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Effects of higher-order fluctuations on the bulk and surface properties of quantum droplets
in a heteronuclear Bose-Bose mixture
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We discuss the bulk and surface properties of ultradilute self-bound quantum droplets in a heteronuclear
Bose-Bose mixture in the presence of higher-order quantum and thermal fluctuations. Within the realm of
the Hartree-Fock-Bogoliubov theory, we calculate beyond the Lee-Huang-Yang corrections to the ground-state
energy, the droplet equilibrium density, the surface tension, and the critical number of particles. Our predictions
are compared with recent diffusion Monte Carlo simulation and density functional theory method and excellent
agreement is found. We address in addition the effects of temperature on the formation and on the robustness of
the heteronuclear self-bound mixtures.
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I. INTRODUCTION

Since the spectacular prediction of self-bound droplets in
ultracold quantum gases in 2015 by Petrov [1], intensive in-
vestigations have been carried out in the past years, both to
explain the initial observations and to predict new phenomena
(see, for review, Refs. [2–4] and references therein). Such
ultradilute quantum liquids originate from the competition be-
tween mean-field attraction and beyond-mean-field repulsive
Lee-Huang-Yang (LHY) fluctuations.

The ability to control contact interactions using Feshbach
resonance allows the experimental achievement of quantum
self-bound droplets in the homonuclear Bose mixtures of
39K, both in the presence of an external potential [5,6] and
in three-dimensional (3D) free space [7]. Collision between
droplets enables to investigate the dynamical properties of
self-bound systems and to observe the crossover between
compressible and incompressible regimes [8]. The dynamics
and the statics of quantum droplets in binary Bose-Einstein
condensates (BECs) with short-range interactions can be gov-
erned by the extended Gross-Pitaevskii equation based on the
Petrov prescription [1], and beyond the Petrovtheory [9–12].
Quantum Monte Carlo (QMC) method simulations have been
performed [13,14] in order to unveil the role played by the
higher-order quantum fluctuations for the description of the
3D self-bound Bose mixtures realized in recent experiments.
However, as shown by the above experimental works [7,8],
the homonuclear mixtures of 39K lead to the formation of
short-lived droplets (few milliseconds ∼8 ms) due to the
strong three-body losses, which prohibit the observation of the
self-evaporation mechanism predicted first in Ref. [1].

On the other hand, the creation of heteronuclear quan-
tum droplets in an attractive bosonic mixture of 41K − 87Rb
and 23Na − 87Rb have been reported most recently in
Refs. [15,16]. Their properties have been studied using the
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diffusion Monte Carlo (DMC) method and density functional
theory (DFT) [17]. In contrast to the homonuclear droplets,
the heteronuclear self-bound liquids are very dilute since they
are characterized by lower densities. They are stable long-
lived structures (about three times longer than the lifetime of
39K droplets). The longer lifetime and the lower three-body
recombination of this exotic liquid mixture allows to observe
more complex phenomena, such as the self-evaporation of the
droplet [1], the characterization of the incompressible regime
[15], and the creation of larger droplets [17].

In this paper, we study the properties of free-space self-
bound quantum liquid droplets in heteronuclear Bose-Bose
mixtures of 41K − 87Rb [15] in the presence of higher-order
quantum fluctuations. To this end, we use our Hartree-Fock-
Bogoliubiov (HFB) theory [11,12,18,19] that can go beyond
the LHY description. It can self-consistently evaluate the
quantum and thermal fluctuations stemming from the normal
and anomalous correlations generalizing all existing models
in the literature, such as the Bogoliubov theory [1], and the
extended Gross-Pitaevskii equation [1,6,7]. The intriguing
coupling between the order parameter, the normal and anoma-
lous fluctuations makes the HFB a promising approach for
exploring quantum self-bound droplets in dipolar [19] and
nondipolar Bose-Bose mixtures [11,12,18] at both zero and
finite temperatures. Furthermore, the HFB theory is able to
explain existing experimental and QMC results [11,12,20].

