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Tunable momentum pair creation of spin excitations in dipolar bilayers
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We study the temporal growth and spatial propagation of quantum correlations in a two-dimensional bilayer
realizing a spin-1/2 quantum XXZ model with couplings mediated by long-range and anisotropic dipolar
interactions. Starting with an initial state consisting of spins with opposite magnetization in each of the layers, we
predict a dynamic instability that results, at short times, in the creation of correlated pairs of excitations at specific
momenta at exponentially fast rates and entanglement between spatially separated modes. The momentum
structure of the created pairs can be controlled via the dipolar orientation, the layer separation, or the dipolar
couplings. The predicted behavior remains observable at very low filling fractions, making it accessible in
state-of-the-art experiments with Rydberg atoms, magnetic atoms, and polar molecule arrays.
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I. INTRODUCTION

Anisotropic dipolar interactions controllable via electro-
magnetic fields offer unique opportunities for the implemen-
tation of iconic models of quantum magnetism relevant for
fundamental science and for the development of novel quan-
tum technologies. In recent years, great progress has been
made on the implementation of dipole-induced spin-exchange
interactions in fully controllable quantum systems of polar
molecules [1–3], magnetic atoms [4], and Rydberg atoms
[5,6]. However, most of the investigations so far have been
targeted to the single-excitation regime [7] or to the case
of multiple excitations characterized via collective observ-
ables [8–17]. Nevertheless, recent experimental developments
on quantum gas microscopes [18,19] and optical tweezers
[20–24] that allow for the spatially resolved control of cor-
relations at the single-particle level are opening a window to
explore rich and intriguing quantum phenomena enabled by
dipolar spin models.

In this work, we study the temporal and spatial growth
of correlations during the many-body dynamics of an array
of spin-1/2 frozen dipoles confined in two separated two-
dimensional layers [see Fig. 1(a)]. This system, imple-
mentable, for example, using optical lattices or tweezer arrays,
realizes a quantum XXZ spin model with dipolar couplings.
By preparing the two layers in opposite spin states, as in
recent experiments on polar molecules [15], one creates a
dynamically unstable state from which correlated pairs of
spin excitations develop and grow at an exponential rate, at
least at short times. These correlated pairs manifest in the
spin structure factor, which develops intriguing momentum
patterns controllable by both the separation of the layers and
the magnitude and orientation of the dipole moments.

The buildup of spin correlations can be explained using
a Bogoliubov analysis, which uncovers a dynamical insta-
bility in specific tunable momentum modes. We validate the

Bogoliubov predictions of the pair creation patterns by nu-
merical simulations of the full spin dynamics and show that
pattern formation remains robust even for very low lattice
fillings, making it observable in state-of-the-art experiments,
without requiring unit filling.

Here we find the exponential proliferation of correlated
pairs of excitations in spatially separated layers. This emulates
the phenomenon of pair creation from vacuum fluctuations,
opening unique opportunities for quantum simulation and for
fundamental tests of quantum mechanics including Einstein-
Podolsky-Rosen (EPR) steering [25–28]. Pair creation itself is
a ubiquitous phenomenon in physics, relevant in a broad range
of contexts including parametric amplification and two-mode
squeezing in quantum optics [29], the Schwinger effect in
high-energy physics [30–32], the emission of Unruh thermal
radiation in curved space time [33,34], and in holography
given that the thermofield double state generated during pair
production is dual to a traversable wormhole [35,36] in quan-
tum gravity, and a resource for quantum teleportation [37–39].

Previous studies of pair creation processes in spinor
condensates induced by contact interactions [40–43] were
dominated by single (resonant) momentum modes (or trap
states in confined condensates [44]) determined by the
quadratic Zeeman shift, while proposals of pair production in
cavities induced by collective interactions [45] require a set
of laser tones to generate nontrivial patterns and are sensitive
to cavity loss [46]. In contrast, the pair creation observed
in this work allows for the generation of highly tunable and
intriguing distributions of excitations naturally emerging from
anisotropic dipolar couplings [1–4,8–11,13,47,48].

II. MODEL

We consider an array of frozen dipoles with two relevant
internal levels (e.g., two rotational states in the case of polar
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(a) (b)

FIG. 1. System. (a) Bilayer of dipoles confined in two-
dimensional (2D) planes with dipole moments aligned at an angle �0

to the out-of-plane direction. When the layers are prepared in an ini-
tial state with opposite magnetization, dipolar interlayer interactions
create pairs of excitations in the layers in specific quasimomen-
tum modes. (b) Occupation of the most unstable mode Nk∗ as a
function of time t for different dipole orientations �0 (legend) at
fixed aZ/a = 2. Shown are spin dynamics from DTWA (solid lines)
and the prediction from Bogoliubov theory (dashed lines). Shaded
regions indicate the regimes of dynamics (for �0 = 3π/8), where we
find exponential growth as predicted by Bogoliubov (I), saturation
and slow down of growth (II), and eventual decay and thermalization
(III). Results are for a 33 × 33 bilayer at unit filling.

molecules) confined in two parallel two-dimensional layers
generated via optical lattices or optical tweezers, separated by
a tunable distance aZ . We denote the upper layer as A and the
lower one as B. As shown in Fig. 1(a), both layers have square
geometry with a nearest-neighbor spacing a.

