossy-site steady-state occupations in
the BHM with those from the effective descriptions in (a) Eq. (4)
and (b) Eq. (5). (a) The coherently driven single mode, although
in qualitative agreement, grossly overestimates the upper bound on
the bistability regime and predicts overfilling in the upper branch.
With increasing size (multiple modes with coherent pumping at the
edges) the boundaries of the bistability region shift in favor of the
Bose-Hubbard simulation benchmark, but overfilling becomes even
more pronounced. (b) A three-well system with incoherent drive at
the edges is already a much better approximation, with a remarkable
overlap of the stable upper branch. A slightly larger five-well system
also brings the bistability bounds into quantitative agreement.
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Here « is the rate of the saturation, simulating refilling from a
large number of highly occupied wells with mean occupation
ng. A gain term like this yields a typical refilling that follows a
logistic curve. This is shown to be the best fit for the refilling
in a Bose-Hubbard array [17,44,45]. The on-site tunneling that
is added in Eq. (3) simply shifts the ground-state energy.
Steady states of the dissipative mode in this configura-
tion are shown in Fig. 3(b) in comparison with the solutions
from the full chain. It is clear that the three-mode incoher-
ent pumping model outperforms the resonant pumping one.
Most significant is the similarity of the upper branch between
the exact solution and the toy model for which the behavior
depends mainly on the value of x. Tuning the refilling rate,
we find that the best agreement is obtained for k¥ = ¢, =
/2JUny, exactly the speed of sound in a Bose-Hubbard chain.
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FIG. 4. Schematic representation of the compact incoherently
driven model. This Bose-Hubbard trimer with losses in the center
has boundary driving in the form of a saturation with maximum

occupation ng, which mimics the refilling from a large sequence of
modes with the same occupation.
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FIG. 5. Formation of a standing dark soliton. (a) The argument of
the coherent-field amplitudes ¢/ as a function of time shows a
phase separation that breaks the mirror symmetry after small random
fluctuations are added at Ut, = 1 (dashed line). Reservoir modes
on both sides go from rotating in phase to antiphase. (b) As a
consequence, a phase difference of 7 builds up between the left and
right neighbors of the lossy site. Driving from both sides interferes
destructively, causing the occupation in the central mode to vanish.
The effective model (dotted lines) captures this behavior very well
with only a small difference in the time it takes for this transition to
occur. Normalized field amplitude at a few sites around the center
either (c) with losses at j = ¢ or (d) without losses, but with an
initial = phase jump imprinted on the chain. Both configurations are
appearances of the discrete dark soliton from Eq. (6) with a shift of
m by half a lattice constant (dashed lines).

The lower branch is less affected by variations in the refilling
rate.

Even better agreement with the benchmark is obtained
by slightly increasing the size. We take now L =5 coupled
modes, with the first and last again saturated as described in
Eq. (5). The results are illustrated in Fig. 3(b) by the dashed
line, showing very good agreement with the complete system
overall.

IV. DISCRETE SOLITON FORMATION

In addition to the two symmetric solutions with large and
small occupations of the lossy site described above, a third
asymmetric state of the system can be reached. It displays a
7 phase difference between the left and right neighbors of
the lossy site such that the density in the lossy site is exactly
zero owing to the destructive interference between the two
tunneling currents. Because the density in the lossy site then
vanishes exactly within the mean-field description, it is not
affected by the dissipative part of the dynamics, and it is, at
the mean-field level, a dark state of the Liouvillian.

Figure 5 shows the dynamics of the formation of the
dark state starting from a condensate with uniform phase,
zero tunneling, and an entirely empty lossy site. The tun-
neling strength is then slowly increased to reach the NESS
on the lower bistability branch for J/ug = 0.1. At time ¢, a
small phase perturbation is added manually to the mean-field

dynamics in the form of a multiplicative phase e™*%-015;

where &; are normally distributed with unit variance. Follow-
ing this perturbation, the modes on the left and right move out
of phase to the point of perfect destructive interference in the
center, where the particle number drops to zero. A discrete
dark soliton is formed with the zero amplitude locked in the
dissipative site.