We calculate, in particular, the ground-state energy, the
equilibrium density, the surface tension, the critical number
of particles, and compare them with available DMC and DFT
data. It is found that our results excellently agree with the pre-
dictions of DMC simulations [17]. This shows the pertinence
of our theory in capturing higher-order quantum correlation
effects. We then extend our calculations to finite temper-
ature and study the thermal dependence of the self-bound
droplet. We compute, in particular, the free energy and the
critical temperature above which the droplet evaporates. It is
pointed out that the self-bound droplet remains robust even for
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relatively large thermal fluctuations in contrast to the homonu-
clear case. This might lead to a possible long-lived droplet. At
temperatures higher than the critical temperature, the droplet
becomes unstable and entirely evaporates.

The rest of the paper is structured as follows. In Sec. II, we
introduce the HFB model for heteronuclear Bose mixtures.
In Secs. III–V our theoretical results for the ground-state
energy, the equilibrium density, the surface tension, and the
critical atom numbers are presented and compared with the
recently available DMC data. Section VI describes the thermal
effects on the stabilization mechanism of the heteronuclear
self-bound droplet. We accurately calculate the free energy
and the critical temperature of the droplet. Section VII is
dedicated to the conclusions and outlooks.

II. MODEL

We consider homogeneous heteronuclear two-component
BECs with masses m1 and m2 in a volume V and a total
number of bosons N = N1 + N2. The dynamics of this sys-
tem including the effect of quantum and thermal fluctuations
is governed by the coupled time-dependent HDB (TDHFB)
equations which can be written as [11,12,18–20]

ih̄
d� j

dt
= (hsp

j + g jn j + g12n3− j + δμ jLHY
)
� j, (1)

where hsp
j = −(h̄2/2mj )� − μ j is the single-particle Hamil-

tonian, μ j is the chemical potential of each component
( j = 1, 2), δμ jLHY(r)� j (r) = g j[ñ j (r)� j (r) + m̃ j (r)�∗

j (r)]
is the relevant LHY term, which is obtained self-consistently,
ˆ̄ψ j (r) = ψ̂ j (r) − � j (r) is the noncondensed part of the field

operator with � j (r) = 〈ψ̂ j (r)〉, nc j = |� j |2 is the condensed

density, ñ j = 〈 ˆ̄ψ†
j

ˆ̄ψ j〉 is the noncondensed density, m̃ j =
〈 ˆ̄ψ j

ˆ̄ψ j〉 is the anomalous correlation, and n j = nc j + ñ j is the
total density of each species. In 3D Bose mixtures, the intra-
and interspecies coupling strengths are given, respectively,
by g j = (4π h̄2/mj )a j and g12 = g21 = 2π h̄2(m−1

1 + m−1
2 )a12

with a j and a12 being the intraspecies and the interspecies
scattering lengths.

The elementary excitations of a homogeneous Bose
mixture, can be computed by linearizing Eq. (1) via the gen-
eralized random-phase approximation: � j = √

nc j + δ� j ,
where δ� j (r, t ) = u jkeik·r−iεkt/h̄ + v jkeik·r+iεkt/h̄ � √

nc j

[18,19]. The solution of the obtained second-order-coupled
TDHFB–de Gennes equations provides the following
expressions for the quasiparticle amplitudes [18],

u+k, v+k = 1

2

⎛
⎝√ε+k

E1k
±
√

E1k

ε+k

⎞
⎠, (2a)

u−k, v−k = 1

2

⎛
⎝√ε−k

E2k
±
√

E2k

ε−k

⎞
⎠, (2b)

and correction terms to the Bogoliubov excitations energy,

εk± =

√√√√ε2
1k + ε2

2k

2
±
√(

ε2
1k − ε2

2k

)2
4

+ 4g2
12n1n2E1kE2k,

(3)

where ε jk =
√

E2
jk + 2Ejkḡ jnc j are the Bogoliubov spectra

for each species and Ejk = h̄2k2/(2mj ) is the energy of free
particle in each component. Here, the density-dependent cou-
pling constants ḡ j = g j (1 + m̃ j/nc j ) have been introduced in
order to guarantee the gaplessness of the spectrum [11,18].
The Bogoliubov dispersions (3) exhibit a phononlike linear
dependence on k in the long-wavelength limit εk± = h̄cs±k,
where

c2
s± = 1

2

(
c2

s1 + c2
s2 ±

√(
c2

s1 − c2
s2

)2 + 4c2
s12

)
are the sound velocities with cs j = √ḡ jnc j/mj and cs12 =√

g2
12n1n2/m1m2 being the sound velocities for the individual

components. The stability condition requires: cs1cs2 > c2
s12.