Electric and magnetic dipole-dipole interactions can lead
to both exchange of internal-state excitations as well as Ising
interactions [7–13,47,49], which can be tuned via external
electromagnetic fields. For the case of frozen particles, the
dynamics is governed by the celebrated (long-range) spin-1/2
XXZ model,

ĤXXZ = 1

2

∑
σ=A,B

∑
i �=j

V σσ
ij

(
ŝ+

iσ ŝ−
jσ + ŝ−

iσ ŝ+
jσ + 2ηŝz

iσ ŝz
jσ

)

+
∑

i,j

V AB
ij

(
ŝ+

iAŝ−
jB + ŝ−

iAŝ+
jB + 2ηŝz

iAŝz
jB

)
, (1)

where σ indexes the layers, η characterizes the relative
strength between Ising and exchange couplings, and i =
(ix, iy) stands for a two-dimensional coordinate in which ix, iy
run along the positions in a given two-dimensional layer of
size N = L × L. As is customary, the spin operators ŝα

i =
σ̂ α

i /2 are given in terms of the Pauli matrices σ̂ x,y,z that act
on the spin at site i. We shall focus our attention on dipole
couplings of the form

V σσ ′
ij = J∣∣rσ

i − rσ ′
j

∣∣3

⎧⎨
⎩1 − 3

[
d · (

rσ
i − rσ ′

j

)]2

∣∣rσ
i − rσ ′

j

∣∣2

⎫⎬
⎭, (2)

where d̂ = sin �0êx + cos �0êz is the orientation of the
dipoles, rσ

i is the position of a dipole in layer σ , and J is the
spin-exchange constant.

Motivated by recent experiments on polar molecules in
bilayers [15], we consider in the following the nonequilibrium
dynamics of this system starting from an initial state where all
dipoles in layer A (B) are initially in the spin-up (-down) state.
We first analyze the spin excitations in terms of a Bogoliubov

treatment, and then by simulating the quantum dynamics of
the full dipolar spin model using the discrete truncated Wigner
approximation (DTWA) [50,51].

III. BOGOLIUBOV ANALYSIS

As in the standard spin-wave analysis, the spin dynam-
ics can be described by mapping the Hamiltonian (1) to a
hard-core bosonic model using the Holstein-Primakoff trans-
formation ŝz

A,i = 1/2 − â†
i âi, ŝ+

A,i = âi, ŝ−
A,i = â†

i , and ŝz
B,i =

−1/2 + b̂†
i b̂i, ŝ+

B,i = b̂†
i , ŝ−

B,i = b̂i. The bosonic operators âi

and b̂i characterize the spin excitations that appear on top of
the prepared initial state.

Assuming a small population of spin excitations, much
smaller than the number of sites, the Hamiltonian may be
rewritten in quasimomentum space,

Ĥ =
∑

k

ε̃k(â†
kâk + b̂†

kb̂k ) + �kâ†
kb̂†

−k + �∗
kb̂−kâk, (3)

where âk = 1√
N

∑
ri

e−ik·ri âi and b̂k = 1√
N

∑
ri

e−ik·ri b̂i. The
momentum-dependent interlayer coupling is given by �k =∑

j V AB
0j e−ik·rj , whereas the intralayer band dispersion for

spin excitations in each layer is ε̃k = εk − η(ε0 − �0), with
εk = ∑

j�=0 V AA
0j e−ik·rj . The Ising term results in a momentum-

independent shift of the intralayer band energy. The interlayer
coupling drives the creation of correlated pairs of excitations
(one per layer) at an energy cost set by the intralayer term.

The Hamiltonian can be diagonalized by means of a Bo-
goliubov transformation (see the Appendix), which leads
to the eigenenergies ξk =

√
ε̃2

k − |�k|2 . Crucially, |�kc | >

|ε̃kc | for certain quasimomenta kc, resulting in imaginary
eigenenergies ξkc , i.e., a dynamical instability of the vac-
uum of spin excitations leading to the creation of correlated
pairs. The instability manifests itself as an exponential
growth in the population of the corresponding mode, Nkc =
(|�kc |/|ξkc |)2 sinh2 (|ξkc |t ). These predictions are shown as
the dashed lines in Fig. 1(b), compared to the full spin dy-
namics discussed below.

Note that if a3
Z � a3, the interlayer coupling |�k| is much

smaller than the intralayer bandwidth. As a result, imaginary
eigenenergies only occur for ε̃k � 0. This condition is modi-
fied by the shift induced by the Ising term, which hence acts as
an additional knob to tailor the quasimomentum distributions
discussed below [a similar control knob would be provided by
a layer bias of the form

∑
i(ŝ

z
A,i − ŝz

B,i)] (see the Appendix).
In the following, we mostly focus, for simplicity, on the case
η = 0, i.e., in the absence of the Ising term (XY model), for
which ε̃k = εk.

