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Caustics in the sine-Gordon model from quenches in coupled one-dimensional Bose gases
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Caustics are singularities that occur naturally in optical, hydrodynamic, and quantum waves, giving rise to
high-amplitude patterns that can be described using catastrophe theory. In this paper we study caustics in a
statistical field theory setting in the form of the sine-Gordon model that describes a variety of physical systems
including coupled one-dimensional (1D) superfluids. Specifically, we use classical field simulations to study the
dynamics of two ultracold 1D Bose gases (quasicondensates) that are suddenly coupled to each other and find
that the resulting nonequilibrium dynamics is dominated by caustics. Thermal noise is included by sampling
the initial states from a Boltzmann distribution for phononic excitations. We find that caustics pile up over time
in both the number and phase difference observables, leading to a characteristic nonthermal circus-tent-shaped
probability distribution at long times.
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I. INTRODUCTION

Wave focusing is ubiquitous in nature and leads to local-
ized regions of high amplitude called caustics that dominate
wave fields. Everyday examples are provided by rainbows
and also the bright lines on the bottom of water pools which
are caused by the focusing of sunlight by raindrops and sur-
face water waves, respectively [1]. Caustics also occur in
water waves themselves as ship wakes [2], in the vicinity of
a vortex [3–5] and more dramatically as tsunamis (focused
by the topography of the seabed [6–8]) and tidal bores (fo-
cused by V-shaped bays [9]). Astrophysical examples include
gravitational lensing by matter and the twinkling of starlight
due to time-dependent fluctuations in the density of earth’s
atmosphere. Natural focusing also leads to the phenomenon of
branched flow [10] and is speculated to have given rise to the
filamented nature of the large-scale structure of the universe
[11–14]. In all these systems caustics give rise to extreme
amplitude fluctuations that occur more frequently than those
predicted by Gaussian statistics [15].

A remarkable property of caustics is that they commonly
take on particular characteristic shapes. This is because caus-
tics are singularities of the ray description, i.e., they are places
where two or more rays coalesce, leading to a diverging in-
tensity in the short-wavelength limit [16]. Such singularities
are described by Thom’s catastrophe theory, which rigorously
shows that only certain shapes of singularity are structurally
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stable against perturbations and hence occur under natural or
generic conditions [17–19]. These special shapes or catas-
trophes form a hierarchy organized by dimension where the
higher ones contain the lower ones. Each member of the
hierarchy represents a class of equivalent shapes that can be
smoothly transformed into each other, but each class is distinct
and cannot be smoothly transformed into any of the others.
In two dimensions the only structurally stable shape is the
cusp and we will see that it appears frequently when we plot
quantities such as number fluctuations versus time. It is worth
noting in this context that the humble point focus that we
associate with lensing is structurally unstable and unfolds into
an extended caustic in the presence of perturbations (aber-
rations). Natural lenses are of course never perfect and so
typically produce the shapes predicted by catastrophe theory.
The upshot of all this is that caustics represent a form of
universality in nonequilibrium wave dynamics: They fall into
equivalence classes, each with their own shapes and scaling
properties analogous to, but a generalization of, equilibrium
phase transitions [16,20].

Caustics should equally be present in quantum waves
where, due to the probabilistic interpretation, they correspond
to regions of high probability density. Quantum matter wave
caustics have been seen in experiments with cold neutrons
[21,22], electron microscopes [23], atom optics [24–26], and
most recently in atom lasers [27]. Theoretical works on such
matter wave caustics have also considered their fine structure
[16], which features a lattice of vortices [28–30]. Quan-
tum fields are another area where caustics are expected to
form naturally during dynamics. Early work centered on the
electromagnetic field [31,32], including an interpretation of
Hawking radiation as a quantum catastrophe [33], and more
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recently this idea has been extended to quantum many-particle
systems including bosonic Josephson junctions [29,34,35],
the XY model with long-range interactions (Hamiltonian
mean-field model) [36], quantum spin chains [30] and the
Bose-Hubbard model [37]. One point to appreciate is that the
caustics in many-body systems can occur in the wave func-
tion associated with an entire N-body configuration. Quantum
many-particle caustics therefore exist in Fock space, which
can have a large number of dimensions and hence lead to very
complicated catastrophes [37]. However, catastrophes obey
projection identities, which means that when projected down
to lower dimensions one obtains either the same catastrophe or
one lower down the hierarchy [38]. Thus, low-order correla-
tion functions obtained by integrating out most of the degrees
of freedom will also generically contain caustics [30].

In this paper we study caustics in the sine-Gordon (SG)
model. The (classical) SG model obeys the nonlinear wave
equation

∂2φ

∂t2
− c2

0
∂2φ

∂z2
+ ω2

0 sin φ = 0, (1)

where φ = φ(z, t ) is a one-dimensional field and c0 and ω0

represent a characteristic speed and frequency, respectively. If
c0 is taken to be the speed of light, then Eq. (1) is relativisti-
cally covariant, being a nonlinear version of the Klein-Gordon
equation and reducing to it when φ � 1 such that sin φ ≈
φ. The SG model received attention from the high-energy-
physics community in the 1970s due its soliton solutions
[39–42], but also describes the low-energy physics of a con-
siderable range of condensed-matter systems including crystal
dislocations [43], domain walls in magnetic [44] and binary
superfluid [45] systems, mesoscopic thin-walled supercon-
ducting cylinders in magnetic fields [46,47], the Heisenberg
spin chain with a field induced gap [48–50], trapped ions [51],
two-dimensional Bose gases realizing the XY model [52],
one-dimensional Bose gases in periodic potentials (which
can capture the Mott insulator to superfluid transition in
one dimension) [53,54], one-dimensional ultracold bosonic
gases with two spin states [55], and two tunnel-coupled one-
dimensional single-component Bose gases [56–63]. The fact
that the SG model is both nonlinear and integrable means that
attention is often focused on its soliton solutions, but part
of our mission in this paper is to point out that these same
properties also imply that caustics (which are associated with
the existence of tori in phase space [64]) are expected to occur
generically, and we are aware of only one previous study of
caustics in this model [65].

The particular physical realization we have in mind for
this paper is a system composed of two elongated quasi-
one-dimensional single-component Bose gases coupled by
tunneling along their length; the field φ(z, t ) in Eq. (1)
gives the relative phase between the two quantum gases.
Quasi-one-dimensional Bose gases have been created in
a number of experiments over the past two decades us-
ing tightly trapped ultracold atoms, and the remarkable
tunability of these systems allows the strongly interacting
Tonks-Girardeau regime [66,67], the weakly interacting qua-
sicondensate regime [68–71], and also the crossover between
the two [72,73], to be reached. It is important to note
that, in accordance with the Mermin-Wagner theorem [74],

FIG. 1. Schematic of the setup we consider. (a) Two quasi-one-
dimensional gases that are prepared independently and then suddenly
coupled together. We call this process of sudden coupling a J quench.
Here ρ1(z) and ρ2(z) represent the density (red) in the first and sec-
ond condensates, respectively. Similarly, φ1(z) and φ2(z) represent
the phases (black) of the two condensates. Prior to the J quench,
these fields in the two condensates are independent and contain
thermal fluctuations. (b) Diagram showing how a J quench could be
implemented by suddenly reducing the tunneling barrier height in a
double-well potential from a higher value to a lower one.

one-dimensional Bose gases do not undergo true Bose-
Einstein condensation at low temperature, unlike three-
dimensional gases. Instead, they can form quasicondensates
where density fluctuations are still quite suppressed but phase
fluctuations that destroy off-diagonal long-range order remain
[75–77]. In this paper we will work in the weakly interact-
ing regime and assume a state of the system consisting of a
quasicondensate plus small thermal fluctuations.

A system comprised of two coupled quasi-one-
dimensional gases can be made by taking a single gas
and splitting it in two along its long axis by switching on an
elongated double-well potential. This is the experimental
protocol typically adopted in a series of experiments
conducted by the Vienna group [69,78–84]. The combination
of almost complete isolation from the environment, long
relaxation times, and spatially resolved measurements of
phase and number difference makes these experiments ideal
for investigating many-particle quantum dynamics, including
fundamental questions such as whether and how closed
quantum systems reach equilibrium. The gas can be split
slowly so that it always remains close to equilibrium, leading
to number squeezed states [85,86], or it can be split rapidly,
leading to a so-called quantum quench, which launches the
system into a nonequilibrium state.

In this paper we consider the opposite quench where two
one-dimensional gases are suddenly connected together (see
schematic representation in Fig. 1). This touches on rather
fundamental considerations in quantum mechanics since it
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describes the buildup of coherence between two initially in-
dependent systems and is therefore related to the double-slit
experiment for many-particle systems [59,87–90]. We refer
to this as a J quench because J is often used to denote the
coupling strength between the two wells. In a simple two-
mode description of a bosonic Josephson junction, i.e., one
that assumes a single mode in each well without the quasi-
continuum of low-energy longitudinal modes that are present
in highly elongated traps, such a quench is predicted to result
in a periodic collapse and revival of the atom number distri-
bution between the two wells [91–93]. Essentially the same
behavior, but π/2 out of phase, occurs in the relative phase,
which is the conjugate variable to the number difference. In
Refs. [29,34,35] these revivals are shown to be examples of
quantum caustics in a many-particle system. One of our main
aims here is to investigate what happens to these caustics
in the presence of the dispersive longitudinal modes present
in the SG model and is part of a wider program attempting
to understand the role of caustics in quantum many-particle
dynamics [20,29,30,34–37].

Due to the difficulty of solving the fully quantum SG
model, we take a semiclassical-style approach based on clas-
sical field configurations which are solutions of Eq. (1).
Each configuration is analogous to a single geometric ray
in optics and we include fluctuations by summing many
configurations. The initial conditions for each field configu-
ration are randomly sampled from a Boltzmann distribution.
This approach is similar in spirit to the truncated Wigner
approximation (TWA) [94–99], which includes quantum fluc-
tuations around the classical field by summing many rays
sampled from a quantum probability distribution. The TWA
has previously been applied to one-dimensional Bose gases by
Martin and Ruostekoski [100,101], who studied dark solitons,
and also to the connection problem of two zero-temperature
one-dimensional Bose gases by Dalla Torre et al. [59], who
proposed a universal scaling form for the phase dynamics after
the quench. More recently, the TWA has been used by Horváth
et al. [102] to study the surprisingly sudden relaxation of the
phase seen in the Vienna Bose-Einstein condensate splitting
experiments [84]. In this paper we include both the quantum
fluctuations arising from coupling two independent systems
and thermal fluctuations arising from thermal phonons in
the longitudinal modes and compare the time evolution of
macroscopic variables (the total number difference and phase
difference) in the SG system against the simpler two-mode
system [20,29,34]. We find that following a quench, caustics
dominate the dynamics of the macroscopic variables of both
systems, even in the presence of thermal fluctuations. Due to
the singular nature of caustics, and combined with their struc-
tural stability, we therefore propose that strong non-Gaussian
fluctuations are a generic phenomenon following a quench in
the SG model (and indeed in integrable or moderately chaotic
many-body systems in general).

The caustics we discuss in this paper also have implica-
tions for the question of relaxation towards equilibrium at
long times in many-particle systems. While chaotic (non-
integrable) and open quantum systems should thermalize
(although a complete description is still the subject of active
research [103–110]), closed integrable models do not reach a

conventional Gibbs state. We show here that in the SG model
there is a pileup of caustics leading to a singular shape for the
long-time probability distribution for the macroscopic vari-
ables that resembles the shape of a circus tent and is quite
distinct from the thermal equilibrium prediction. We find that
an analytic approximation to the singular distribution based
on an ergodic pendulum (assuming a microcanonical or equal-
probability distribution) provides a good fit to the numerical
data.

The plan for the rest of this paper is as follows. We start
in Sec. II by deriving the SG Hamiltonian from the many-
body description of two coupled one-dimensional (1D) Bose
gases. In Sec. III we describe the natural length scales and
timescales and use them to write the SG Hamiltonian and
equations of motion in convenient dimensionless forms. Sub-
sequently, in Sec. IV we develop a method for finding the
initial conditions for the SG equations of motion. We assume
that prior to the quench the two Bose gases are indepen-
dent and at thermal equilibrium with a bath at temperature
T . The initial conditions are obtained by stochastically sam-
pling the Fourier modes of a 1D quasicondensate obeying the
Tomonaga-Luttinger liquid theory. With the initial conditions
in hand, in Sec. V we give the main results of this paper,
which are the dynamics of the macroscopic number and phase
difference variables obtained by solving the equations of mo-
tion numerically. In Sec. VI we consider the bigger picture
and examine the universal aspects of our results, including
the influence of caustics on the coherence as well as the
long-time dynamics and the establishment of (nonthermal
or non-Gaussian) equilibrium. We summarize in Sec. VII.
There are also six Appendixes where we give the details
of the calculations as well as benchmarking our numerical
method.