The above numerical analysis suggests that the symmetric
state on the lower branch of the bistability is not stable with
respect to small phase perturbations. This is confirmed by a
linear stability analysis of our incoherent pumping model. As
shown in Fig. 5(b) by the dotted lines, the effective description
(for L = 5) reproduces the transition from the lower bistability
branch to the dark state, with only a small discrepancy in the
transition time. It is worth pointing out that it is the U(1)
invariance of the incoherent pumping model that allows us to
describe the transition to the dark soliton. This is in contrast
to the coherent pumping model, in which the phase of the
frequency of the drive is fixed externally and no spontaneous
phase dynamics takes place.

The stationary dark state is, far from the edges, well de-
scribed by [33,46]

a; = /ngtanh[y/110/2J (x; — m)] exp (—ipot /h),  (6)

where m = ¢ is the soliton location, as can be seen in the
spatial amplitude profile in Fig. 5(c). As a comparison we
show the stationary state, after imaginary-time evolution, for
y = 0, but with an initial = phase jump at j = ¢, in Fig. 5(d).
This state coincides with Eq. (6) when m = ¢ — 1/2. These
two configurations are referred to as on-site and intersite dark
solitons, respectively. They can be viewed as realizations of
the same soliton state translated through the lattice by half
a lattice constant [46]. Due to the energy difference brought
about by the discreteness, a barrier exists between both con-
figurations. The closed system will generally, after appropriate
phase imprinting [47-49], end up with a lower-energy in-
tersite soliton, where two nearest neighbors have a m phase
difference but no sites are completely empty. Instead, when
dissipation is turned on, the state with a dark site is favored.

The instability of the lower branch towards the dark soliton
state has not been observed experimentally, possibly due to
the spatial extent of the condensate at each lattice site that
is neglected in our 1D BHM. In what follows we assume
our system is symmetric with respect to the dissipative site,
effectively disregarding the soliton state, allowing us to focus
on the steady states in the hysteresis loop.

V. QUANTUM FLUCTUATIONS

So far, we have restricted our theoretical description to
the mean-field approximation. While this is sufficient to un-
derstand the classical bistable behavior, it fails to capture
quantum fluctuations on top of the classical dynamics. The
first correction to the classical behavior manifests itself in
the switching between the two branches in the bistability
region. Where these steady states are stable in the classical
mean-field limit, in reality they are only metastable, as re-
cently observed experimentally [19]. Tunneling between these
metastable states characterizes the relaxation of the density
matrix to its true unique stationary value [4,10,50-52].
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FIG. 6. Normalized central mode amplitude for two single
stochastic realizations of Eq. (7) with an initially empty (blue) or
filled (gray) lossy site. The trajectories feature relatively long tran-
sient times in which the amplitude fluctuates around one of the steady
states, with sudden switches at seemingly random times.

A successful approximation that allows for the inclusion of
quantum fluctuations in a tractable way and that is accurate
for weakly interacting Bose gases in the quantum degener-
ate regime is the truncated Wigner approximation [53]. This
method is based on the Wigner distribution W[A, A*] over
classical phase space parameterized by the coherent-state am-
plitudes A = (o, p, . . .). Starting from Eq. (2), an equivalent
equation of motion for the Wigner function can be derived
[54]. The approximation consists of neglecting third-order
derivatives in this differential equation, eventually leading to
a set of Langevin equations for the phase-space variables, as
detailed in the Appendix:

. d
zhEaj = —J(@j—1 +ajt1) +U(a;)* = Da;

— il +/y;/250). 7

On the one hand, quantum fluctuations enter the dynamics
due to the nondeterministic nature of the initial conditions
a;(t = 0). These values are sampled from the Wigner function
representing the initial state of the system (see the Appendix)
and subsequently time evolved according to Eq. (7). On the
other hand, associated with the dissipation is the normalized
complex Gaussian noise & (), for which it holds that

@) =0, E@OEE)=28¢t—1). ®)

Moments of the Wigner function correspond to expectation
values of the Weyl-ordered products of the corresponding sets
of particle operators,

(@jag - aral - w = (e - aal, - gm). (9

Here the subscript W denotes averaging over a large ensemble
of stochastic Wigner trajectories.