Figure 2(a) shows the pair coupling strength �k in the Bril-
louin zone, overlaid with the resonant line for which εk � 0.
Pairs are most effectively produced exactly on resonance and
for momenta where pair coupling is strong. This is borne
out in Fig. 2(b), which shows the growth rate of momentum
modes, i.e., the imaginary part of the Bogoliubov energy,
which matches with the overlap of the resonant surface and
the region of strong interlayer coupling seen in Fig. 2(a).
Bogoliubov theory hence predicts the creation of pairs with
a specific quasimomentum distribution. Figure 2(c) shows the
growth rate 
 of the most unstable mode, i.e., the maximum of
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FIG. 2. Bogoliubov analysis. (a) Pair coupling strength |�k | as a
color plot, overlaid with the resonant surface ε(k) � 0. (b) Imaginary
part of the Bogoliubov energy ξk . Both are for a dipole orientation
�0 = 3π/8 and aZ/a = 2. (c) Growth rate of the maximally unstable
mode 
 = maxk Im[ξk] as a function of the dipole orientation �0 at
aZ/a = 2, 4 as indicated in the legend. All are in units of J/h̄.

the imaginary part of the Bogoliubov energies, as a function of
the dipole orientation �0 for two different bilayer spacings aZ .
At sufficiently long times, the most unstable modes eventually
dominate pair creation, resulting in vastly different dynamical
scales for the spin excitations for different dipole orientations.
Since the overall form of the growth rate does not qualitatively
change for a3

Z � a3, we will focus on the case aZ/a = 2.

IV. TUNABILITY AND CONTROL OVER
UNSTABLE MODES

Next we illustrate the tunability of and control over
the momentum structure of the dynamical instability, which
controls the spatial structure of the created pair correlations

and entanglement, and the growth rate of the most unstable
modes, as well as the topology of the unstable modes. In
particular, we demonstrate how the topology changes from a
simply connected circular manifold at �0 = 0 to two discon-
nected arcs above a critical �0.

There are different natural parameters that allow us to tune
the pair creation instabilities. They are the orientation of the
dipoles �0 via the field direction, or a shift of the intralayer
dispersion ε̃k, which may be induced either by an Ising term
ŝz

i ŝ
z
j in the dipolar interactions present at finite electric fields

or by a layer bias of the form h
∑

i(ŝ
z
A,i − ŝz

B,i) induced by an
electric field gradient.

We begin by illustrating the effect of changing the dipole
orientation in Fig. 3. We note that the intralayer dispersion
(top row) shows a Dirac conelike structure at �0 = 0, with
linear scaling around k = 0 with an almost rotationally sym-
metric dispersion, whereas at any finite �0 the dispersion
becomes strongly anisotropic. Similar behavior is seen in
the interlayer coupling �k in the middle row. We also note
that for the chosen layer spacing aZ/a = 2, the intralayer
dispersion is significantly larger than the pair coupling. Since
the Bogoliubov dispersions (bottom row) are given by ξk =√

ε̃2
k − |�k|2 , we find unstable modes with zero real part close

to regions of vanishing dispersion only. We also emphasize
that the unstable modes form a ringlike structure for �0 = 0,
whereas the unstable modes form two separate arclike features
for the other orientations.

We separately illustrate the full tunability of the mani-
folds of unstable modes through distinct topologies via the
dipole orientation in Fig. 4. We observe both a change from
a connected circular structure to separate arcs, as well as a

FIG. 3. Tunability of quasiparticle dispersions via electric field orientation. Intraplane dispersion εk (top row), interlayer coupling �k

(middle row), and real part of Bogoliubov energy ξk (bottom row), all in units of J/h̄ for different dipole orientations �0 = 0, π/4, 3π/8 (left
to right columns) at a layer separation of aZ/a = 2.
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FIG. 4. Tunability of unstable modes via electric field orien-
tation. Left panel: Manifolds of unstable modes defined as the
nonvanishing imaginary part of the Bogoliubov energy ξk. Red stars
indicate the most unstable mode. Right panel: Contours of most
unstable mode k∗ as a function of dipole orientation �0 (color bar).

change in the number of most unstable modes, from 2 to 4,
for different dipole orientations.

In addition, we may also tune the instability by a shift of
the dispersion. For simplicity, we consider an applied electric
field gradient as it is, in principle, fully tunable. We define the
layer bias h = x W + h0 as a fraction x of the bandwidth of the
intralayer dispersion W = max εk − min εk with an additional
offset h0 to shift the dispersion to have ε̃0 = 0. We show in
Fig. 5 how this allows control over the unstable manifolds,
from a single point at kc = (0, 0) for x = 0 (left top panel)
over ringlike structures around the center of the Brillouin zone
at intermediate x (central top panel) to arcs around the corners
of the Brillouin zone (BZ) as x approaches 1 (top right panel).