II. FROM TWO COUPLED CONDENSATES TO THE
SINE-GORDON MODEL

We begin by deriving the SG model as an effective low-
energy description for two coupled one-dimensional Bose
gases. For the sake of clarity, we list the main simplifica-
tions employed in this work: (i) the treatment of a quantum
many-body problem by a semiclassical method (TWA), (ii)
the neglect of a weak harmonic trap along the long axis which
would otherwise lead to a nonuniform longitudinal density
(this can be avoided in box traps which, although rarer, can be
realized [83,111]), (iii) the assumption of a constant value for
the tunnel coupling J along the entire length of the gases, and
(iv) the neglect of coupling to symmetric and higher transverse
modes (some more involved theoretical models do include
these effects [62,63]). These simplifications are not expected
to qualitatively alter the main results of this work due to the
structural stability of caustics. In other words, caustics are
known to be robust to perturbations in both the Hamiltonian
and initial conditions.

A theoretical description of two ultracold quasi-one-
dimensional gases made up of bosonic atoms of mass m
and held parallel to each other so that the atoms can tunnel
between them at rate J can be obtained from the microscopic
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Hamiltonian [56,57,81]

Ĥ =
∑
j=1,2

∫ L/2

−L/2
dz

(
− h̄2

2m
ψ̂

†
j (z)

∂2

∂z2
ψ̂ j (z) + U (z) ψ̂

†
j (z)ψ̂ j (z) + g1D

2
ψ̂

†
j (z)ψ̂†

j (z)ψ̂ j (z)ψ̂ j (z)

)

−
∫ L/2

−L/2
dz h̄J[ψ̂†

1 (z)ψ̂2(z) + ψ̂
†
2 (z)ψ̂1(z)]. (2)

The indices j = 1, 2 label the two gases and each is assumed
to be tightly trapped in the x and y directions so that those
degrees of freedom are frozen into their ground states. Only
the longitudinal degree of freedom z in each gas is taken
to be active. In experiments there will usually be a weak
longitudinal trapping potential U (z), although, as mentioned
above, for simplicity we set it to zero and hence consider a
uniform system of length L with periodic boundary condi-
tions. The quantum field operator ψ̂ j (z) annihilates a particle
at point z and together with its Hermitian conjugate obeys
bosonic commutation relations [ψ̂ j (z), ψ̂†

j′ (z
′)] = δ j j′δ(z −

z′). The interaction constant g1D characterizes the effect of
atom-atom scattering within each gas on the longitudinal de-
gree of freedom and can be controlled in both magnitude and
sign either through Feshbach or confinement-induced scatter-
ing resonances [112]. An alternative physical realization of
the above Hamiltonian could be a two-component Bose gas in
a single quasi-one-dimensional trap [55]. In fact, quasi-zero-
dimensional bosonic Josephson junctions where the atoms are
held in a single tight trap and two atomic spin states are used
for the two states have been studied experimentally [113].

A weakly interacting three-dimensional Bose gas at ultra-
cold temperatures will undergo Bose-Einstein condensation
and can be described to high accuracy by a classical field
approximation (Gross-Pitaevskii theory [114]). In a quasi-
one-dimensional geometry quantum fluctuations can still be
small if the density is not too low, and under these circum-
stances the gas can be treated as a quasicondensate where
the quantum field operators are replaced by classical fields
[75,115,116]

ψ̂ j (z) → ψ j (z) = exp[iφ j (z)]
√

n1D + ρ j (z). (3)

Here n1D = N/L is the background density, where N is the
number of atoms in each gas (for simplicity we assume an
equal number of atoms N in each gas; the structural stability of
caustics means that they are in fact stable to small differences
in n1D between the two gases as we will see in Sec. VI B).
In addition, ρ j (z) and φ j (z) are the atom number density
and phase fluctuations at each point z, respectively. These are
canonically conjugate variables and can even be quantized in
a semiclassical regime such that they obey the commutation
relations [ρ̂ j (z), φ̂ j′ (z′)] ≈ iδ j j′δ(z − z′) in a coarse-grained
sense [116]. However, in the present paper ρ j (z) and φ j (z)
will be purely classical fields subject only to thermal fluctua-
tions.

We can further decompose the fields into their symmetric
and antisymmetric components

ρs(z) = ρ1(z) + ρ2(z)

2
, ρa(z) = ρ1(z) − ρ2(z)

2
,

φs(z) = φ1(z) + φ2(z), φa(z) = φ1(z) − φ2(z). (4)

In terms of these variables the Hamiltonian in Eq. (2) sep-
arates into three parts: a part that depends only on the
antisymmetric variables, a part that depends only on the sym-
metric variables, and a single term −h̄J

∫
dz ρs(z) cos φa(z)

that couples the two [56,57,61,79,81,82]. However, provided
the background density n1D of the two gases is the same and
the system is at or close to thermal equilibrium so that the
density and phase fluctuations are uncorrelated (which is the
initial condition we assume in this paper), the coupling term
vanishes so that the symmetric and antisymmetric parts of the
Hamiltonian decouple [57,81,82]. We can therefore restrict
attention to either the symmetric or the antisymmetric sectors.
In this paper we focus entirely on the antisymmetric sector
because the J quench we propose to launch the dynamics
only couples to the antisymmetric variables and fortunately
these are also the variables most easily measured in the matter
wave interference measurement method favored in experi-
ments [69,78–84].

The Hamiltonian describing the antisymmetric variables
that one obtains from Eq. (2) is (see Appendix A for details)

HSG+ =
∫ L/2

−L/2
dz

[
g1Dρ2

a (z) + h̄2n1D

4m

(
∂φa

∂z

)2

+ h̄2

4mn1D

(
∂ρa

∂z

)2

− 2h̄Jn1D cos φa(z)

]
. (5)

We refer to this as the sine-Gordon plus (SG+) model because
it includes an extra term (the third term) in comparison to the
standard SG Hamiltonian

HSG =
∫ L/2

−L/2
dz

[
g1Dρa(z)2 + h̄2n1D

4m

(
∂φa

∂z

)2

− 2h̄Jn1D cos φa(z)

]
. (6)

The third term in the SG+ model involves the gradient of
density fluctuations and has the effect of suppressing density
fluctuations at small length scales which are otherwise free
to proliferate. Taking the ratio of the density fluctuations (the
first term) to the gradient of the density fluctuations (the third
term), we see that the intrinsic length scale associated with
density fluctuations is the healing length

ξh = h̄√
mg1Dn1D

, (7)

which represents the minimum length at which our theory in
terms of classical density and phase fields is valid [57,102].
Even if short-wavelength modes are not excited initially, the
nonlinearity of the SG model couples the different modes
and over time they can become excited unless some kind of
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regularization, such as that which occurs naturally through the
third term in the SG+ model, is applied.

As shown in Chap. 3 in [54], renormalization-group treat-
ments show in fact that the third term in Eq. (5) is formally
irrelevant, but in order to prevent small-scale density fluctua-
tions in numerical calculations, previous authors have used a
lattice where the spacing is chosen to be greater than ξh [102].
In our work we implement both the lattice regularization pro-
cedure and retain the third term in Eq. (5) so that the cutoff is
applied smoothly.

The nonlinear term in the SG and SG+ Hamiltonians is
the cosine term which originates from tunneling between the
two wells and occurs in all Josephson-junction-type problems.
As noted above, this is also the only term that is directly
modified by the J quench as there is no term depending on
J in the symmetric sector [56,57]. From the structure of this
term it can be seen that it appears as a potential well for phase
configurations φ(z, t ). In fact, as we will see in Sec. V, it
behaves like an (imperfect) lens that focuses such phase rays
excited by the quench to form caustics. For the sake of brevity,
and when we deem no confusion can arise, we will omit the
a subscript on antisymmetric variables since we will not be
dealing with symmetric degrees of freedom.

The fact that the two fields φ(z) and ρ(z) form a conjugate
pair means that their equations of motion are given by Hamil-
ton’s equations

φ̇ = 1

h̄

δH
δρ(z)

,

ρ̇ = −1

h̄

δH
δφ(z)

,

(8)

where H is the Hamiltonian density defined via

H =
∫ L/2

−L/2
H dz. (9)

Applying these equations to the SG+ Hamiltonian given in
Eq. (5), we find the equations of motion

dφ(z, t )

dt
= 2

g1D

h̄
ρ(z, t ) + 2

h̄

4mn1D

∂2ρ(z, t )

∂z2
,

dρ(z, t )

dt
= 2

h̄n1D

4m

∂2φ(z, t )

∂z2
− 2Jn1D sin[φ(z, t )]. (10)

These are the key equations we use to solve for the dynamics
of the field configurations. They have the form of Josephson’s
equations [117] augmented by second-order spatial deriva-
tives ∂2φ/∂z2 and ∂2ρ/∂z2 which account for phase and
density fluctuations along the longitudinal direction. Com-
bined with the sine term, they will cause wave packets to
disperse along z. In the absence of these terms we have exactly
the equations of motion for a pendulum where φ is the angular
displacement from equilibrium and ρ plays the role of angular
momentum. The dependence on z suggests an interpretation in
terms of a continuous chain of many pendulums, each coupled
to its neighbors by the spatial derivative terms, and is reminis-
cent of the Fermi-Pasta-Ulam-Tsingou problem [56,118].

In this paper the coupled equations of motion given in
Eq. (10) will be solved numerically for a system of length
L. To perform the numerical computations we discretize the

system on a spatial grid with NL + 1 points, which makes the
grid spacing a = L/NL. The positions of the grid points are
given by z = ra, where r is an integer in the range

r = −NL

2
, . . . ,

NL

2
, (11)

with NL chosen to be an even integer. In light of the discussion
above concerning the role of the healing length as a physical
cutoff, we follow Ref. [102] and perform our numerics on
lattices with grid size a greater than ξh. This implies that

N2
L <

mg1Dn1DL2

h̄2 . (12)

We fulfill the condition given in Eq. (12) in all our numerics.
In Appendix C we check and verify the convergence of our
numerical solution of Eq. (10) as a function of the grid size.

III. NATURAL SCALES

Let us express the SG and SG+ Hamiltonians and
equations of motion in terms of the natural scales for a one-
dimensional quantum fluid. For a length scale we choose the
healing length ξh given in Eq. (7). The ratio of the healing
length to the mean interparticle spacing 1/n1D gives rise to
the dimensionless parameter

K =
√

n1D(h̄π )2

4g1Dm
, (13)

which measures how strongly interacting the system is. When
K � 1 the healing length is much greater than the inter-
particle spacing and the system is in the weakly interacting
(quasicondensate) regime. In this limit we can identify K
with the Luttinger parameter from Tomonaga-Luttinger (TL)
theory, which provides the universal low-energy effective
description for one-dimensional quantum fluids [53] (low-
energy limit of the Lieb-Liniger theory, for example [119])
and has been applied to quasi-one-dimensional ultracold
atomic gases in a number of works, e.g., [54,57,59,102,120–
122]. The relationship between K and microscopic quantities
such as m and g1D is not known analytically in the general
case, but in the weakly interacting limit it reduces to Eq. (13).
The same is true of the speed of sound, which here is given by

c =
√

g1Dn1D

m
. (14)

This can be used to define a characteristic energy, namely, that
associated with phonons (quanta of sound)

E = h̄ω = h̄c

ξh
, (15)

where we have set the natural frequency ω to be the ratio of
the speed of sound to the healing length.

We therefore transform to the dimensionless variables

z −→ z̃ = z

ξh
, t −→ t̃ = c

ξh
t,

ρ −→ ρ̃ = ρξh, φ −→ φ̃ = φ,

(16)
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and defining H̃SG = HSG/E and likewise for H̃SG+ we obtain
the two Hamiltonians in dimensionless form

H̃SG =
∫ L/2

−L/2
dz̃

[

ρ̃2 + ε

(
∂φ̃

∂ z̃

)2

− 2J cos φ̃

]
(17)

and

H̃SG+ =
∫ L/2

−L/2
dz̃

[

ρ̃2 + ε

(
∂φ̃

∂ z̃

)2

+ 


4

(
∂ρ̃

∂ z̃

)2

− 2J cos φ̃

]
,

(18)

where the coefficients are given by


 = π

2K
, ε = K

2π
, J = K

2π

ξ 2
h

ξ 2
s

. (19)

In the last term we have introduced the spin healing length

ξs =
√

h̄

4mJ
, (20)

which provides a measure for the distance over which co-
herence between the two gases is restored due to the tunnel
coupling J [61]. At finite temperatures another useful length
scale is the thermal phase coherence length

λT = 2h̄2n1D

mkBT
. (21)

The dimensionless form of the equations of motion can
now be given. For the SG model we find

dφ̃

dt̃
= 2
ρ̃,

dρ̃

dt̃
= 2ε

∂2φ̃

∂ z̃2
− 2J sin φ̃ (22)

and for the SG+ model we obtain

dφ̃

dt̃
= 2
ρ̃ − 


2

∂2ρ̃

∂ z̃2
,

dρ̃

dt̃
= 2ε

∂2φ̃

∂ z̃2
− 2J sin φ̃. (23)

IV. INITIAL CONDITIONS

The dynamics we seek to study in this paper starts from
a J quench where two independent one-dimensional gases at
thermal equilibrium are suddenly coupled. In order to obtain
the initial density and phase fluctuations of these gases we use
the TL model.