A. Branch switching

The main effect of including quantum fluctuations is shown
in Fig. 6, where two stochastic realizations of the central site
occupation are plotted in time. Within the bistable parame-
ter regime, this occupation number is seen to initially waver
around one of the two NESSs, depending on the chosen initial
condition, but jumps to the complementary state can occur on
longer timescales. Adding fluctuations changes the bistability
to bimodality; that is, the system probes two regions in phase
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FIG. 7. Histograms of the time between switches in density of
the central site (a) and (b) from high occupation to low occupation
and (c) and (d) vice versa. We show examples for the dissipative
BHM at tunneling J/po = 0.07 and J/pp = 0.11 in (a) and (c),
respectively, and for the effective five-mode description at tunneling
J/po = 0.06 and J/ o = 0.12 in (b) and (d), respectively. All distri-
butions are characterized by a long exponential tail. At early times in
the BHM switches from upper to lower branch are suppressed. This
effect, although still noticeable, is less pronounced in the effective
model.

space that are centered around the mean-field solutions. In
principle, only averages over large ensembles correspond to
quantum-mechanical expectation values of observables that
would allow us to make comparisons with experimental obser-
vations. However, the independent Wigner trajectories already
resemble single experimental measurements of the system
performed, for example, by Benary et al. [19].

In order to analyze the switching between the metastable
branches quantitatively, we have collected statistics for the
waiting time between switches from low to high atom num-
bers and vice versa. Representative examples are shown in
Fig. 7, where simulations for the full BHM [Figs. 7(a) and
7(c)] and the effective five-site incoherent pumping model
[Figs. 7(b) and 7(d)] are compared.

For the dissipative BHM, the switching time distribution
deviates from an exponential decay that one would expect
for a uniform Poisson process, indicating that the jumps are
not completely independent. At early times suppression of
the branch switching occurs. This effect is more pronounced
for switches from large to small occupation, indicating the
presence of dynamics preceding such a transition. The same
behavior is, to a lesser extent, also observable in the temporal
distributions of the incoherently driven model.

The long exponential tails determine the characteristic
switching times 7., and Tgown. The time it takes the system to
relax to its unique steady state, through the process of branch
switching, is then characterized by 7! = ru’pl + rd_olvn.

B. Critical slowing down

From the quantum Liouvillian master-equation perspec-
tive, the asymptotic decay rate of the density matrix towards
the true stationary value corresponds to the inverse of the
Liouvillian gap A, defined as A = |Re{A;}|, with A; being
the eigenvalue from the complex spectrum with the largest
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FIG. 8. The effective Liouvillian gap A = 7' + 7, as a func-
tion of the tunneling strength J/uo. A large dlscrepancy can be
noticed between the BHM (circles), where A converges to a finite
value everywhere, and the incoherent pumping model (squares),
where a true critical slowdown is observed. Increasing the noise
at the edges, coming from the gain, by a factor of 3 (diamonds),
4 (upward triangles), and 5 (downward triangles), we see that the
minimum increases. With this modification the solution for the BHM
is approached.

nonzero real part [55]. The stationary state towards which the
system relaxes corresponds to the Ao = O eigenstate. A first-
order phase transition features a closing of this Liouvillian
gap and thus a level touching in the eigenvalue spectrum. This
results, in the vicinity of the critical point where the relaxation
time diverges, in an apparent bistability at finite times.

Since the Liouvillian gap determines the longest relaxation
time in the dynamics, we can extract its value from the anal-
ysis of the switching statistics by taking A = 1/7. In Fig. 8
we plot A/U as a function of the tunneling strength in the
regime where mean-field theory predicts bistability. Values
from the BHM are compared to the effective model, revealing
a substantial discrepancy. The minimum, which indicates the
critical point J., is many orders of magnitude smaller. This
difference could be due to an effective reduction of the noise
in the spatially smaller system, where the dissipative site
interacts with a much smaller number of modes. In a large
array the many reservoir modes not only provide a saturation
effect but also bring additional fluctuations and thus faster
branch switching. The effective description does not capture
this influence properly. This is confirmed when one manually
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A 18
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increases the noise input at the edges due to the incoherent
pumping. The sharpness of the dip in A(J) can be reduced no-
ticeably, and the BHM result can be more closely approached.
Adding more fluctuations naturally decreases switching times
and also leads to suppression of switches at early times like in
Fig. 7(a).