FIG. 5. Tunability of unstable modes via electric field gradient
at �0 = 0. Top panel: Real part of the Bogoliubov quasienergy ξk in
units of J/h̄ at �0 = 0.0 and aZ/a = 2 for different applied field gra-
dients x = 0, 0.5, 0.95, from left to right. The applied field gradient is
defined via a fraction x of the total bandwidth W = max εk − min εk

as h = x W + h0, where h0 is chosen to shift the dispersion to have
ε̃0 = 0. Bottom left panel: Manifolds of unstable modes defined as
the nonvanishing imaginary part of the Bogoliubov energy ξk. Red
stars indicate the most unstable mode. Bottom right panel: Contours
of the most unstable mode k∗ as a function of the applied field
gradient (color bar).

The instabilities are pushed to the four corners of the BZ at
x = 1. This is shown more directly in the right bottom panel
of Fig. 5, which shows the behavior of the most unstable mode
as a function of the layer bias.

We note that for �0 = 0, the most unstable mode is always
fourfold degenerate for �0 = 0, with the exception of the
case of k → 0 and close to the degenerate region along rings
around the center of the BZ. In contrast, for other dipole
orientations, e.g., �0 = π/4 (not shown), the most unstable
mode may be either twofold or fourfold degenerate and of
the form k∗ = ±k or k∗ = (±kx,±ky). In addition, we ob-
serve another distinct topology of unstable modes consisting
of two separate disklike regions.

V. FULL SPIN DYNAMICS

We next turn to the full quantum spin dynamics of the
model obtained within the DTWA [50,51]. The momentum
state population of excitations in layer B maps to the structure
factor, which in terms of spin operators can be written as

N̂B
k = 1

N

∑
ij

eik·(ri−rj )b̂†
i b̂j = 1

N

∑
ij

eik·(ri−rj )ŝ+
i ŝ−

j , (4)

with a similar expression for layer A and we define Nk =
〈N̂A

k 〉 = 〈N̂B
k 〉. Note that the disconnected part vanishes iden-

tically (see the Appendix). We will focus on this momentum
structure to observe the pair creation process in the spin dy-
namics (see the Appendix for real-space results).

Figure 1(b) shows the population Nk∗ (t ) of the most unsta-
ble mode k∗ for different dipole orientations �0 obtained from
both DTWA simulations (solid lines) and the Bogoliubov
analysis (dashed lines) with no fitting parameters. Both results
are in very good agreement in the initial exponential growth
regime (regime I), in which a significant number of pairs are
created before corrections or further scattering terms become
important. This is followed in the full dynamics by a slow
down and eventual saturation to a maximal mode occupation
(regime II), after which scattering between momentum modes
starts to deplete the maximally unstable mode (regime III). As
expected from the Bogoliubov analysis, we observe that the
spatial and temporal growth of correlations exhibit a strong
dependence on the dipole orientation.

We show the time evolution of the full momentum dis-
tribution of the created pairs during the spin dynamics of
the model, obtained within DTWA for a representative �0 =
3π/8 in Fig. 6(a), with an extended set of figures pro-
vided in the Appendix. At very short times, off-resonant
non-exponentially-growing modes dominate the structure (left
panel), which then give way to the exponentially growing
unstable modes resulting in the distribution expected from the
Bogoliubov prediction (second panel). Naturally, higher-order
terms neglected within the Bogoliubov approximation will
eventually result in scattering between different momentum
modes, leading to thermalization. This expectation is seen in
the last two panels showing first an increase of population in
the slower growing unstable modes and then thermalization in
the late-time regime. We note that the approach to equilibrium
can itself host rich physics [52–55].
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(a)

(b)

FIG. 6. Momentum structure of created pairs Nk. (a) Time evo-
lution of Nk(t ) within DTWA showing the different regimes of
dynamics for �0 = 3π/8. Time in terms of t10, where Npair(t10) =
0.1N . The leftmost panel shows the early-time regime before expo-
nential growth has taken over. The second panel shows the buildup
of the expected momentum structure. The last two panels show the
subsequent thermalization as scattering between momentum modes
occurs. (b) Comparison of Bogoliubov prediction (top) and spin
dynamics from DTWA (bottom) for a range of �0, all at t10. Results
are for a 33 × 33 bilayer with layer spacing aZ/a = 2 with open-
boundary conditions at unit filling.

We establish the correspondence of the DTWA results and
the Bogoliubov predictions for different dipole orientations
�0 in Fig. 6(b). Here, we choose an evolution time t such
that the total number of pairs Npair = ∑

k Nk(t ) = 0.1N , to
allow time for the dynamical instability to create pairs, while
at the same time keeping within the regime of validity of the
Bogoliubov analysis. We observe good agreement for all
dipole orientations, indicating that the pair production mech-
anism is still effective in the full dipolar spin model.