A. Tomonaga-Luttinger liquid

In our notation the TL Hamiltonian reads

HTL =
∫ L/2

−L/2
dz

[
g1Dρ j (z)2 + h̄2n1D

4m

(
∂φ j

∂z

)2
]
, (24)

where j labels either of the two gases. We henceforth omit this
label for the sake of brevity, with the understanding that in this
section the density and phase fields refer to just one of the two
gases. Equation (24) has the same mathematical structure as

the SG model but without the tunneling term. If we include
the gradient of density fluctuations we can define

HTL+ =
∫ L/2

−L/2
dz

[
g1Dρ(z)2 + h̄2n1D

4m

(
∂φ

∂z

)2

+ h̄2

4mn1D

(
∂ρ

∂z

)2]
. (25)

The TL model is quadratic and hence its thermal fluctuations
can be treated exactly. To this end it is useful to work in
Fourier space and we apply discrete Fourier transforms de-
fined on the numerical grid with NL points as discussed at the
end of Sec. II. The phase field φ and its Fourier transform ϕ

are related by

φr = 1√
NL + 1

NL/2∑
k=−NL/2

ϕk exp

(
i

2πkr

NL + 1

)
,

ϕk = 1√
NL + 1

NL/2∑
r=−NL/2

φr exp

(
−i

2πkr

NL + 1

)
. (26)

The discrete data {φr} = {φ−NL/2, . . . , φ0, . . . , φNL/2} and its
transform are located symmetrically about r = 0 and k = 0,
respectively. Since the value φr of the field at each coordinate
space grid point is a real number, the condition ϕ−k = ϕ∗

k must
hold. Similarly, the density fluctuation field ρ and its Fourier
transform � are related by

ρr = 1√
NL + 1

NL/2∑
k=−NL/2

�k exp

(
i

2πkr

NL + 1

)
,

�k = 1√
NL + 1

NL/2∑
r=−NL/2

ρr exp

(
−i

2πkr

NL + 1

)
,

(27)

where again the reality of the field in coordinate space requires
that �−k = �∗

k . Inserting these transformations in Eq. (25), we
obtain (see Appendix B for details)

HTL+ = ag1D

NL/2∑
k=−NL/2

|�k|2 + ah̄n1D

NL/2∑
k=−NL/2

h̄π2k2

mL2
|ϕk|2

+ a
h̄2

4mn1D

NL/2∑
k=−NL/2

4π2k2

L2
|�k|2. (28)

Before proceeding with further analysis of Eq. (28), it is worth
noting that it can be recast in a standard Luttinger liquid form

HTL+ = ach̄

2

NL/2∑
k=−NL/2

(
K

π

4π2k2

L2
|ϕk|2 + π

K
|�k|2

(29)

+ K

π

4π2k2

N2
|�k|2

)
,

where the strength of the terms depends on either K or 1/K .
Applying the transformations given in Eq. (16), the Fourier

space variables can be written in dimensionless form as

�k −→ �̃k = ξh�k, ϕk −→ ϕ̃k = ϕk (30)
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TABLE I. Important parameters and their values. The parameters
are chosen to be experimentally feasible and correspond roughly to
those reported in Refs. [79–84].

Symbol Parameter Value

ω⊥ trapping frequency 2π × 3 kHz
m mass of Rb atom 1.41 × 10−25 kg
as scattering length 98 × 0.52 Å
N number of atoms 1200
L system length 18 μm
n1D average density 6.7 × 107 m−1

g1D 2h̄ascatω⊥ 2 × 10−38 J m
K Luttinger parameter 25
T temperature 2–20 nK
J tunnel coupling 0–30 Hz
NL number of grid points 50
c speed of sound 3 × 10−3 m/s
a grid spacing 0.36 μm
ξh healing length 0.24 μm
λT phase coherence length 38–380 μm
ξs spin healing length 2.5 μm

and the TL+ Hamiltonian given in Eq. (28) scaled by the
energy E = h̄c/ξh is given by

H̃TL+ = L̃

NL

NL/2∑
k=−NL/2

(
ε4π2k2

L̃2
|ϕ̃k|2 + 
|�̃k|2 + 
π2k2

L̃2
|�̃k|2

)
,

(31)

where L̃ = L/ξh is the ratio of the system size to the healing
length. Comparison with the spatial version of HTL+ given in
Eq. (25) shows where this factor comes from: As the size
is increased the range of the integration increases linearly
and this is accounted for by L̃ in the Fourier transformed
version. Note that all parameters and variables in Eq. (31) are
dimensionless.

B. Thermal equilibrium

To find the initial conditions on the fields ρ j (z) and φ j (z)
we assume that each gas is at thermal equilibrium such that
the excitation (phonon) modes of the TL+ Hamiltonian are
populated with a probability given by the Boltzmann distribu-
tion. The range of temperatures we simulate is listed in Table I
along with the values of all the other key parameters and is
chosen so as to correspond to realistic experimental condi-
tions. For our theoretical treatment to be valid the temperature
must be below that where the quasicondensate state occurs.
This temperature is of the order of Tqc ∼

√
g1Dh̄2n3

1D/m/kB

[77,123,124]. Substituting in the values of the parameters
found Table I, we find Tqc ∼ 1 μK, which is several orders
of magnitude higher than the temperatures we choose in this
paper.

In the canonical ensemble of statistical mechanics the
probability that a system at thermal equilibrium has the
phase space configuration s = q1, p1, q2, p2, . . . , qN , pN is
proportional to the Boltzmann weight exp[−βH (s)], where
β = 1/kBT and H = ∑

i p2
i /2m + V (qi ). The Hamiltonian

in Eq. (31) is quadratic and hence the Boltzmann weight

becomes that of a series of independent harmonic oscillators

e−β̃H̃TL+ =
∏

k

e−P2
k /2σ 2

ρ+e−Q2
k/2σ 2

φ+(k), (32)

where β̃ = (h̄c/ξh)/kBT is the appropriately scaled tempera-
ture parameter and we have introduced the real variables Qk

and Pk , which are related to the old variables by

ϕ̃k = Qkeiαk , �̃k = Pkeiβk . (33)

The phases αk and βk allow for the fact that ϕ̃k and �̃k can be
complex numbers. The variances in Eq. (32) are given by

σ 2
ρ+(k) = NL

2β̃

1


L̃(1 + π2k2/L̃2)
, (34)

σ 2
φ+(k) = NL

2β̃

L̃

4π2k2ε
. (35)

The partition function can now be written down as

Z =
∏

k

∫ ∞

−∞
e−β̃H̃TL+dPkdQk

=
∏

k

(σρ+
√

2π )[σφ+(k)
√

2π ] (36)

and hence the probability P of a particular configuration
(Q1, Q2, . . . , P1, P2, . . .) is

P =
∏

k

(
e−P2

k /2σ 2
ρ+

σρ+
√

2π

)(
e−Q2

k/2σ 2
φ+(k)

σφ+(k)
√

2π

)
. (37)

This is seen to be the total probability distribution for in-
dependent random variables Pk and Qk drawn from normal
distributions. Thus, the absolute values of the Fourier coef-
ficients �̃k and ϕ̃k are normally distributed random variables
with zero mean and variances given by Eqs. (34) and (35).
We sample these numerically from normal distributions to
generate the initial system configuration. The phases αk and
βk given in Eq. (33) do not appear in the Boltzmann weight
and are chosen randomly from the range [0, 2π ). In fact, for
both the phases and the amplitudes we only need to choose
the values for terms with k � 0 because the reality conditions
imply that we can set

Qk = Q−k, Pk = P−k,

αk = −α−k, βk = −β−k . (38)

So far we have only considered the initial state of a single
gas. By subtracting the results for two gases we can obtain the
initial values of the antisymmetric variables ρa(z) and φa(z)
defined in Eq. (4). Actually, due to the fact that the SG+
Hamiltonian with J = 0 and expressed in terms of antisym-
metric variables as given in Eq. (5) formally has the same
structure as the TL+ Hamiltonian given in Eq. (25), sampling
initial data for two gases is unnecessary and one can obtain
ρa(z) and φa(z) directly by sampling them as though they were
from one gas described by the TL+ Hamiltonian. However,
in doing so, consideration needs to be given to the average
value of relative phase φa(z) because both the SG+ and TL+
Hamiltonians contain only the spatial derivative of the phase
but not the phase itself. Its average value is therefore not
determined by energy considerations and is left to float freely.
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This is also apparent in the Fourier transformed version of
the TL Hamiltonian given in Eq. (31), where the k = 0 term
involving ϕ̃0 is absent due to the vanishing of its coefficient
which is proportional to k2. To take into account the random
phase difference between the two gases, one can choose ϕ̃0 to
be a random number in the range [−π · · · π ) but multiplied
by a factor of

√
NL + 1 in order to respect the normalization

in Eq. (26). This gives values of the average value of φa(z) in
the desired range between −π and +π .

The random value of the initial phase difference is actually
a key feature of the J quench. It populates the cosine potential
landscape in the Hamiltonian with uniform probability. As
the trajectories roll back and forth in this potential they form
caustics. In effect, the cosine potential acts as an imperfect
lens that focuses an initially flat wavefront over time.

C. Choice of parameters

There are three constraints which must be satisfied in order
to have a quasi-one-dimensional condensate [61]. To ensure
minimal scattering into the transverse modes we need the
interaction to be sufficiently weak in comparison to the trans-
verse trapping potential, which implies μ = g1Dn1D � h̄ω⊥,
where μ is the chemical potential and ω⊥ is the transverse
trapping frequency. The temperature must also be low enough
that transverse modes are not thermally excited, leading to
the inequality kBT � h̄ω⊥ (this turns out to be more strin-
gent than the quasicondensate temperature Tqc mentioned in
Sec. IV B). Finally, even if we are below Tqc, a quasicon-
densate also requires weak interactions in comparison to the
zero-point kinetic energy associated with the density of the
particles. This implies n1Dg1D � h̄2n2

1D/m, which means the
Luttinger parameter should obey K � 1. All the parameter
values we use satisfy these three inequalities.

In quasi-one-dimensional gases the interatomic interaction
parameter g1D is related to the scattering length as and trans-
verse trapping frequency as g1D = 2h̄asω⊥. For 87Rb atoms
we have as ≈ 98 × 0.52 Å [125] and we will assume ω⊥ =
2π × 3 kHz [84]. The full list of parameters used in our
simulations is given in Table I and roughly corresponds to
the parameters used in the experiments by the Vienna group
[79–84].

For our numerical simulations we choose a grid size that
slightly exceeds the healing length because, as explained
above, this cuts off unphysical density fluctuations [57,102].
This condition is given in Eq. (12) but can be expressed suc-
cinctly in terms of 
 as N2

L < 
N2. The magnitudes of ρ̃ and
φ̃ also need to be considered. The phase difference can take
the full range from +π to −π , but the number difference is
limited by the condition that the total number difference (inte-
grated over the entire system) cannot exceed the total number
of particles. In fact, due to the random nature of sampled
thermal fluctuations, the integral of ρ̃ is always approximately
zero. However, the validity of the SG or SG+ model requires
that local density fluctuations be small in comparison to the
background density n1D (see Appendix A). Translated into
the scaled variables, this means that at any point ρ̃(z̃) �
n1Dξh. In practice we choose ρ̃(z̃) � 1.6 so that the fluctua-
tions are an order of magnitude smaller than the background
density.

D. Examples of initial conditions

In Fig. 2 we present typical spatial profiles of the initial
number difference field ρ̃ (top row) and phase difference field
φ̃ (bottom row). Each profile provides the initial conditions for
a single classical field trajectory and is obtained by summing
up thermally activated phonons (Fourier modes) using the
Tomonaga-Luttinger model.