VI. CONCLUSION

We have studied a 1D Bose-Hubbard chain with single-
particle losses at the central site and made a comparison with
a compact effective description that replaces a large num-
ber of reservoir modes by a single saturation term. In the
mean-field approach, we found good quantitative agreement
of the steady-state population of the dissipative mode. We also
observed the formation of a dark state, a stationary soliton
locked in place by the dissipation. This physics is captured
by the effective description as well, thanks to its preserva-
tion of the U(1) symmetry. Beyond the classical limit, in
the truncated Wigner approximation, switching between the
metastable states is observed and quantified by the Liouvillian
gap, the inverse of the asymptotic decay rate. From this we can
conclude that the incoherent pumping model underestimates
the fluctuations.
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APPENDIX: TRUNCATED WIGNER APPROXIMATION

A common approach to including quantum fluctuations
for weakly interacting Bose gases in the quantum degenerate
regime is the truncated Wigner approximation [12,53]. This
method, for a Bose-Hubbard chain of length L, is based on a
description in 2L-dimensional phase space, where the Wigner
distribution W[A, A*] is the analog of the density matrix. An
equation of motion for the Wigner function, equivalent to a
master equation for the density matrix, can be derived thanks
to a set of transformation rules [54]:

10
AT A * *
atp < <a» - ——)W[A,A 1,
J J 280(]‘

. pal o (a + —i>W[A A*]. (A1)

2 da;

Applying these to the Lindblad master equation [Eq. (2) in the main text] results in

__—zZ< |:J(ozj+1+ozj D) = U(la;* - 1)aj+i%aj]—c.c.)W[A,A*]

+Z(2

dojoa;

T S & WA A
— of — o ,A*].
daryoa; | daldar

(A2)
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The approximation now consists of neglecting the third-order derivatives. These terms scale with the inverse of the number
of particles per site 1/n;, so for weak interactions U and macroscopically large occupations the error of this approximation
becomes relatively small. The remaining equation is a Focker-Planck equation, which can equivalently be written as a set of L
Langevin equations for the complex-valued phase-space variables:

do

ih—= = —J(etj-1 +ajp) + Ul = Detj — i%“/‘ + /726 ). (A3)

J
dt

The equations that are numerically solved in this approach are,
apart from the stochastic term for j = c, identical to the GPE
derived in mean field. Yet leading-order quantum fluctuations
are taken into account by the nondeterministic nature of the
initial conditions o ;(t = 0). These values are sampled from
the Wigner function representing the initial state of the system
and subsequently time evolved according to (7), yielding a so-
called trajectory. Due to coupling to a reservoir an additional
stochastic term comes in for the lossy site (y; = y4;.) with
normalized complex Gaussian noise & (¢). Expectation values
of Weyl-ordered products of operators correspond to mo-
ments of the Wigner function or, in terms of the time-evolved
stochastic variables «;(t), to averages over large ensembles
of numerically simulated trajectories. For the BHM this ap-
proach can actually be put on equal footing with Bogoliubov
theory [45,56].

For the initial state we take our system to be at thermal
equilibrium. To this end the total matter field at each site can
be split up into components parallel and orthogonal to the
condensate mode [53]:

aj(t =0)=aop) + ¢ (A4)

The condensate wave function ¢! is a solution of the time-
independent Gross-Pitaevskii equation of the closed system
(y =0) and is determined using imaginary-time evolution.
The noncondensed field is sampled considering the following
expansion:

o7 =Y b(xjue™ + by (xjpe ™, (AS)
k

(

where we sum over the eigenmodes (uy, vy) of the discretized
Bogoliubov operator with eigenenergies €. In the case of a
BHM these are given by

U 1\'?
G+ On ) , (A6)

uk,U](=:|:<Tj:§
k

with wy = /€r(ex +2Un), €, = 4J sinz(ka/Z), andn = N/L
being the density of particles per site. The complex amplitudes
for these eigenmodes are sampled from Gaussian distributions
[53]:

P(by) = % tanh (2;:T> exp [—2|b,<|2 tanh (2;:T)]

(AT)
We take the limit 7 — 0 so that the amplitudes are sampled
from a complex normal distribution. In order to conserve the
particle number at r = 0 for each stochastic realization the
number of noncondensed particles

1
Nexe = Y (lwel* + |vk|2)(b;';bk - 5) +Y) lul (A8)

k
is subtracted from the fixed total number N to find

N() =N — Nexc~ (A9)

For the start of each trajectory we then set ay = /Ny + 1/2,
which is now also a stochastic variable.
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