VI. WIDER CONTEXT

After establishing these phenomena in the full spin dy-
namics, we can now connect back to the motivating ideas.
Conceptually, we realize quantum-time evolution of the form
|ψ (t )〉 � e
t

∑
k∈ηc β

†
kβk |vac〉, where |vac〉 is the vacuum of ex-

citations, ηc is the set of most unstable momentum modes,
and βk are the quasiparticle operators. This generates pairs of
correlated excitations with opposite momenta in the layers;
the momentum distribution at momentum k in layer A equals
that at momentum −k in layer B, which reflects the strongly
entangled character of the state generated during pair creation.

As a direct consequence of realizing a pair-creation Hamil-
tonian of momentum modes, the quantum dynamics maps
onto Unruh radiation [34]: the created population of excita-
tions in momentum space is exactly the thermal bath observed
in an accelerated frame (see the Appendix). Moreover, the
time-evolved state (see the Appendix) is the thermofield
double state [35,36], which, within the the holographic cor-
respondence, is dual to wormholes on the gravity side [56,57]

FIG. 7. Momentum occupation Nk of created pairs in the pres-
ence of positional disorder and nonunit filling obtained within
DTWA. Results are for a range of �0 and filling fraction f at fixed
aZ/a = 2 at times such that Npair(t ) = 0.1 f N . L = 33 with open-
boundary conditions.

and enables teleportation (“traversable wormholes”) [37–39].
It is also an ideal resource for EPR steering [25–28] given its
shared entanglement between spatially separated layers. Fi-
nally, the entangled pairs in the form of a two-mode squeezed
state [29] also feature correlations in the amplitude and phase
quadratures of the momentum modes: their individual fluc-
tuations are amplified, while their relative fluctuations are
reduced below the vacuum noise level, enabling applications
in quantum metrology.

VII. IMPERFECT FILLING

Considering the feasibility to observe these effects in an
experimental setting, while tweezer arrays offer the possibility
to achieve unit filling [20–23,58–60], a major challenge in
optical lattices, especially for polar molecules, is imposed by
imperfect filling, which results in positional disorder of the
pinned dipoles. While important developments in cooling and
trapping molecules have allowed the preparation of lattice
arrays with up to f = 0.25 [18,61–63], which highlight the
near-future potential of achieving high filling fractions, they
also illustrate the need to understand which effects would be
observable at lower filling fractions in current setups.

To address this question, we consider bilayers in which
each lattice site has a fixed spatially uniform probability f
to be occupied or empty. We show the resulting momentum
occupation Nk for different filling fractions f (averaging over
10 000 filling realizations) and two dipole orientations �0 in
Fig. 7. Also, for the case of imperfect filling, our DTWA
results are in very good agreement with the Bogoliubov anal-
ysis (for more details, see the Appendix). We observe that
while the signal to noise deteriorates as the lattice becomes
more sparsely filled, most importantly, the main qualitative
phenomenology, i.e., the emergence of a manifold of unstable
exponentially growing modes, does extend to a remarkably
low filling fraction regime, which makes the observation in
experimental platforms feasible.

VIII. OUTLOOK

Dipolar systems confined in two-dimensional bilayers host
a dynamical instability generating correlated pairs and en-
tanglement between spatially separated layers. Making use
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of the wide tunability of dipolar interactions, one can access
different shapes and topologies of the momentum distribution
of the created pairs. These correlations may be probed using
spatially resolved measurements accessible in state-of-the-art
platforms in tweezers and quantum gas microscopes for a
range of atomic or molecular gases. In these systems, the
entangled pairs in spatially separated layers can be stored and
manipulated with individual particle control, providing new
opportunities in metrology.

The reported dynamical instabilities not only are genuinely
driven by quantum fluctuations, but are in stark contrast to the
usual rotonlike instabilities at finite momentum, as, e.g., in
dipolar condensates [64]; here the generated modes of oppo-
site momentum ±�k are not equivalent, but rather correspond
to two different entangled pairs of excitations in both layers.

The long-time behavior and eventual thermalization of the
excitations remain an open question. Since the initial pairing
instability creates a well-defined highly nonthermal occupa-
tion in momentum space, the eventual approach to equilibrium
might reveal universal nonequilibrium scaling exponents and
self-similarity [52–55].
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APPENDIX

The appendices contain additional details on the Bo-
goliubov analysis, the effect of boundary conditions, the
real-space structure of the spin correlations, and Bogoliubov
as well as extended DTWA results for the finite filling frac-
tion behavior of the momentum structure of correlations, and
extended DTWA results for the time dependence.