The different columns show the effect of changing tem-
perature T or Luttinger parameter K . As expected, when
T is increased the fluctuations in both ρ̃ and φ̃ increase.
By contrast, if K is increased the maximum magnitude and
jaggedness of ρ̃ increase but the jaggedness of φ̃ decreases.
Referring to Eq. (19), we can see that this is because the
coefficient multiplying the density fluctuation term in the
Hamiltonian is 
 = π/2K , which decreases as K increases,
leading to increased variance of �k modes according to
Eq. (34). The phase fluctuation term shows the opposite be-
havior because its coefficient in the Hamiltonian (which only
appears as the spatial gradient of φ̃) is ε = K/2π , which
increases as K increases, and this reduces the variance of the
ϕk modes according to Eq. (35), thereby making the φ̃ profiles
smoother.

V. NUMERICAL SIMULATIONS OF THE DYNAMICS

In this section we explore the dynamics following a J
quench. Our approach is inspired by the TWA, where multiple
classical field configurations are propagated in time using
the classical equations of motion, although in our case the
initial conditions are sampled from a thermal distribution as
described in Sec. IV rather than a quantum distribution as in
the standard TWA.

J-quench dynamics has previously been explored for the
simpler case of a two-mode zero-temperature bosonic Joseph-
son junction where it was found that caustics dominate
the number and phase difference probability distributions
[20,29,34]. In the two-mode case it is possible to compute
the exact quantum dynamics for some thousands of particles
and compare them against the TWA. The results (see Fig. 1 in
[34]) show good qualitative agreement and give us confidence
that the TWA can capture the main features of the quantum
dynamics. Furthermore, the inevitable presence of decoher-
ence due to the environment will tend to reduce the quantum
dynamics to its classical limit (this has been investigated in
the two-mode case for a J quench in [35]), increasing the
relevance of semiclassical calculations. In the present work
we are interested in whether the phonons along the long axis
disrupt or sustain these caustics. We will start by reproducing
the caustics presented in Ref. [34] for the two-mode case and
then add in the longitudinal modes after that.

A. Numerical methods

The initial conditions are generated via random sampling
from Gaussian distributions. We then evolve the equations of
motion [Eq. (23) for the case of the full SG+ model] using a
Runge-Kutta solver with a user-defined time step [126]. The
end points of our system are treated by imposing periodic
boundary conditions. In Appendix C we demonstrate the nu-
merical convergence of the solver by varying the temporal and
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FIG. 2. Examples of initial spatial profiles of the number difference ρ̃ (top row) and phase difference φ̃ (bottom row) plotted as a function
of the computational lattice points r. Each profile is obtained by randomly sampling a thermal distribution using the method described in
Sec. IV B and each panel includes ten different profiles. The parameter values common to all panels include the number of computational
lattice points NL = 50, grid spacing a = 0.36 μm, and healing length ξh = 0.24 μm (the remaining parameters are listed in Table I). The
difference between the columns is as follows. The left column has the Luttinger parameter K = 25 and the temperature T = 2 nK giving a
phase coherence length of λT = 380 μm. In the middle column K = 25, but the temperature is increased to 20 nK, giving λT = 38 μm. In
the right column, the value of K is artificially increased (without changing any other parameters) to K = 250 and T = 2 nK. Increases in
temperature excite stronger fluctuations in the profiles as expected. Increases in the Luttinger parameter have opposite effects on ρ̃ and φ̃. The
maximum value and jaggedness of ρ̃ is increased whereas the jaggedness of φ̃ is reduced. An explanation of this behavior is given in the text.

spatial steps by tracking the time evolution of the total energy
(Hamiltonian), which should be a constant of the motion,
and obtain the fiducial time and space resolution for all our
calculations.

B. Special case: Two-mode approximation

In the two-mode approximation only a single mode in each
well is taken into account. This description is relevant to the
SG or SG+ model in the limit where the entire length of each
quasicondensate is perfectly synchronized so that the fields
ρ̃(z̃) and φ̃(z̃) do not depend on z̃. In this case the spatial
derivative terms vanish and the equations of motion in Eq. (23)
reduce to

dφ̃

dt̃
= 2
ρ̃,

dρ̃

dt̃
= −2J sin φ̃. (39)

These are the standard Josephson equations of motion and
also correspond to those of a classical pendulum [127]. Such
synchronization can occur at very low temperatures or when
the coefficients ε and 
 are large enough that they suppress
spatial fluctuations in the initial conditions.

In Fig. 3 we display the postquench dynamics in the two-
mode approximation. Figures 3(a) and 3(b) show the time
dependence of 150 independent solutions of Eq. (39), which
give the trajectories for the number difference and phase
difference, respectively. Note that in this paper we use the

color blue for trajectories calculated within the two-mode
approximation and reserve red for the trajectories of the full
many-mode model. In accordance with our assumption that
the two wells start with an equal number of atoms, each solu-
tion starts with ρ̃ = 0. In addition, as discussed in Sec. IV B,
the initial value of φ̃ is randomly chosen from the range
[−π, π ) because the two condensates are independent before
the J quench.

The most striking feature of Fig. 3 is the series of cusp-
shaped caustics that form in both variables. In order to guide
eye, we have have outlined the first cusp caustic in the number
difference variable using a black curve (the calculation for this
curve is given in Appendix D). Like in optics, caustics are
regions of high intensity formed by the envelopes of families
of rays (trajectories). Each caustic is born at the center of the
distribution at the tip of a cusp before spreading out in two
arms that move towards the edges of the distribution. The fact
that they are cusp shaped is in agreement with the prediction
of catastrophe theory that in two dimensions the only struc-
turally stable and hence generic singularities are cusps.

Each trajectory represents a single experimental run. The
idea behind the TWA is that the number of trajectories reach-
ing a point ρ̃ at time t̃ is proportional to the probability that
a measurement of the true quantum system would yield that
value of ρ̃. An equivalent interpretation holds for the φ̃ trajec-
tories. The caustics have the highest probability density and
hence give the values most likely to be observed. Of course,
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FIG. 3. Dynamics in the two-mode approximation governed by the Josephson equations given in Eq. (39) of the (a) number difference ρ̃,
(b) phase difference φ̃, and (c) phase-space distribution following a quench from J = 0 to J = 30 Hz. The other parameter values are given in
Table I. Each panel contains 150 trajectories: Each trajectory starts with ρ̃ = 0 at time t̃ = 0 but has an initial phase randomly sampled from
[−π, π ). Both number and phase difference variables display a series of cusp-shaped caustics given by the envelopes of families of trajectories;
to guide the eye we have outlined the first cusp caustic in the ρ̃ variable with a black curve. (c) Three different time slices of the results are
plotted in phase space (ρ̃ versus φ̃). Each dot corresponds to a different initial condition (trajectory) and the colors indicate the time: t̃ = 0
(red), t̃ = 50 (green), and t̃ = 100 (blue). During the time evolution the initial horizontal line winds into a whorl and the caustics in the ρ̃ and
φ̃ plots occur due to horizontal and vertical segments of a whorl, respectively.

if we only consider the average values of ρ̃ or φ̃ we would
get zero in both cases due to the symmetry of the distributions
and hence miss the caustics. Many experimental runs must be
performed in order to obtain the probability distribution where
these patterns exist.

The mechanism underlying caustics can be understood
from a phase-space perspective, as shown in Fig. 3(c). Each
dot gives the number and phase difference at a particular time
for a different initial condition. The red dots are the initial
values which lie in a horizontal line because at t̃ = 0 all
trajectories have ρ̃ = 0. As time evolves the dots rotate around
the origin: The green and blue dots show two successively
later times. However, the nonlinearity of the Josephson equa-
tions means dots further from the origin rotate more slowly
and this leads to the formation of a spiral or whorl. At places
where the whorl has a vertical segment, a range of different so-
lutions all have the same value of φ̃ and this stationarity of the
distribution with respect to changes in the initial conditions is
what generates a caustic, in this case a φ̃ caustic. Conversely,
horizontal segments give rise to ρ̃ caustics.

In the absence of nonlinearity the equations reduce to those
of a harmonic oscillator

dφ̃

dt̃
= 2
ρ̃,

dρ̃

dt̃
= −2J φ̃, (40)

giving rise to rigid rotation in phase space and the formation
of perfect focal points in the number and phase difference
variables, as shown in Fig. 4. However, these perfect revivals
of the initial state are not stable: Any nonlinearity will cause
the focal points to evolve into the extended cusp caustics
shown in Fig. 3.

The frequency of the linearized motion is known in Joseph-
son junction terminology as the plasma frequency. In our
notation it reads

ωp = √
4
J (41)

and the period of the motion is therefore given by 2π/ωp.
For the case shown in Fig. 4 we have 
 = 0.063 and J =
0.037, giving a period approximately equal to 65. In fact, the

tips of the cusps in the nonlinear case also occur with this
period since they are formed from small-amplitude trajecto-
ries that only experience the quadratic bottom of the cosine
potential.

C. General case: Many-mode SG+ model

Simulations of the full SG+ model are shown in Fig. 5,
which represents one of the main results of this paper. The
trajectories in Fig. 5(a) give the spatially averaged number
difference 〈ρ̃(t̃ )〉z as a function of time obtained by solving
the equations of motion given in Eq. (23) for the many-mode
system and then averaging over its length. The trajectories
in Fig. 5(b) give the equivalent spatial average of the phase
difference 〈φ̃(t̃ )〉z and Fig. 5(c) is the phase-space picture.
Each trajectory is evolved from a single randomly sampled
field configuration (describing thermally activated phonons)
such as those shown in the top row of Fig. 2 and for the
parameters given in Table I. We observe that despite the
inclusion of longitudinal modes and the randomness of the
initial conditions, the caustics survive and are quite similar
to those of the two-mode approximation shown in Fig. 3.
This suggests that caustics are a generic feature of the many-
particle dynamics following quenches, at least for systems
whose underlying physics is based on coupled nonlinear oscil-
lators. Each oscillator starts with a random phase and a noisy
momentum but the quench acts so as to give all the oscillators
a momentum kick at the same time t̃ = 0, leading to an initial
partial synchronization. As the system evolves in time after
the kick, the different periods of nonlinear oscillators lead to
cusp catastrophes in the distribution of trajectories. If we had
instead calculated only the expectation values of the number
and phase differences, then this underlying structure would
not have been visible because it exists in the probability dis-
tribution rather than the mean values.

A slice at fixed time through the probability distribution
for the spatially averaged phase variable 〈φ̃〉z is shown in
Fig. 6(a). This is obtained by sorting the 〈φ̃〉z trajectories into
bins, each of which covers a small range of 〈φ̃〉z, and plotting
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FIG. 4. Dynamics in the linearized version of the two-mode approximation [Eq. (40)] of the (a) number difference ρ̃, (b) phase difference
φ̃, and (c) phase-space distribution following a quench from J = 0 to J = 30 Hz. Like in Fig. 3, there are 150 trajectories shown in each panel
corresponding to different values of the initial value of φ̃. However, in this linearized case we obtain a series of perfect focus points (revivals
of the initial state). This is because linearization gives rise to rigid rotation in phase space without whorls. Unlike the extended cusp caustics
seen in Fig. 3 (which will be qualitatively robust to details of the nonlinearity), perfect focus points are nongeneric because they are unstable
to perturbations such as the effects of nonlinearity. All parameter values and color labels are the same as in Fig. 3.

the number of trajectories in each bin. The result is noisy due
to the thermal fluctuations, but the caustics are clearly visible
as sharp peaks. These peaks display the characteristic square
root divergence of fold caustics [1]

P (〈φ̃〉z ) ∝ 1√
φ̃c − 〈φ̃〉z

, (42)

where P (〈φ̃〉z ) is the probability density and φ̃c is the location
of the caustic. The blue dashed lines in Fig. 6 are fits of
Eq. (42) to the numerical data and we see that the agreement
is good. Although the height of the singularities predicted by
Eq. (42) is infinite at the caustic, this function is integrable
so that a probability distribution with caustics is still nor-
malizable (of course, the peaks in the numerical data are of
finite height because the number of trajectories is finite). The
positions of the caustics can be matched exactly to the vertical
segments of the phase-space distribution shown in Fig. 6(b).
The horizontal segments give rise to a similar pattern of caus-
tics in the probability distribution for the number difference
variable (not shown in this figure).

D. Effect of temperature on the caustics

In Fig. 7 we investigate the effect of finite temperature on
the formation of caustics in the SG+ model by using the same
parameters as in Fig. 5 except that we raise the temperature in
the initial conditions from 2 to 50 nK. Comparing the plots in
Figs. 5 and 7, we see that although the first few caustics after
the quench are still visible in the latter, a higher temperature
seems to wash out the caustics after that. In Fig. 7(c) we see
why this is: The whorl in phase space becomes blurred by
temperature-induced fluctuations. However, the magnitude of
this effect is dependent on the other parameters. As will be
explained in Sec. V F, increasing the value of J can make the
caustics more prominent again by putting more energy into
the postquench dynamics in comparison to the thermal energy.
Nevertheless, the persistence of caustics even at higher tem-
peratures illustrates their key property of structural stability
against perturbations.