This implies

ḡ1ḡ2 > g2
12, or g1

(
1 + m̃1

nc1

)
g2

(
1 + m̃2

nc2

)
> g2

12, (4)

meaning that the anomalous fluctuations are necessary for the
stability of the mixture at both zero and nonzero temperatures.

At zero temperature, the noncondensed density is defined
as: ñ = V −1∑

k

∑
±

v2
±k [18]. We then replace the wave-vector

sum by an integral V −1∑
k → (1/2π2)

∫∞
0 dk k2. After inte-

grating over k, we obtain

ñ = 2
√

2

3
n1

√
n1a3

1

π

(
1 + m̃1 − ñ1

n1

)3/2

U (z, x, y), (5)

where U (z, x, y) > 1 is a dimensionless function.
For z = 1, it simplifies to U (1, x, y) =∑±[1 + y ±√

(1 − y)2 + 4xy]3/2/2
√

2 [11,18].
The anomalous density, which describes correlations be-

tween bosonic pairs, is given by m̃ = V −1∑
k

∑
± u±kv±k

[18]. It strongly depends on the interparticle interactions.
Summing over all states would cause ultraviolet divergences
in the anomalous density. To circumvent, such a divergence
arising from the use of the contact interactions, we should
introduce the renormalized coupling constants [1,11,21],

g j (k) = g j + g2
j

∫
dk

(2π )3

1

2Ek
, (6a)

g12(k) = g12 + g2
12

∫
dk

(2π )3

1

2Ek
. (6b)

After the subtraction of the ultraviolet divergent part, the
renormalized anomalous density takes the form

m̃ = − 1

2π2

∫ ∞

0
dk k2

[
1

εk
− n2

j g
2
j

2Ek
− n1n2g2

12

2Ek

]
. (7)

This yields

m̃ = 2
√

2 n1

√
n1a3

1

π

(
1 + m̃1 − ñ1

n1

)3/2

U (z, x, y). (8)

Equation (8) clearly shows that m̃ is three times larger than ñ
at zero temperature, so the omission of the anomalous density
in Bose systems is indeed an unfaithful approximation. This
indicates that the anomalous density is essential in obtaining

013305-2



EFFECTS OF HIGHER-ORDER FLUCTUATIONS ON THE … PHYSICAL REVIEW A 108, 013305 (2023)

higher-order fluctuations and, thus, in the stability of Bose
mixtures [see also Eq. (4)]. Similar behavior is also present
in a single BEC [23–27].

At very low temperature, the energy of the system per
unit volume including higher-order quantum fluctuations
reads [11]

E

V
= 1

2

2∑
j=1

g jn
2
j + g12n1n2 + ELHY

V
, (9)

where
ELHY

V
=
∑

k

∑
±

ε±kv
2
±k (10)

stands for the LHY corrections to the ground-state energy, which is ultraviolet divergent. To eliminate this problem, we employ
again the renormalized coupling constants (6). This gives

ELHY

V
=

16g1

√
a3

1/π

15
√

2
n5/2

1

(
1 + m̃1 − ñ1

n1

)5/2

f

(
m2

m1
,

g2
12

ḡ1ḡ2
,

ḡ2nc2

ḡ1nc1

)
, (11)

where f (z, x, y) > 1 (z = m2/m1, x = g2
12/ḡ1ḡ2, y = ḡ2nc2/ḡ1nc1) is a dimensionless function. For homonuclear mixtures, z = 1,

the function f reduces to f (1, x, y) =∑±[1 + y ±
√

(1 − y)2 + 4xy]5/2/4
√

2, thus, f (1, 1, y) = (1 + y)5/2, and f (1, 1, 1) = 1
[11,18]. For m̃ j = 0 and nc ≈ n, one can reporduce the early Larsen formula [21]. In the heteronuclear case, a simple analytical
expression for f (z, x, y) is not accessible. According to Refs. [1,22], in the region where x ∼ 1 (i.e., f is weakly dependent on
x), the expression of the dimensionless function f is given by

f (z, x, y) = 15

32

∫ ∞

0
k2F (k, z, x, y)dk, (12)

where

F (k, z, x, y) =

√√√√1

2

[
k2

(
1 + y

z

)
+ 1

4
k4

(
1 + 1

z2

)]
+
{

1

4

[(
k2 + 1

4
k4

)
−
(

y

z
k2 + 1

4z2
k4

)]2

+ x
y

z
k4

}1/2

(13)