1. Bogoliubov analysis

Here we provide further details of the Bogoliubov analysis
of the spin Hamiltonian. First, we focus on the diagonaliza-
tion procedure of a unit filling lattice, then we proceed to
discuss the case of lattices with fillings smaller than one. For
a perfectly filled lattice, we may write the Hamiltonian in
quasimomentum space,

Ĥ =
∑

k

εk(â†
kâk + b̂†

kb̂k )

+
∑

k

|[�k|e−iαk â†
kb̂†

−k + |�k|eiαk âkb̂−k], (A1)

where we have made explicit the complex nature of the in-
terlayer coupling �k = |�k|e−iαk . In the presence of an Ising

term, we would simply substitute εk by ε̃k. Before introducing
the Bogoliubov transformation, it is convenient to decouple
the above Hamiltonian into symmetric and antisymmetric col-
lective quasimomentum modes. For this purpose, we define
the following operators:

Ŝk = 1√
2

(e−iαk/2âk + eiαk/2b̂k ),

Âk = 1√
2

(e−iαk/2 âk − eiαk b̂k ). (A2)

In terms of these new operators, the Hamiltonian can be
rewritten as Ĥ = ĤS + ĤA with

ĤS =
∑

k

εkŜ†
kŜk + |�k|

2
(Ŝ†

kŜ†
−k + ŜkŜ−k ),

ĤA =
∑

k

εkÂ†
kÂk − |�k|

2
(Â†

kÂ†
−k + ÂkÂ−k ). (A3)

In the following, we discuss the diagonalization of ĤS , but that
of ĤA is completely analogous. At this point, we introduce
the Bogoliubov transformation β̂k = ukŜk − v∗

kŜ†
−k. The am-

plitudes uk and vk obey the Bogoliubov–de Gennes equations,
ξkuk = εkuk + |�k|vk, (A4)

ξkvk = −|�k|uk − εkvk, (A5)

where the eigenenergies acquire the form ξk =
√

ε2
k − |�k|2 .

In the case of real eigenvalues, the time dependence of
the Bogoliubov operators is β̂k(t ) = e−iξkt β̂k(0) and β̂

†
k (t ) =

eiξkt β̂
†
k (0). Inversion of the Bogoliubov transformation yields

the following expression:

Ŝk(t ) = [e−iξkt cosh2 φk − eiξkt sinh2 φk]Ŝk(0)

+ i sinh (2φk ) sin(ξkt )Ŝ†
k(0), (A6)

with sinh2 2φk = |�k|2/ξ 2
k . The vacuum expectation value

of the population of the symmetric mode k gives
〈0|Ŝ†

k(t )Ŝk(t )|0〉 = sinh2 (2φk ) sin2 (ξkt ); the same expression
fulfills 〈0|Â†

k(t )Âk(t )|0〉. Then, the total population of the
mode is simple,

Nk = 〈Â†
k(t )Âk(t ) + Ŝ†

k(t )Ŝk(t )〉/2

= [|�k| sin (ξkt )/ξk]2. (A7)

If ξk is imaginary, the Bogoliubov modes fulfill |uk|2 = |vk|2
and therefore the modes are actually quadratures of the form

X̂k = 1√
sin φk

[e−iφk/2Ŝk − eiφk/2Ŝ†
−k],

(A8)

P̂k = 1√
sin φk

[eiφk/2Ŝk − e−iφk/2Ŝ†
−k],

with tan φk = −εk/|ξk|. The first quadrature grows ex-
ponentially in time, X̂k(t ) = e|ξk|t X̂k(0), whereas P̂k(t ) =
e−|ξk|t P̂k(0) decreases exponentially. By inverting the defini-
tion of the quadratures, one can find the time evolution of the
symmetric mode,

Ŝk = i√
2 sin φk

[(e−iφk e|ξk|t − eiφk e−|ξk|t )Ŝk(0)

− 2 sinh (|ξk|t )Ŝ†
−k(0)]. (A9)
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Then it follows that 〈Ŝ†
k(t )Ŝk(t )〉 = sinh2 (|ξk|t )/ sin2 φ2

k; a
similar expression fulfills 〈Â†

k(t )Âk(t )〉. The total population
of the mode is simple, Nk = [|�k| sinh (|ξk|t )/|ξk|]2. Since
sin (i|ξk|)/i|ξk| → − sinh (|ξk|)/|ξk|, one can safely use the
expression in Eq. (A7) to obtain the time dependence of the
density of excitations in each layer,

n(t )a2 =
∫

BZ

d2k

(2π )2
|�k|2

[
sin |ξk|t

|ξk|
]
, (A10)

where the integration is over the first Brillouin zone.
The Bogoliubov treatment of the case of imperfect filling

is more involved. We consider a lattice with L × L sites with
open-boundary conditions, and a filling f < 1. We create a
given realization by randomly filling each layer with a given
number of dipoles, up to the desired lattice filling. Due to
positional disorder, it is suitable to work with the Hamiltonian
in space representation,

Ĥ =
∑
i �=j

V AA
ij â†

i âj +
∑
i �=j

V BB
ij b̂†

i b̂j

+
∑

i,j

V AB
ij â†

i b̂†
j +

∑
i,j

V BA
ij b̂iâj. (A11)

We may again apply the Bogoliubov transformation, β̂n =∑
j unjâj + ∑

j′ vnj′ b̂j′ . By imposing that ξnβ̂n = [β̂n, Ĥ ], we
obtain the Bogoliubov–de Gennes equations,

ξn

(
un

vn

)
=

(
V AA −V AB

V BA −V BB

)(
un

vn

)
, (A12)

where un = (un,i1 , un,i2 . . . un,iL×L )T and similarly for vn. By
solving the above eigenvalue problem, we obtain the eigen-
modes and their corresponding evolution in time. Inverting
the Bogoliubov transformation provides the time dependence
of the lattice operators, and Fourier transforming yields the
quasimomentum distribution. Averaging over many random
realizations of the lattice filling, we obtain the distributions
discussed below.