E. Effect of dispersion on the caustics

The double-derivative terms in the SG+ equations of mo-
tion given in Eq. (23) are responsible for transmitting wave

FIG. 5. Dynamics in the SG+ model of the (a) spatially averaged number difference 〈ρ̃〉z, (b) phase difference 〈φ̃〉z, and (c) phase-space
distribution following a quench from J = 0 to J = 30 Hz. Each panel contains 150 trajectories which are solutions of Eq. (23). The initial
conditions are randomly sampled thermal phonons with the same parameter values as those shown in the top row of Fig. 2 and described in
Table I. In particular, the number of numerical lattice points is NL = 50 separated by a grid spacing of a = 0.36 μm and the temperature is
T = 2 nK. The healing length is ξh = 0.24 μm, the spin healing length is ξs = 2.5 μm, and the phase coherence length is λT = 380 μm. The
different colors on the phase-space plot correspond to the same time slices as in the previous phase-space plots.
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FIG. 6. (a) Normalized probability distribution (red curve) as
a function of 〈φ̃〉z at time t̃ = 162 obtained from the density of
trajectories with a bin width dφ̃ = 0.04 for the SG+ model. This
corresponds to a slice at fixed time through Fig. 5(b), although calcu-
lated using 10 000 trajectories to improve the statistics and averaged
over a short-time window of �t̃ = 1 to remove rapid fluctuations.
Caustics appear as sharp peaks and are well fitted (blue dashed
curves) by the inverse square root form given in Eq. (42). The satellite
caustics at 〈φ̃〉z ≈ ±1.8, ±2.5, and ±2.9 also have this shape, but
the fit is not shown to avoid obscuring the data. (b) Phase-space
distribution for the same time slice as in (a). Each vertical segment
of the whorl lines up with a caustic in the probability distribution of
the phase variable in (a).

disturbances along the longitudinal axis and are not present
in the simpler two-mode case discussed in Sec. V B. Initial
thermal fluctuations in the SG+ model will therefore disperse
in z over time and it is interesting to see what difference
this makes to the caustics; a comparison of Figs. 3 and 5
suggests it makes little difference to spatially averaged vari-
ables. However, this observation is for only one choice of
the parameters ε and 
 that govern the size of the derivative
terms and also for relatively short times. In particular, in Fig. 5
the parameters are ε ≈ 4 and 
 ≈ 0.06, which were chosen
to match experimental values [79–84]. In Fig. 8 we compare
the long-time dynamics of the two-mode approximation and
the SG+ model for the case where ε in the SG+ model has
been artificially increased by a factor of 10 (without changing

any other parameters), thereby increasing the effect of spatial
dispersion. Apart from this change, the initial conditions and
J quench are similar to those used in Fig. 5. Note that we use
this increased value of ε only for the time propagation and not
for the generation of the thermal initial conditions. This avoids
changing the starting phase fluctuations from those used in
Fig. 5, which would otherwise be energetically suppressed
and would also lead to significantly different dynamics but is
not the comparison we would like to make here. From Fig. 8
we see that the strong coupling of neighboring pendulums
does wash out the caustics at long times in comparison to
the dispersionless two-mode case, although by examining the
phase-space distribution in Fig. 8(c) we see that the inner
part of the whorl is still visible, which further underlines
the robustness of caustics. Note that in Fig. 8(c) (and only
this panel) we have biased the sampling of SG+ trajectories
(red circles) so that a greater fraction of them are near the
edges than would otherwise occur naturally. This is simply to
increase the visibility near the edges where we see the SG+
trajectories are randomly dispersed. The long-time behavior
of both the SG+ model and the two-mode approximation will
be further analyzed in Sec. VI.

F. Effect of J on the caustics

Another parameter that affects the dynamics is the tunnel
coupling strength J [or its dimensionless version J , which is
defined in Eq. (19)] that becomes nonzero after the quench.
The quench itself creates a strongly nonequilibrium phase
difference where all values of φ̃ are equally probable inde-
pendently of the value of J by virtue of the fact that before the
quench there is no phase coherence between the two quasicon-
densates. However, J does control the postquench dynamics.
One way it does this is via the frequency of the Josephson
oscillations. The cusps occur with a frequency given by the
plasma frequency in Eq. (41), which goes as

√
J .

In Fig. 9 we examine the effect of quenching to different
J values, with the value of J increasing from left to right. We
can see the expected increase in frequency. The amplitude of
the motion also increases with J because immediately after
the quench each trajectory finds itself at a random point on the
cosine potential energy surface whose depth between valley
top and valley bottom is 2J . The initial potential energy of
a field configuration is therefore −2J 〈cos φ̃0〉z, where φ̃0 is
the phase field φ̃(z̃, t̃ ) at the initial time. This configuration
evolves under the full Hamiltonian and gives rise to oscil-
lations about the potential minimum. The top row in Fig. 9
plots the spatially averaged number difference and according
to Eq. (18) the maximum amplitude this can have is

〈ρ̃〉max
z =

√
2J (1 − 〈cos φ̃0〉z )



, (43)

where we have ignored the effects of spatial coupling (second-
order derivative terms). Thus, 〈ρ̃〉max

z also scales as
√

J and
this is in correspondence with Fig. 9.

The bottom row of Fig. 9 shows the behavior in phase
space. In these figures we have also included the unaver-
aged data, i.e., the ρ̃ and φ̃ values of each grid point at the
three selected times. This gives a sense of the size of the
statistical fluctuations due to the spatial degrees of freedom.
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FIG. 7. Effect of temperature on the (a) spatially averaged number difference 〈ρ̃〉z, (b) phase difference 〈φ̃〉z, and (c) phase space for the
SG+ model. Each panel contains 150 trajectories with parameters and color schemes the same as those used for Fig. 5 except the temperature
here is T = 50 nK, giving a thermal phase coherence length λT = 15.2 μm.

In the left-hand column J remains zero for all time and
the only dynamics that can occur is along the long axis of
each quasicondensate individually. The middle and right-hand
panels, which have J = 3 and J = 30 Hz, respectively, have
the same initial statistical fluctuations as the left-hand one
because, as mentioned above, the initial distribution is set by
the prequench thermal fluctuations in the two quasiconden-
sates and is independent of J . However, as time evolves the
effects of J described by Eq. (43) become apparent because
larger J allows a greater value of 〈ρ̃〉max

z and this stretches
the distribution along the vertical direction in comparison to
a smaller value of J . For a whorl to become apparent 〈ρ̃〉max

z
should at least exceed the width of the statistical fluctuations
and becomes better and better defined as J is increased.

VI. UNIVERSALITY AND CAUSTICS

We have already discussed the relationship between non-
linearity and caustics in the preceding section. As motivated
earlier, and expounded in Refs. [20,29,34,36,37], caustics also
have implications for the universal dynamics of quantum sys-
tems. We explore a few of these effects in this section.

A. Long-time distribution: The circus tent

The quench generates collective excitations that lead to
caustics as shown in Figs. 3 and 5 for the two nonlinear
models (two mode and SG+) discussed above. The caustics
are born at the center of the probability distribution (in either
the ρ̃ or the φ̃ variable) at intervals of the plasma period and
move out to the edges over time. Figure 6 plots the probability
distribution for the SG+ model as a function of 〈φ̃〉z at an
intermediate time where four pairs of fold caustics are dis-
cernible and shows how they diminish in strength but are still
present as they move to the edges. The following questions
then naturally arise: What happens at long times t̃ → ∞ when
the distribution comprises a large number of caustics and does
it tend to a characteristic shape? The answers are yes and are
shown in Fig. 10, which is made in the same way as Fig. 6
but this time by calculating the density of 〈ρ̃〉z trajectories and
averaging over a time window extending between t̃ = 800 and
t̃ = 980 in order to remove rapid fluctuations. The probability
distribution takes a shape reminiscent of a circus tent and can
be understood as follows. The strongest singularities present
are the cusp tips born at the center of the distribution, which

leads to this being the highest point. Each cusp then splits
into two fold arms (which according to catastrophe theory are
lower singularities) that move outward, reducing in height as
they go, before accumulating at the edges where there is a
sharp drop to zero. The position of the outer edge is set by the
maximum energy that can be extracted from the quench and
is given by Eq. (43).

An analytic expression for the circus-tent distribution is
given by the integral

PCT(ρ̃) = 1

2πB

∫ 1

ρ̃2/B2

U (m, ρ̃ )

K (m)
dm, (44)

where

U (m, ρ̃ ) = 1√
m(1 − m)(m − ρ̃2/B2)(1 + ρ̃2/B2 − m)

,

(45)
K (m) is the complete elliptic integral of the first kind, and B =
2
√
J /
. This expression is plotted in Fig. 10 as the dashed

line and is derived in Appendix E under the assumption that
at long times we can model the system by an ensemble of
independent pendulums where each pendulum is ergodic. In
other words, each pendulum obeys a microcanonical distri-
bution where there is equal probability for it to be found
anywhere on its energy shell. The nature of the J quench is
such that it leads to an ensemble with an equal probability for
any starting angle (this is different from an equal probability
for each energy due to the dependence of the density of states
on angle). As can be seen from Fig. 10, PCT(ρ̃) gives a good
fit to the numerical data generated by both the SG+ and
two-mode models considered in this paper. For completeness,
in Appendix E we also give a plot (Fig. 15) of the long-time
probability distribution for the phase difference φ̃ and this also
turns out to have a nonthermal circus tent-like shape

In Fig. 10 we also include the thermal probability distribu-
tion

PT (ρ̃) = 1

Z

∫ ∞

0
PE (ρ̃)e−E/T D(E )dE (46)

describing an ensemble of pendulums at thermal equilibrium
at temperature T , where PE (ρ̃) is the probability distribution
at fixed energy E , D(E ) is the density of states, and Z is a
normalizing factor. The details of our calculation of PT (ρ̃)
are given in Appendix F, where, for example, PE (ρ̃) is given
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FIG. 8. Effect of dispersion, shown by a comparison of the
long-time behavior of the phase difference in the (a) two-mode
approximation, (b) SG+ model, and (c) their respective phase-space
behaviors at t̃ = 800. (a) and (b) contain 150 different runs with
the same parameters as those used in Fig. 5 except that ε has been
artificially multiplied by 10 in (b). Caustics are visible in (a) but less
so in (b). In (c) the blue squares (two-mode approximation) show
better-defined whorls than the red circles (SG+ model), which are
more randomly dispersed near the edges of the eye-shaped boundary.

in Eq. (F2). The temperature of this distribution is chosen such
that the mean energy of the thermal distribution 〈E〉T is equal
to the mean energy of the states excited by the quench. For a

quench to J = 30 Hz we show in Appendix F that the effective
temperature is 5.4 nK.

Clearly, the thermal distribution is very different from the
circus-tent distribution: The thermal distribution takes the
form of a smooth Gaussian with wings that extend beyond
〈ρ̃〉max

z because the thermal Boltzmann factor allows for ex-
citations with any energy (albeit with exponentially small
probability) including those involving pendulums undergoing
rotation as well as libration, whereas the J quench excites only
librational motion. The probability distribution for a thermal
pendulum is in fact quite delicate to compute because of
the singularity in the density of states between libration and
rotation, but the combined result is smooth; see Appendix F
for more details.

B. Structural stability of caustics

The defining characteristic of the singularities described by
catastrophe theory is structural stability against perturbations
and this ensures that they occur generically. The same is not
true of isolated singularities, as can be seen by comparing
Figs. 3 and 4, where it is shown that point foci do not survive
the introduction of nonlinearity. In two dimensions cusps are
the unique structurally stable catastrophe and in Secs. V D
and V E we saw that cusp-shaped caustics are indeed sta-
ble against thermal fluctuations and the effects of dispersion.
However, thus far we have imposed the symmetrical starting
condition that the initial number difference between the two
quasicondensates is zero. One may therefore wonder whether
the caustics we see are a consequence of this symmetry. To
check that this is not the case we show in Fig. 11 the dynamics
for the case where the initial background density n1D in the
two quasicondensates differs by 10%. We see that although
the caustics in both 〈ρ̃〉z and 〈φ̃〉z are distorted, they maintain
their basic cusp shape. Furthermore, the phase-space whorls
still occur and this guarantees the existence of caustics.