+

√√√√1

2

[
k2

(
1 + y

z

)
+ 1

4
− k4

(
1 + 1

z2

)]
−
{

1

4

[(
k2 + 1

4
k4

)
−
(

y

z
k2 + 1

4z2
k4

)]2

+ x
y

z
k4

}1/2

− 1 + z

2z
k2 − (1 + y) + 1

k2

[
1 + y2z + 4xy

z

1 + z

]
.

Equations (8)–(11) are self-consistent that can be solved
by iteration, and whose solutions directly provide the desired
corrections to the ground-state energy and fluctuations of the
droplet.

From now on, we consider the case of a mixture of the
hyperfine state |F = 1, mF = 1〉 of 41K as component 1, and
the hyperfine state |F = 1, mF = 1〉 of 87Rb as component 2.
The scattering parameters describing the intraspecies repul-
sion are fixed and their values are equal to a1 = 65a0 [28], and
a2 = 100.4a0 [29]. Experimentally, the interspcies interaction
a12 varies from −80a0 to −95a0 [15].

The result of the numerical integration of Eq. (12) for the
case of 41K − 87Rb mixture (z � 2.1) close to the mean-field
collapse (x ∼ 1) with and without higher-order corrections
is displayed in Fig. 1. We see that the higher-order fluc-
tuations may increase the function f , in particular, for
large y leading to enhance the ground-state energy giving
rise to affect the behavior of the droplet as we will see
below.

III. BULK PROPERTIES

In this section, we analyze the bulk properties of
41K − 87Rb mixture in the droplet regime. According to the
Petrov theory [1], the stability of the mixture against fluc-
tuations requires the condition: n2/n1 = √

ḡ1/ḡ2. Therefore,
the energy functional becomes effectively single component,
and can be written in terms of the total density n = n1 + n2

as

E

N
=

2π h̄2
[
2a1z + a12

√
a1
a2

z(1 + z)
]

m2

(√
a1
a2

z + 1
)2 n2

+ 256
√

π h̄2a5/2
1

15m1

⎛
⎜⎝1 + z1/10√a2/a1

1 +
√

a1
a2

z

⎞
⎟⎠

5/2

n5/2

×
(

1 + m̃ − ñ

n

)5/2

. (14)
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FIG. 1. The dimensionless function f from Eq. (12) for
41K − 87Rb mixture (z � 2.1). The solid line: Our predictions. The
dashed line: Without higher-order corrections.

In Fig. 2, we plot the energy (14) and compare it with the-
oretical predictions [1], and recent DMC energies obtained
using finite-range potentials [17] for different values of the in-
terspecies interactions a12. DMC simulations were performed
with two models of the interaction potential called POT-I and
POT-II, which satisfy both scattering parameters, namely, the
s-wave scattering length a and the effective range reff . This
latter can be estimated from the knowledge of the Van der
Waals coefficient, C6 (for more details, we refer the reader to
Ref. [17]).

We see that our findings agree with the theoretical pre-
dictions [1] at densities smaller than the equilibrium density,
revealing the universality of our theory in such a regime.
Whereas, they down-shift from the Bogoliubov results [1] at
relatively higher densities due to the inclusion of the anoma-
lous correlations (pairing effects) [11]. On the other hand, our
HFB predictions are in excellent agreement with the DMC
simulations [17] for the three values of a12. This proves the
relevance of the beyond LHY stabilization of quantum liquid
droplets in heteronuclear Bose mixtures.

The equilibrium density of the droplet can be obtained by
minimizing the energy. For analytical tractability, we retain
only first order in ñ and m̃. This yields

neq = 25π

4096a3
1

⎡
⎢⎣ 2 + a12/a1

√
a1
a2

z(1 + z−1)(√
a1
a2

z + 1
)

f (z, 1,
√

ḡ2/ḡ1)

⎤
⎥⎦

2

. (15)

The behavior of the equilibrium density is displayed in Fig. 3.
We see that our results improve those obtained from the stan-
dard Bogoliubov approach. Another important remark is that
beyond a certain critical value of a12, the equilibrium density
tends to zero and, hence, the liquid evaporates. The reason
is that the interspecies interactions are not strong enough to
balance the LHY repulsion even they are attractive, therefore,
the droplet cannot preserve its self-bound character.