2. Pair creation for quantum simulation and metrology

Here we provide additional details of the relevance of the
discussed pair-creation mechanism to quantum simulation and
metrology.

At the center of these connections is that we effectively
realize pair creation at resonant momenta, or a two-mode
squeezing Hamiltonian involving momentum modes. This al-
lows for the generation of the so-called thermofield double
(TFD) states. TFD states are not only at the heart of quantum
simulation of Unruh radiation [34], but also a resource for
entanglement generation between spatially separated modes
which can be used for various applications ranging from quan-
tum metrology to teleportation and quantum communication.

To make these connections as transparent as possible, we
restrict, for simplicity, to a single resonant mode, for which
we effectively realize

hkc = (�kc â
†
kc

b̂†
−kc

+ �∗
kc

â−kc b̂kc ), (A13)

which is the well-known two-mode squeezing Hamiltonian,
which here creates entangled pairs in spatially separated lay-
ers A and B.

The operators consequently evolve as(
âk (t )

b̂†
−k (t )

)
=

(
cosh(|�kc |t/h̄) sinh(|�kc |t/h̄)

sinh(|�kc |t/h̄) cosh(|�kc |t/h̄)

)(
âk (0)

b̂†
−k (0)

)
.

(A14)

One can compare this directly to the transformation into
the Rindler frame of a scalar field [34], which is given by⎛

⎝ b̂R
ω

b̂†L
ω

⎞
⎠ =

(
cosh(rω ) sinh(rω )

sinh(rω ) cosh(rω )

)(
ĉω

d̂†
ω

)
, (A15)

where tanh(rω ) = e−πωc/a is defined in terms of the acceler-
ation a of the frame and the frequency ω of the field. This
connects field operators in an accelerated frame on the left, to
Unruh operators on the right whose vacuum is the Minkowski
vacuum in the inertial frame.

An evolution time t for a given resonant mode kc then
corresponds to a frame transformation with acceleration

a = −πωc/ ln[tanh(|�kc |t/h̄)], (A16)

and the excitations created in the quantum system during the
time evolution thus correspond to the thermal occupation of
modes observed in an accelerated frame, i.e., a process that
quantum simulates Unruh radiation.

If we now take a closer look at the generated state after
time evolution, which emerges from the vacuum state, it has
the form

eithkc |vac〉 = 1

cosh(|�kc |t )

∞∑
n=0

tanhn(|�kc |t )|nA,kc , nB,−kc〉,

(A17)

which is known in the literature as a thermofield double state
(TFD) [35–37]. This is a pure state of the form

1√
Z

∑
n

e−En/(2kbT )|n〉A ⊗ |n〉B, (A18)

where the coefficients follow a Boltzmann distribution with a
temperature set by the evolution time as

T = E

2kB ln[coth(|�kc |t )]
. (A19)

The Boltzmann-like distribution generated in a pure quantum
state has the appeal that when each of the modes of the TFD
is considered independently by tracing over the other,

ρreduced = 1

Z

∑
n

e−En/(kbT )|n〉〈n|, (A20)

the state reduces to a thermal mixed state with an effec-
tive temperature T [35]. These types of states have played
a key role in the holographic correspondence relating a
quantum-field theory to a gravitational theory in one higher
dimension. In this correspondence, TFD states are dual to
wormholes on the gravity side [56,57] and enable teleporta-
tion (“transversable wormholes”) [38,39].
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FIG. 8. Effect of the boundary conditions in the Bogoliubov
analysis. We depict the quasimomentum distribution of the created
pairs, Nk , comparing periodic (top) and open (bottom) boundary
conditions for a range of dipole orientations �0, at times such that
Npair(t ) = ∑

k Nk(t ) = 0.1N . The results were obtained for a 33 × 33
bilayer with layer spacing aZ/a = 2 at unit filling.

3. Comparison of open and closed boundary conditions

The above-mentioned procedure in real space for f < 1
may also be employed for full filling, providing the time
evolution in the presence of open-boundary conditions, rather
than periodic boundary conditions, as implicitly assumed in
the analysis in quasimomentum space. We consider the effects
of boundary conditions on the momentum structure of the
created pairs in finite systems within the Bogoliubov analysis
in Fig. 8. We see that both periodic (top) and open (bottom)
boundaries result in basically the same momentum structure
across all dipole orientations. This demonstrates that the pre-
dicted phenomena should be accessible within the limitations
of total particle numbers and lattice sizes available in experi-
mental platforms.