C. Coherence factor and relaxation towards equilibrium

Cold-atom experiments have the ability to measure corre-
lation functions in nonequilibrium many-body states [81,128–
130]. As a simple example let us consider the coherence factor

C(t̃ ) = 〈〈cos φ̃〉z〉, (47)

which depends on the spatial average of the phase difference
field φ̃(z̃, t̃ ) between points along the two quasicondensates.
The outer brackets indicate an ensemble average, which
means averaging over many trajectories each sampled from
the thermal distribution discussed in Sec. IV. In the Vienna
experiments, where one quasicondensate is suddenly split into
two, the coherence starts near unity and decays over time as
the two quasicondensates decohere [83,84]. In the opposite
case, where two independent quasicondensates are suddenly
coupled, one expects the converse where the coherence starts
at zero and grows. This situation has been previously mod-
eled by Horváth et al. using both the TWA and a truncated
conformal space approach [102]. They found that C(t̃ ) ini-
tially grows and then undergoes damped oscillations as it
settles down towards a finite constant value. The coherence
factor therefore provides a measure of how the system reaches
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FIG. 9. Effect of quench strength J for J = 0, 3, and 30 Hz (from left to right). The top row shows the dynamics of 〈ρ̃〉z with initial
conditions sampled in the same way as in Fig. 5. The bottom row plots the corresponding phase-space distributions. Like in previous figures,
the different colors give different time instants: t̃ = 0 (red), t̃ = 50 (green), and t̃ = 100 (blue). The dots with intense colors are the spatially
averaged values. We have also included the raw data (without spatial averaging) as faint dots. This gives an idea of the size of the statistical
fluctuations due to the thermal initial conditions and is the same for all values of J . In the left column there is no coupling between the two
quasicondensates and hence no time evolution of the spatially averaged data (the intense red, green, and blue dots sit on top of each other),
although there can be evolution of unaveraged data due to intrawell dynamics, i.e., without the J term in Eq. (10). As we increase the magnitude
of J the time evolution leads to whorls with a greater vertical extent because more energy can be extracted from the cosine potential in Eq. (18),
giving larger values of 〈ρ̃〉max

z .

equilibrium. In this context we note that C(t̃ ) actually corre-
sponds to an ensemble average of the cosine term in the SG or
SG+ Hamiltonian and thus gives information on the exchange
of energy between the different parts. In other words, since
the total energy is a constant of the motion, if the potential
part of the energy settles down to a constant this suggests
the kinetic parts of the energy are also constant, at least
from an ensemble-average point of view. Our aim in this
section is to see if the dynamics of C(t̃ ) is connected to the
caustics.

In Fig. 12 we plot C(t̃ ) for two models: the full SG+
model, which is a many-mode and nonlinear model, and a
linearized version that obeys the equations of motion

dφ̃

dt̃
= 2
ρ̃ − 


2

∂2ρ̃

∂ z̃2
,

dρ̃

dt̃
= 2ε

∂2φ̃

∂ z̃2
− 2J φ̃. (48)

This differs from the linearized two-mode approximation de-
fined by Eq. (40) because it describes an elongated multimode
system. From Fig. 12 we see that C(t̃ ) for the SG+ model
(dark blue curve) does indeed initially grow, undergo damped
oscillations, and settle down to a nonzero value [the fact that
C(t̃ ) �= 0 at t̃ = 0 is due to random fluctuations in the initial
conditions; as we include more trajectories we find that the
initial value gets smaller]. Meanwhile, C(t̃ ) for the linear

model (red dashed curve) executes undamped oscillations and
does not settle down to equilibrium. Both models agree during
the first oscillation but strongly differ after that.

It is clear that nonlinearity is important for reaching equi-
librium at least as far as global quantities such as C(t̃ ) are
concerned. We can understand this by interpreting the SG+
model as describing a chain of coupled pendulums. The non-
linearity of each pendulum means that its period depends
on the amplitude of its motion and hence an ensemble of
pendulums whose motion is initiated together by the quench,
but all with different degrees of excitation, will dephase
from one another over time so that collective oscillations are
damped out. By contrast, linear oscillators have a period in-
dependent of their amplitudes of motion and hence remain in
phase.

Apart from the ensemble averages shown by the darker
curves in Fig. 12, we have also included the individual trajec-
tories for 〈cos φ̃〉z as fainter curves. The linear model displays
harmonic motion and hence perfect revivals whereas the tra-
jectories in the nonlinear model give rise to half-cusp caustics.
These caustics overlap in time such that averaging over them
causes the coherence to strongly relax after a single period. It
is not so much that the caustics cause the relaxation, but rather
that both have a common origin in the nonlinearity of the
model and hence are generic features of dynamics in complex
systems.
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FIG. 10. Long-time probability distribution for the number dif-
ference ρ̃. The data points are from the different nonlinear models
considered in this paper averaged over the spatial coordinate z and
also over a time window ranging from t̃ = 800 to t̃ = 980 to remove
fluctuations. The pink dashed line is the circus-tent distribution PCT

given in Eq. (44) and derived in Appendix E under the assumption of
ergodicity; the circus-tent shape is due to the proliferation of caustics
at long times and gives a good fit to the data. The black solid curve
is the thermal distribution PT with a temperature chosen so that the
expectation value of the energy matches that provided by the quench.

VII. CONCLUSION

The sine-Gordon model is a nonlinear integrable field the-
ory that can be used to describe a wide range of systems
from high-energy physics to condensed-matter physics. A se-
ries of landmark experiments using two coupled 1D atomic
quasicondensates [69,78–84] have realized the SG model in
a controllable quantum many-body environment. The key
parameters can be varied in time, allowing the implementa-
tion of sudden quenches that excite many modes leading to
nonequilibrium dynamics. This is the setting we adopted for
the present paper, where we used experimentally realistic pa-
rameters and computed the dynamics of the number and phase
difference fields. However, in contrast to the usual experimen-
tal protocol where the tunnel coupling J is suddenly switched
off, we considered quenches where it is suddenly switched
on. While the former case is adapted to studying dephasing,
decay, and thermalization between the two subsystems, the
many-body dynamics is governed by the Tomonaga-Luttinger
Hamiltonian describing independent 1D quasicondensates. If
instead J is suddenly switched on, then the dynamics is that
of the full SG model.

Our calculations employed a thermal version of the semi-
classical truncated Wigner approximation method. More
specifically, we propagated a large number of classical field
configurations over time with initial conditions sampled from
a distribution at thermal equilibrium. The time-evolved con-
figurations (trajectories) could be summed to obtain the
probability distributions for the observables and we found that
these are dominated by singular caustic patterns. The natural
mathematical description of caustics is catastrophe theory,
which predicts a hierarchy of structurally stable singularities
with characteristic shapes that depend on dimension. In two

dimensions (e.g., number or phase difference versus time)
the structurally stable catastrophes are fold lines that meet
at cusps. This is exactly what we found in both the number
and phase differences following a J quench (see Fig. 5). The
probability distributions develop trains of caustics that are
born periodically as cusp points (located at the center of the
distribution if there is no tilt) at each plasma period and evolve
into pairs of fold lines that gradually move out to the wings
where they accumulate. Fold catastrophes manifest as strong
non-Gaussian fluctuations in the form of inverse square root
divergences in the intensity (probability density), as shown in
Fig. 6.

A special case is provided by the dynamics of a two-mode
system as shown in Fig. 3. Here the equations of motion are
the Josephson equations given in Eq. (39). The only fluctua-
tions we included in this example are the quantum fluctuations
in the initial relative phase between the two condensates as
mandated by the uncertainty principle applied to systems in
relative number eigenstates. The two-mode case is relevant
to small systems where the higher modes are well above the
temperature scale and so any spatial fluctuations are sup-
pressed. By contrast, the many-mode case shown in the other
figures includes both quantum fluctuations and thermal fluc-
tuations in the longitudinal modes, i.e., thermal occupation
of phonon modes in the 1D quasicondensates. Despite the
presence of the many longitudinal modes (typically 50 in our
calculations, as set by the parameter NL) which give rise to
highly random looking phase and density profiles as seen in
Fig. 2, we found that number and phase caustics survive for
experimentally realistic parameters. Furthermore, the quali-
tative features of the caustics are stable against variations in
temperature, quench strength, and density imbalance, as seen
in Figs. 7, 9, 11, respectively, and also against the details of the
model (in this paper we used the SG+ model, which augments
the SG model by including longitudinal density gradients). All
of these different examples confirmed the structural stability
of caustics, which is the reason why they occur universally
without the need for fine-tuning.

The proliferation of caustics over time combined with their
migration to the edge of the probability distribution has impor-
tant consequences for the long-time probability distribution.
It takes on the shape of a circus tent featuring a strong central
peak due to the cusp tips, which are the most singular part
of a caustic, flatter intermediate regions, and rapidly decaying
edges where the caustics pile up (see Fig. 10). This shape is
quite distinct from a Gaussian thermal distribution and can be
derived assuming an ergodic hypothesis in which individual
pendulums have equal probability to be anywhere on their
energy shell (see Appendix E). The approach to this equilib-
rium distribution can be tracked over time using the coherence
factor (Fig. 12), which is a spatial and ensemble average over
the phase field and corresponds to the cosine term in the
Hamiltonian if the latter is ensemble averaged. The attain-
ment of equilibrium relies on the nonlinearity of the system
to dephase itself when ensemble averaged. The caustics also
rely on the nonlinearity without which they would reduce to
nongeneric perfect revivals (point foci). In this sense caustics
are mutually exclusive to recurrences, at least in the statistical
sense in which caustics appear in this paper.
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FIG. 11. Structural stability of caustics. Here we investigate the effect of unbalanced densities on caustics by tracking the same SG+ model
dynamics as those shown in Fig. 5 except for an initial density imbalance of 0.1 in the background of ρ̃ at each point z. We see that the cusp
caustics in the plots of (a) 〈ρ̃〉z and (b) 〈φ̃〉z versus time are distorted but still maintain their basic structure. This is because (c) the whorl in
phase space is left intact despite having a displaced center. Caustics are resilient against imperfections and perturbations and we expect them
to be present under realistic experimental conditions.

Caustics in the SG model could be observed experimen-
tally by measuring the probability density for either the phase
difference or the number difference. For example, the phase
difference can be obtained by releasing the two quasiconden-
sates from their double-well potential and letting them overlap
[87–89]. This process must be repeated many times and for as
near identical initial conditions and time evolution as possible
in order to build up a probability distribution, although due to
the structural stability of caustics they will not be particularly
sensitive to differences in the experimental setup from run to
run. If the probability distribution is obtained for a single time,
then we expect to see something like that shown in Fig. 6. In
order to observe the time evolution of a caustic, one must then
repeat the whole process for a range of different evolution
times. This is laborious but technically possible, and since

FIG. 12. The two dark lines give the time evolution of the co-
herence factor C(t̃ ) defined in Eq. (47) for a linear model (red
dash-dotted line) and the SG+ model (blue solid line). Both models
are multimode (many longitudinal modes along z̃) but the SG+
model is nonlinear. Also included as faint lines are the raw trajec-
tories 〈cos φ̃〉z from which C(t̃ ) is composed. As everywhere in this
paper, 〈· · · 〉z indicates a spatial average. This figure highlights that
recurrences present in the linear case are suppressed by nonlinearity
in the SG+ system. The ensemble average over trajectories with
different periods causes C(t̃ ) to relax towards an equilibrium value
in the case of the SG+ model, in line with previous experimental
observations [83,84] and theory [102].

the first cusp caustic appears at half the plasma period, the
experiment does not need to run for long.

The singular nature of caustics means that they dominate
wave fields and are well known in hydrodynamics and op-
tics through phenomena such as tsunamis and gravitational
lensing. The results of this paper show that they also occur
in the nonequilibrium dynamics of 1D superfluids where a
quench plays a role analogous to an underwater earthquake by
generating strong excitations beyond the linear regime that are
focused in this case by the cosine term in the SG Hamiltonian.
The universal properties of catastrophes imply caustics likely
also occur in the postquench dynamics of other condensed-
matter systems: Systems with more degrees of freedom will
display higher catastrophes beyond folds and cusps such as
hyperbolic and elliptic umbilics [37]. However, a special fea-
ture of the SG model is that it is integrable and so one may
ask if that property plays a crucial role in the existence of
caustics. In this context, we note that in classical mechanics
caustics are closely associated with the existence of tori in
phase space upon which trajectories exist [64]. Tori are broken
up by chaos and thus caustics are not expected to survive for
long in systems which are deep in the chaotic regime. Despite
this, the Kolmogorov-Arnold-Moser (KAM) theorem shows
that some tori survive in moderately chaotic systems [131],
which suggests caustics may also survive in cases where the
classical phase space is mixed, which is the typical case. In-
deed, they survive in the three-site Bose-Hubbard model [37],
which is known to be chaotic [132]. The important problem
of extending the KAM theorem to quantum mechanics [133]
is thus intertwined with the analysis of caustics in quantum
systems and provides an interesting direction for extending
the present work.
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APPENDIX A: DERIVATION OF THE SINE-GORDON
HAMILTONIAN

In this Appendix we derive the Hamiltonian HSG as the
effective low-energy description of two cigar-shaped tunnel-
coupled quasicondensates [56,81] within a classical field
description (Gross-Pitaevskii theory). Along the way we also
obtain a slightly enhanced Hamiltonian HSG+ that includes
contributions from the gradient of density fluctuations that are
not included in the sine-Gordon Hamiltonian. These contri-
butions are not very important for our parameters but play an
important conceptual role by introducing an energetic price
for a rapidly varying density and hence effectively cut off
these fluctuations.