IV. SURFACE TENSION

The surface tension is a relevant parameter in a liquid
droplet that governs its existence, stability, and equilibrium
shape. In the case of quantum droplets, the kinetic energy acts

(a)
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E
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FIG. 2. Ground-state energy E/(NE01) as a function of the den-
sity (na3

1) for different values of a12. (a) a12 = −85a0, (b) a12 =
−90a0, and (c) a12 = −95a0. Dashed lines correspond to the stan-
dard Bogoliubov theory [1]. Solid lines correspond to our results
up to first-order corrections of quantum fluctuations. Circles rep-
resent the DMC results corresponding to POT-I model [17]. Stars
represent the DMC results corresponding to POT-II model [17]. Here
E01 = h̄2/(2m1a2

1 ).

as a surface tension, providing an extra energy that depends on
the density gradient at the surface. The surface tension of the
planar interface consists of assuming an infinite homogeneous
system along the xy plane, and we study the density profile
along the z axis (i.e., we use a slab geometry) [17]. Let us
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FIG. 3. Equilibrium density of the self-bound droplet neq as a
function of the interspecies scattering length a12/a0. Solid lines cor-
respond to our results from Eq. (15). Dashed lines correspond to the
theory of Ref. [1].

rewrite the energy density E of the mixture in terms of density
n1 using the assumption n2/n1 = √

g1/g2 [1],

E = α
(∇√

n1)2

n1
+ βn2

1 + γ n5/2
1 (1 + λ

√
n1)5/2, (16)

where

α = (h̄2/8m2
1 )(1 + z−1

√
g1/g2),

β = g1 + g12

√
g1/g2,

γ = 8

15π2

(
m1

h̄2

)3/2

g5/2
1 f

(
z, 1,

ḡ2

ḡ1

)
,

λ = 1 + 4

3
√

π

(
1 +

√
a2z−1/a1

1 +
√

a2z−1/a1

)3/2

.

The surface tension of the planar interface represented by the
energy functional (16) can be computed using the integral
[17,30],

σ = 2
∫ neq

0
dn1

√
α
[
βn1 + γ n3/2

1 (1 + λ
√

n1)5/2 − μ0
]
,

(17)
where μ0 = βnneq + γ n3/2

neq
(1 + λ

√nneq )5/2 is the chemical po-
tential of the droplet, evaluated at the equilibrium density neq.

The corresponding density profile can be obtained via

z = z0 +
∫ n

neq/2
dn′h(n′), (18)

where

h(n) = −
√

α

n
[βn2 + γ n5/2(1 + λ

√
n)5/2 − μ0n],

with n ∈ [0, neq]. Here, the minus sign indicates that the den-
sity profile is decreasing from bulk to vacuum.

Evidently, Eqs. (17) and (18) for the surface tension and
the density profile extend naturally those of Refs. [17,30].
The results of their numerical integration are shown in Figs. 4
and 5.

Figure 4 illustrates the comparison between the obtained
surface tension (17) and the QMC-based functional POT-I of
Ref. [17]. The surface tension axis is on the logarithmic scale

120 110 100 90 80
10 24

10 22

10 20

10 18

a12 units of a0

Σ
H
a
a 02

FIG. 4. Surface tension (on the logarithmic scale) as a function of
the interspecies scattering length a12/a0. The solid line corresponds
to our results. Circles represent the QMC results corresponding to
the POT-I model [17].

in order to well emphasize its rate of change as a function
of the interspecies interactions. We observe that our findings
agree well with QMC calculations [17] in the whole range of
a12/a0.
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FIG. 5. Density profile along the z direction for different val-
ues of the interspecies scattering length a12/a0. The red lines: Our
predictions. The black lines: Standard results without higher-order
corrections.
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FIG. 6. Critical atom number Ncr as a function of the interspecies
scattering length a12/a0. The solid line corresponds to our results.
The circles represent the QMC results corresponding to the POT-I
model [17].

The density profiles (18) for different values of a12 are
reported in Fig. 5. We see that the presence of the higher-order
effects leads to decrease the density of the droplet as foreseen
above.