4. Comparison of momentum and real-space
structure of correlations

Here we provide results for the correlation structure in real
space. While we mainly focus on the momentum structure
of the correlations, as they directly map to the occupation
of momentum modes and the Bogoliubov analysis, the real-
space correlations are what would be directly observed in an
experiment with access to spatially resolved measurements.

By defining the spin-spin correlation function

C+−
ij = 〈ŝ+

i ŝ−
j 〉, (A21)

the spin-structure factor SA(B),+−
k , which corresponds to the

momentum mode occupation in the low excitation limit, is just

SA(B),+−
k = 1

N

∑
ij∈A(B)

eik(ri−rj )C+−
ij . (A22)

We emphasize that this directly corresponds to the connected
correlation function for our initial state evolving under the
U(1)-symmetric XXZ Hamiltonian which makes the one-point
functions vanish identically at all times, i.e., 〈ŝ+

i 〉 = 〈ŝ−
i 〉 = 0.

FIG. 9. Correlations in momentum and real space. Top panel:
Spin-structure factor S+−

k (t ) [see Eq. (A22)], corresponding to mo-
mentum state population of pairs Nk (t ), compared to the real-space
structure of spin correlations |C+−

r (t )| [see Eq. (A21)]. Results are
for a 33 × 33 bilayer with a layer spacing of aZ/a = 2 and open-
boundary conditions at time t such that Npair (t ) = N/10.

We compare these expressions directly in Fig. 9 for a range
of dipole orientations. The top panels show the spin-structure
factor S+−

k , and the bottom panels show the corresponding
real-space correlation function C+−

r at a distance r = ri − rj,
both summed over the layers A, B. To make the structure
of real-space correlations visible on top of the population
growth, we only show them for i �= j, e.g., set C+−

ii = 0.
These results highlight the intricate real-space structure of the
correlations created during the pair-creation process. We note
that up to boundary effects, the density of excitations itself is
fully homogeneous throughout the dynamics, and the struc-
ture emerges within the intersite off-diagonal correlations.

FIG. 10. Extended DTWA results on time evolution. Momentum
state population of pairs Nk (t ) within DTWA showing the different
regimes of dynamics for a range of dipole orientations �0 at times
in terms of t10 at which Npair (t10) = 0.1N . The leftmost panel shows
the early-time regime before exponential growth has taken over. The
second and third panels show the buildup of the expected momen-
tum structure. The central panel shows the fully builtup expected
momentum structure. The last three panels show the subsequent
thermalization as scattering between momentum modes occurs. Re-
sults are for a 33 × 33 bilayer with a layer spacing of aZ/a = 2 and
open-boundary conditions.
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FIG. 11. Bogoliubov results at finite filling. Momentum state
population Nk for a range of �0 and filling fraction f at times such
that Npair(t ) = 0.1 f N . Results are for a 33 × 33 bilayer with a layer
spacing of aZ/a = 2 and open-boundary conditions.

5. Extended results on time dependence

We provide extended results for the time dependence of
the momentum structure of the created pairs obtained within
DTWA in Fig. 10. This provides both the full range of dipole
orientations (in contrast to the single case of �0 = 3π/8 in
the main text), as well as additional times during the buildup
of correlations, as well as during the late-time thermalization
state. The qualitative picture remains the same for all dipole
orientations, in that at very early times, the dynamics of stable
modes can dominate over the exponentially growing unstable
modes, which establish the expected momentum structure at
intermediate times, before scattering between modes leads to
thermalization and a homogeneous background at late times.

6. Results at finite filling

Figure 11 shows the quasimomentum distribution of the
created pairs for an imperfect filling within the Bogoliubov
analysis, following the procedure discussed above. These re-
sults should be compared with the results shown in Fig. 3(b) of
the main text, as well as with the results covering an expanded
set of dipole orientations in Fig. 12. The DTWA results are
averaged over 10 000 realizations of the lattice occupations,
whereas the Bogoliubov results average over 200 realizations.

FIG. 12. Extended DTWA results at finite filling. Momentum
structure of created pairs Nk(t ) at times t such that the total number
of pairs Npair (t ) = 0.1 f N . Results are for a range of �0 and filling
fraction f for a 33 × 33 bilayer with a layer spacing of aZ/a = 2 and
open-boundary conditions.

Across all dipole orientations and filling fractions, we
again observe a very good agreement between the spin
dynamics obtained with the DTWA and the Bogoliubov
predictions. In particular, both show the shrinking of the struc-
tures in momentum space as the filling fraction is lowered.
Intuitively, large momentum modes would be expected to be
more strongly affected by the introduction of local disorder,
whereas small momentum modes would be expected to be
more resilient, which seems to be the case here.

Importantly, the dynamics remains qualitatively unaffected
by the imperfect filling, being still characterized by the expo-
nential growth of characteristic patterns in quasimomentum
space, that depend on the dipole orientation. This robustness
against imperfect filling is particularly relevant since it makes
feasible the observation of the effect in current experimental
platforms.
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