Assuming tight radial trapping such that each quasiconden-
sate is in its radial ground state, meaning that only longitudinal
excitations are taken into account, the second quantized
Hamiltonian for the total system be written

H =
∫ ∞

−∞
dz

[ ∑
j=1,2

(
− h̄2

2m
ψ̂

†
j (z)

∂2ψ̂ j (z)

∂z2

+ U (z)ψ̂†
j (z)ψ̂ j (z) + g1D

2
ψ̂

†
j (z)ψ̂†

j (z)ψ̂ j (z)ψ̂ j (z)

)

− h̄J[ψ̂†
1 (z)ψ̂2(z) + ψ̂

†
2 (z)ψ̂1(z)]

]
. (A1)

The quantum field operator ψ̂ j (z) annihilates a particle at
the point z in the jth well, where z is the coordinate along the
longitudinal direction (long axis of the system). Here m is the
mass of the particles, U (z) is a possible external potential (in
this paper it will be set to zero), g1D controls the interparticle
interaction strength, and J is the tunneling frequency between
the two wells. In the classical field approximation we replace
the field operators by complex functions

ψ̂ j (z) → ψ j (z) = eiφ j (z)
√

n1D + ρ j (z). (A2)

Note that φ j and ρ j are the phase and density variables for
each well rather than their antisymmetric versions, which are
used extensively in the main text.

Let us start by manipulating the kinetic energy term

−
∑
j=1,2

∫ ∞

−∞
dz

h̄2

2m
ψ̂

†
j (z)

∂2ψ̂ j (z)

∂z2
(A3)

=
∫ ∞

−∞
dz

∑
j=1,2

h̄2

2m

[(
∂

∂z
e−iφ j (z)

√
n1D + ρ j (z)

)

×
(

∂

∂z
e+iφ j (z)

√
n1D + ρ j (z)

)]

=
∫ ∞

−∞
dz

∑
j=1,2

h̄2

2m

(
− i

∂φ j

∂z
ψ̂

†
j + e−iφ j ∂ρ j

∂z

2
√

n1D + ρ j

)

×
(

i
∂φ j

∂z
ψ̂ j + eiφ j ∂ρ j

∂z

2
√

n1D + ρ j

)

=
∫ ∞

−∞
dz

∑
j=1,2

h̄2

2m

[
ψ̂

†
j ψ̂ j

(
∂φ j

∂z

)2

+
( ∂ρ j

∂z

)2

4(n1D + ρ j )

+ i
∂ρ j

∂z
∂φ j

∂z

2
√

n1D + ρ j
(ψ̂ je

−iφ j − ψ̂
†
j eiφ j )

]

=
∫ ∞

−∞
dz

∑
j=1,2

h̄2

2m

[
ψ̂

†
j ψ̂ j

(
∂φ j

∂z

)2

+
( ∂ρ j

∂z

)2

4(n1D + ρ j )

]

≈
∫ ∞

−∞
dz

h̄2

2m

{
n1D

2

[(
∂φs

∂z

)2

+
(

∂φa

∂z

)2
]

+ 1

2n1D

[(
∂ρs

∂z

)2

+
(

∂ρa

∂z

)2
]}

, (A4)

where

φa = φ1 − φ2, φs = φ1 + φ2 (A5)

ρa = ρ1 − ρ2

2
, ρs = ρ1 + ρ2

2
(A6)

and we assume that n1D � ρ j . Next we consider the interac-
tions ∑

j=1,2

g1D

2
ψ

†
j ψ

†
j ψ jψ j =

∑
j=1,2

g1D

2
[n1D + ρ j (z)]2

=
∑
j=1,2

(
g1Dn2

1D

2
+ g1Dρ2

j

2
+ g1Dn1Dρ j

)

= g1Dn2
1D + g1D(ρ2

s + ρ2
a ) + 2g1Dn1Dρs. (A7)

Finally, we consider the tunneling term

− h̄J[ψ†
1 (z)ψ2(z) + ψ

†
2 (z)ψ1(z)]

= −h̄J[(e−i(φ1−φ2 ) + e−i(φ2−φ1 ) )
√

n1D + ρ1
√

n1D + ρ2]

= −2h̄J cos(φa)
√

n1D + ρ1
√

n1D + ρ2

= −2h̄J cos(φa)
√

n2
1D + 2n1Dρs + ρ2

s − ρ2
a

≈ −2h̄J cos(φa)(n1D + ρs) ≈ −2h̄n1DJ cos(φa). (A8)

At very low temperatures the symmetric and antisymmetric
components decouple and hence can be treated separately. The
lower-energy terms are the antisymmetric ones and we obtain
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the Hamiltonian

HSG+ =
∫ ∞

−∞
dz

[
g1D ρa(z)2 + h̄2n1D

4m

(
∂φa

∂z

)2

+ h̄2

4mn1D

(
∂ρa

∂z

)2]
−

∫ ∞

−∞
dz 2h̄Jn1D cos[φa(z)].

(A9)
When the higher-wavelength ρ modes are suppressed this
reduces to the sine-Gordon model

HSG =
∫ ∞

−∞
dz

[
g1Dρa(z)2 + h̄2n1D

4m

(
∂φa

∂z

)2

− 2h̄Jn1D cos[φa(z)]

]
. (A10)

Equation (A10) is the finally obtained SG Hamiltonian HSG,
which is the low-energy description of two cigar-shaped
tunnel-coupled quasicondensates [56,81].

APPENDIX B: DERIVATION OF THE
TOMONAGA-LUTTINGER HAMILTONIAN

IN FOURIER SPACE

In this Appendix we derive the Fourier space version of
the Tomonaga-Luttinger Hamiltonian. Starting from Eq. (25)
and applying the discrete Fourier decompositions given in
Eqs. (26) and (27), we have

HTL+(ra) =
∫ ∞

−∞
dz

g1D

NL + 1

⎛
⎝ NL/2∑

k=−NL/2

�kei2πkr/(NL+1)

⎞
⎠

⎛
⎝ NL/2∑

l=−NL/2

�l e
i2π lr/(NL+1)

⎞
⎠

+
∫ ∞

−∞
dz

h̄2n1M

4ma2(NL + 1)

∂

∂r

⎛
⎝ NL/2∑

k=−NL/2

ϕkei2πkr/(NL+1)

⎞
⎠ ∂

∂r

⎛
⎝ NL/2∑

l=−NL/2

ϕl e
i2π lr/(NL+1)

⎞
⎠

+
∫ ∞

−∞
dz

h̄2

4mn1Ma2(NL + 1)

∂

∂r

⎛
⎝ NL/2∑

k=−NL/2

�kei2πkr/(NL+1)

⎞
⎠ ∂

∂r

⎛
⎝ NL/2∑

l=−NL/2

�l e
i2π lr/(NL+1)

⎞
⎠

= a
NL/2∑

r=−NL/2

NL/2∑
k=−NL/2

NL/2∑
l=−NL/2

(
g1D�k�l ei2π (k+l )r/(NL+1)

NL + 1

)

− a
NL/2∑

r=−NL/2

NL/2∑
k=−NL/2

NL/2∑
l=−NL/2

h̄2n1D

4ma2(NL + 1)

(
2π

NL + 1

)2

klϕkϕl e
i2π (k+l )r/(NL+1)

− a
NL/2∑

r=−NL/2

NL/2∑
k=−NL/2

NL/2∑
l=−NL/2

h̄2

4mn1Da2(NL + 1)

(
2π

NL + 1

)2

kl�k�l e
i2π (k+l )r/(NL+1), (B1)

where we have split the z coordinate into NL + 1 grid
points separated by distance a so that z = ra, where r
in an integer lying in the range specified by Eq. (11).
Using the fact that NLa = L and applying the identity∑NL/2

r=−NL/2 ei2π (k+l )r/(NL+1) = (NL + 1)δk,−l , we obtain

HTL+ ≈ a
∑

k

∑
l

g1D�k�lδk,−l

− a
∑

k

∑
l

(
h̄2n1Dπ2

mL2

)
klϕkϕlδk,−l (B2)

− a
∑

k

∑
l

(
h̄2π2

mn1DL2

)
kl�k�lδk,−l ,

where in the second term we have also replaced a2(NL + 1)2

by L2, which holds when NL � 1. The limits of the summa-
tion in Eq. (B2) has been omitted for the sake of brevity. We

therefore find

HTL+ ≈
∑

k

(
ag1D�k�−k + ah̄2n1Dπ2k2

mL2
ϕkϕ−k

+ ah̄2π2k2

mn1DL2
�k�−k

)

=
∑

k

(
ag1D|�k|2 + ah̄2n1Dπ2k2

mL2
|ϕk|2 (B3)

+ ah̄2π2k2

mn1DL2
|�k|2

)
,

where we used the property of real fields that

ϕ−k = ϕ�
k , �−k = ��

k . (B4)
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FIG. 13. Relative error in the SG+ Hamiltonian plotted as a
function of the time step dt̃ . The definition of the SG+ Hamiltonian
is given in Eq. (18) and should be a constant of the motion were it
not for numerical errors. The moving time average of relative error
is evaluated after propagating the equations of motion for a total
elapsed time of t̃ = 1000. All parameter values are the same as in
Fig. 5, including NL = 50.

Hence the Hamiltonian takes the form given in Eq. (28) of the
main text.

APPENDIX C: BENCHMARKING OF THE NUMERICAL
METHOD

The results given in this paper rely on numerically evolving
the equations of motion over time for various models [e.g.,
for the full SG+ model the equations of motion are given
in Eq. (22)], which we accomplish using the JULIA package
DIFFERENTIALEQUATIONS.JL [126]. This implements a Runge-
Kutta solver with a user-defined time step. As a measure of
the accuracy of our numerical method we use the deviation of
the Hamiltonian from its initial value. Since the Hamiltonian
should be a constant of motion, this gives an indication of the
size of the numerical errors.

In Figs. 13 and 14 we plot the relative error in the SG+
Hamiltonian given in Eq. (18) for different time and spatial
resolutions. More precisely, Fig. 13 shows the effect of vary-
ing the time step dt̃ , whereas Fig. 14 shows the effect of
varying the number of grid points NL, which sets the spatial
step dz̃. In both cases we have evolved the system for a total
elapsed time of t̃ = 1000, which corresponds to the longest
times we use in this paper (for the calculation of the long-term
distribution shown in Fig. 10), and also taken an ensemble av-
erage over 100 different trajectories similar to those in Fig. 5.
Furthermore, we also performed a moving time average of 30
time steps around t̃ = 1000 to average out the effect of fast
oscillations.

As expected, the relative error decreases as dt̃ and dz̃
decrease. For all the calculations in the main part of this
paper we chose dt̃ = 0.2 and NL = 50 because this keeps the
relative error below 10% and does not significantly slow down
the simulations.

FIG. 14. Relative error in the SG+ Hamiltonian plotted as a
function of the number of lattice points NL on the numerical spatial
lattice. Like in Fig. 13, the Hamiltonian is evaluated after evolving
the equations of motion for a total elapsed time of t̃ = 1000. The
moving time average of the relative error fluctuates (at around 10%)
but decreases as dz̃ decreases (or NL increases). All other parameter
values are the same as in Fig. 5 with dt̃ = 0.2.

APPENDIX D: CAUSTIC CURVE

In this Appendix we use the exact solution for the motion
of a pendulum to calculate the caustic curve plotted as the
black solid line in Fig. 3. The caustic is in fact the enve-
lope of a whole family of trajectories. To begin, we take the
equations of motion for the SG model given in Eq. (22) and
drop the second-order derivative term proportional to ε which
couples the different pendulums. Next we make the change of
variables

t̃ = At, ρ̃ = Bp, φ̃ = 2y, (D1)

where

A = 1

2

1√
J


, B = 2

√
J



, (D2)

so the equations of motion simplify to
dy

dt
= p, (D3)

d p

dt
= −1

2
sin 2y. (D4)

These equations are Hamilton’s equations obtained from a
standard pendulum Hamiltonian of the form

H (y, p) = p2

2
+ 1

2
sin2 y. (D5)

The equations of motion (D3) and (D4) have exact solu-
tions in terms of the Jacobi elliptic functions sn(u|m) and
cn(u|m) [134]. For the case relevant to us where the pendulum
starts at angle y0, with zero initial angular momentum, they are

y(t, y0) = arcsin{sin y0sn[t + K (sin y0)|sin y0]}, (D6)

p(t, y0) = sin(y0)cn[t + K (sin y0)|sin y0], (D7)

where K (m) = ∫ π/2
0 dθ/

√
1 − m2 sin2 θ is the complete ellip-

tic integral of the first kind [134] [we caution the reader that
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some computer packages such as Mathematica use the syntax
K (m2) for this integral].