V. CRITICAL NUMBER OF ATOMS

To determine the critical number of atoms Ncr, we can
use a variational method. The assumed density profile
of the first component of the mixture takes the form:
n1(r) = N1e−r2/σ 2

/(π3/2σ 3). Inserting this ansatz into
Eq. (16), the effective single-component energy per particle
turns out to be given

E

N1
= 6α

σ 2
+ β

(2π )3/2

N1

σ 3
+
∫

dr γ n5/2
1 (1 + λ

√
n1)5/2. (19)

For a fixed value of a12, we are interested in the pair of pa-
rameters (σ0, N1,cr ) for which the conditions ∂ (E/N1)/∂σ = 0
(for a minimum) and E/N1 = 0 (gives the line separating
stable droplets with negative total energy from unstable ones
with positive energy) must be fulfilled [17].

In the presence of higher-order fluctuations, the above
system cannot be solved analytically. Therefore, we solve it
numerically with respect to σ , for the critical total number
of atoms Ncr = N1,cr (1 + √

ḡ1/ḡ2). We, then, compare our
results with QMC data of Ref. [17]. Figure 6 shows that the
critical atom number obtained from our HFB theory is in
perfect agreement with the QMC simulations of Ref. [17] due
to the effects of higher-order quantum correlations.

VI. THERMAL DESTABILIZATION

In this section, we discuss the thermal destabilization of
quantum droplets in heteronuclear Bose-Bose mixtures of
41K − 87Rb.

In the frame of the HFB formalism, the free energy can be
written as [18,20]

F = E + T

2π2

∫
k2dk

∑
±

ln

(
2√

Ik± + 1

)
, (20)
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FIG. 7. (a) Free energy as a function of the density (na3
1) for

a12 = −85a0 at different values of temperature T/E01. (b) Critical
temperature as a function of the interspecies scattering length a12/a0.

where Ik± = coth2(εk±/2T ). At low temperature, the main
contribution to integral (20) comes from the phonon branch.
This yields

F

V
= E

V
− π2

90

T 4

h̄3

∑
±

1

c3
s±

, (21)

which can be rewritten as

F

N
=E

N
−

√
2m3/2

1 (g1n1)5/2

45π2h̄3

(
1 + m̃1 − ñ1

n1

)−3/2

× f (z, x, y)−1/2

(
πT

g1n1

)4

, (22)

where E/N is given in Eq. (14). The presence of the normal
and anomalous fluctuations in Eq. (22) not only ensures the
convergence of the free energy, but also provides higher-order
corrections, which may shift the critical temperature of the
self-bound droplet.

We show in Fig. 7(a) the free energy up to second-
order computed at different values of temperatures. It is
found that below a certain critical temperature T < Tc �
1.7E01, the free energy features a local maximum, corre-
sponding to the formation of an unstable droplet, and a local
minimum supporting a higher-density stable self-bound solu-
tion. The two solutions disappear at the critical temperature
(T = Tc � 1.7E01), indicating that the liquidlike droplet starts
to evaporate. Importantly, this critical temperature is somehow
higher than that predicted for the homonuclear droplet where
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Tc is comparable with the ground-state energy of the liquid
[9–11,20], giving rise to the formation of long-lived droplets.
This fascinating feature enables the observation of the self-
evaporation mechanism. Augmenting further the temperature
(T > Tc), the self-bound state becomes unstable and, then,
completely evaporates eventually. Likewise, the homonuclear
case, the critical temperature Tc of the heteronuclear droplet is
also decreasing with the interspecies interactions as shown in
Fig. 7(b).

VII. CONCLUSIONS

In this paper, we deeply investigated the bulk and the
surface properties of the 41K − 87Rb quantum liquid mix-
ture in the presence of higher-order quantum and thermal

corrections. The ground-state energy, the droplet equilib-
rium density, the surface tension, and the critical number
of particles have been computed using the HFB theory. We
compared our results with recent predictions of DMC simu-
lation and the DFT method and excellent agreement is found.
At finite temperature, we revealed that a robust droplet can
survive even for relatively large temperature compared to the
homonuclear self-bound droplets. The results acquired from
this research could uncover valuable insights and support fu-
ture experiments for many interesting phenomena, such as the
self-evaporation and larger droplets.
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