Caustics occur when trajectories are focused; in other
words, they are the places where the trajectory does not
change (to first order) when the initial conditions are var-
ied. Thus, caustics in the momentum variable p occur when
d p/dy0 = 0 since the initial condition here is specified by
y0. By differentiating Eq. (D7), an implicit expression for the
position of the caustics can be found [135]

sn(u|m)dn(u|m)

(E (am(−t |m)|m)
cos(y0)

+ t cos(y0)

)

− cos(y0)cn(u|m) = 0, (D8)

where u = t + K (sin y0), m = sin y0, E (u|m) is an elliptic in-
tegral of the second kind, dn(u|m) is another Jacobi elliptic
function, and am(u|m) = arcsin[sin(φ)/m] is the Jacobi am-
plitude [134]. Finding the roots y0 of Eq. (D8) numerically at
each value of the time gives pairs of values (y0, t ) that can
then be put back into Eq. (D7) to yield the black curve for the
caustic shown in Fig. 3. The match to the numerics is very
good.

APPENDIX E: DERIVATION OF ERGODIC
(CIRCUS-TENT) PROBABILITY DISTRIBUTION

AT LONG TIMES

In this Appendix we outline the derivation of an analytic
approximation to the probability distribution for the number
difference at long times, as shown in Fig. 10. This derivation is
based upon a calculation given in Ref. [136] and assumes that
the average behavior of a continuous chain of coupled pendu-
lums (the mechanical system that underlies the sine-Gordon
model) can be described by a suitably ergodized single
pendulum.

To keep the calculation general we use the pendulum
Hamiltonian in standard form as given in Eq. (D5). With this
Hamiltonian we define a microcanonical probability density
in phase space

dm(y, p; y0) = δ(H (y, p) − H (y0, p))∫∫
dy d p δ(H (y, p) − H (y0, p))

, (E1)

where y0 is the initial angle of the pendulum which fixes
its total energy to be E = 1

2 sin2 y0 if the the initial angular
momentum is zero (this is the appropriate initial condition for
the tunneling quench considered in this paper where the initial
number difference is taken to be zero) and the denominator
ensures that dm is normalized to unity. A microcanonical
distribution has equal probability to be anywhere on its energy
shell [in this case a closed curve in (y, p) phase space] and thus
by adopting Eq. (E1) we are making an ergodic hypothesis.
This does not hold for a single pendulum starting at position y0

since it will spend the most time at its turning points y = ±y0,
but when averaged over y0 and y (discussed below) it gives
a very good approximation at long times, as can be seen in
Fig. 10.

The normalization integral can be evaluated exactly by
reexpressing the δ function using the relation δ(g(x)) =∑

i δ(x − xi )/|g′(xi )|, where xi are the roots of g(x). In the

present case this gives

δ((p2 + sin2 y − sin2 y0)/2) = δ(p − p1)

|p1| + δ(p − p2)

|p2|
= 2

δ(p − p1)

|p1| , (E2)

where |p1| = |p2| =
√

sin2 y0 − sin2 y. In obtaining this ex-
pression we have used the fact that for values of y within the
range accessed by the pendulum, there are two values of p
where the integral crosses the energy shell. The integral over
p is now trivial due to the δ function and the integral over y
can be performed by setting sin y = sin y0 sin ζ so that

2
∫ y0

−y0

dy

|p(y, y0)| = 2
∫ y0

−y0

dy√
sin2 y0 − sin2 y

= 2
∫ π/2

−π/2

dζ√
1 − sin2 y0 sin2 ζ

= 4
∫ π/2

0

dζ√
1 − sin2 y0 sin2 ζ

= 4K (sin y0). (E3)

Therefore, the normalized microcanonical probability density
can be written as

dm(y, p; y0) = 1

4K (sin y0)
δ((p2 + sin2 y − sin2 y0)/2)

= 1

2K (sin y0)
δ(p2 + sin2 y − sin2 y0), (E4)

where we have used the property of δ functions that δ(αx) =
(1/α)δ(x).

The initial condition for our dynamics is such that the
number difference is well defined but the phase difference
is completely undefined. We must therefore average the mi-
crocanonical probability density over all y0. This gives the
phase-space probability density relevant to J quenches as
being

W (y, p) = 1

π

∫ π/2

−π/2
dy0dm(y, p; y0), (E5)

where we employ the notation W to indicate that this is a
classical version of the Wigner function. The properties of the
δ function can once more be used to write

δ(p2 + sin2 y − sin2 y0) =
∑

i

δ(y0 − y0i )θ (cos y − |p|)
2
√

p2 + sin2 y
√

cos2 y − p2
,

(E6)

where θ (x) is the Heaviside step function. The integral over
y0 can now be evaluated exactly to give

W (y, p) = 2

4π

θ (cos y − |p|)
K (

√
p2 + sin2 y)

√
p2 + sin2 y

√
cos2 y − p2

.

(E7)

The final step is to integrate out the y coordinate to obtain
the probability distribution PCT(p) for p alone

PCT(p) =
∫ π/2

−π/2
dy W (y, p), (E8)
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where CT stands for circus tent. Although this integral can-
not be done analytically, it can be put in a form which is

convenient to evaluate numerically. Defining m = sin y0 =√
p2 + sin2 y, we find that

PCT(ρ̃) = 1

2πB

∫ 1

ρ̃2/B2

dm

K (m)
√

m(1 − m)(m − ρ̃2/B2)(1 + ρ̃2/B2 − m)
, (E9)

where we have also converted back from angular momentum
p to number difference ρ̃ using Eq. (D1). This equation is
given in the main text as Eq. (44) and is plotted in Fig. 10,
where it is compared against the long-time spatially and tem-
porally averaged numerical data for the various nonlinear
models considered in this paper. As can be seen in Fig. 10,
PCT is characterized by a diverging (yet normalizable) peak
at the center and then relatively flat wings until it drops
sharply to zero at the edges. In Ref. [136] it is shown that
PCT(ρ̃) diverges logarithmically at the origin ρ̃ = 0 and also
tends suddenly to zero with logarithmic singularities at ρ̃ =
±B. Both these nonthermal features can be attributed to the
presence of caustics. We have also numerically calculated
the long-time probability distribution for the relative phase
variable, and it is plotted in Fig. 15. Like Fig. 10, it has a
nonthermal circus tent-like shape with a peak at the center,
relatively flat wings and then sharply drops to zero at the
edges.

APPENDIX F: PENDULUM AT THERMAL EQUILIBRIUM

In Fig. 10 the long-time probability distribution for the
number difference is compared against the ergodic prediction
derived in Appendix E and also against the thermal equilib-
rium prediction. In this Appendix we explain how to calculate
the latter case. In order to make the calculation tractable, we
make the assumption that the SG+ model can be approxi-
mated by a thermal ensemble of independent pendula. We

FIG. 15. Long-time probability distribution for the phase dif-
ference φ̃. The data points are from the SG model averaged over
the spatial coordinate z and also over a time window ranging from
t̃ = 800 to t̃ = 980 to remove fluctuations. The solid line is not a
fit or theoretical curve but passes through all the data points to help
guide the eye.

also adopt the same notation as in Appendix E and hence
work with a pendulum Hamiltonian in the standard form H =
1
2 (p2 + sin2 y). This is related to the two-mode Hamiltonian
H2M = 
ρ̃2 − 2J cos φ by H = H2M/8J + 1

4 .
We proceed in two steps. First, we calculate the probability

distribution PE (p) for the momentum variable p (which here
plays the role of the number difference) for a fixed energy
E . Second, we assume our system is at thermal equilibrium
with a bath at temperature T such that the relative probability
of any energy is given by the Boltzmann factor exp(−E/T ).
Thus the thermal probability distribution is

PT (p) = 1

Z

∫ ∞

0
PE (p)e−E/T D(E )dE , (F1)

where Z is a normalizing factor (found numerically) and D(E )
is the density of states.

The probability distribution PE (p) at fixed E is propor-
tional to 1/ṗ as this determines how long the pendulum
spends at each value of p. According to Hamilton’s equa-
tion ṗ = −∂H/∂x = − 1

2 sin 2y and using the fact that sin y =√
2E − p2, we find that this probability distribution for a fixed

value of E is

PE (p) = N
1
2 sin(2 arcsin

√
2E − p2)

, (F2)

where N is a normalization factor given by the period of
the motion. Two cases must be distinguished. For E < 1

2 the
energy is less than the separatrix and the pendulum undergoes
vibrational motion (also known as librational motion in some
literature). Conversely, when E > 1

2 the energy is above the
separatrix and the pendulum undergoes rotational motion.

For motion below the separatrix we have |p| < pmax =√
2E . We must therefore supplement the expression for PE (p)

with the condition that it is zero if |p| > pmax and this ensures
that PE (p) is real. In this case N is given by

N = 1

2K (
√

2E )
, (F3)

where, as in Appendix E, K is the complete elliptic integral of
the first kind.

For motion above the separatrix we have
√

2E − 1 < |p| <√
2E and PE (p) is zero outside this range. Now N is given by

N =
√

2E

4K (1/
√

2E )
. (F4)

To obtain the total thermal probability distribution PT (p)
given in Eq. (F1) we need the density of states D(E ) ≡
dn/dE , where n is the number of states below energy E . Ac-
cording to the Bohr-Sommerfeld rule n = S(E )/2π h̄, where
the action S(E ) = ∮

p dy is the area in phase space enclosed
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by the energy contour E . However, assuming that our Hamil-
tonian H is in units h̄ω, then the 2π h̄ factor is absorbed into
the definitions of p and y and we have D(E ) = (d/dE )

∮
p dy.

Below the separatrix we have∮
p(y)dy = 4

∫ arcsin
√

2E

0

√
2E − sin2 ydy (F5)

and setting 2E = sin2 y0 we find

D<(E ) = d

dE

∮
p(y)dy

= 4
∫ arcsin

√
2E

0

dy√
sin2 y0 − sin2 y

= 4K (
√

2E ), (F6)

where the integral is performed in a fashion similar to the
one in Eq. (E3) and the subscript < indicates that this is the
expression valid below the separatrix. Above the separatrix
we find that the area enclosed in phase space between two
oppositely rotating states of the same energy is∮

p(y)dy = 2
∫ π/2

−π/2

√
2E − sin2 ydy (F7)

and thus

D>(E ) = d

dE

∮
p(y)dy

= 2
∫ π/2

−π/2

dy√
2E − sin2 y

= 4√
2E

K

(
1√
2E

)
. (F8)

Due to the fact that above the separatrix 2E > sin2 y, we
no longer need to make the substitutions 2E = sin2 y0 and
sin y = sin y0 sin ζ and the integral is straightforward. The
subscript > indicates that this expression holds above the
separatrix.

We now have all the necessary ingredients to perform
the integral for PT (p), which we do numerically. The two

contributions, one from below the separatrix and one from
above, are added together to get the total. Interestingly, both
density of states factors (F6) and (F8) diverge at the separatrix
such that the two contributions individually display singular
features but remarkably these cancel out when the two parts
are added and result in the smooth Gaussian curve plotted in
Fig. 10.

In order to compare the thermal distribution against the
quenched (followed by integrable SG evolution) distribution
derived in Appendix E we need to choose a temperature T
for the thermal distribution PT . We do this by matching the
expectation value of the energy 〈E〉 for both distributions. In
the quenched case the initial state corresponds to an ensemble
of pendulums with different starting angles y0 and zero kinetic
energy. Each starting angle in the range −π/2 < y0 � π/2 is
equally probable in our J quench. Therefore,

〈E〉quench = 1

π

∫ π/2

−π/2

1

2
sin2 y0dy0 = 1

4
. (F9)

To calculate 〈E〉 in the thermal case we compute

〈E〉T = 1

ζ

∫ ∞

0
Ee−E/T D(E )dE (F10)

numerically for a large number of different values of T ,
performing the integrals below and above the separatrix sep-
arately and adding the results. Here ζ = ∫ ∞

0 e−E/T D(E )dE
gives the normalization factor. We then fit a curve to the results
and find the value of T that best matches the result given in
Eq. (F9). We find that T = 0.184 gives the best match. Putting
back the units, this result is

kBT

8J h̄c/ξh
= kBT

16Jh̄K/π
= 0.184, (F11)

where c is the speed of sound, K is the Luttinger parameter,
and J is the tunnel coupling rate between the two wells. In this
paper we take K = 25 and J = 30 Hz (see Table I), giving a
temperature in SI units of 5.4 nK.
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