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Exceptional points emerge in the complex eigenspectra of non-Hermitian systems, and give rise to rich
critical behaviors. An outstanding example is the chiral state transfer, where states can swap under an adiabatic
encircling around the exceptional point, but only along one direction. In dissipative quantum systems, such
exceptional-point encirclings are often accompanied by decoherence, whose impact is beyond the description of
non-Hermitian Hamiltonians. In this paper, we study in detail the effects of dephasing on the encircling dynamics,
adopting the full Lindblad master equation. Introducing experimentally relevant quantum-jump processes that
account for dephasing, we show that gaps emerge in the eigenspectra landscape of the corresponding Liouvillian
superoperator. It follows that the chiral state transfer does not take place in the adiabatic limit, since the system
always adiabatically follows the quasisteady state of the Liouvillian regardless of the encircling direction.
Nevertheless, the chirality is restored at intermediate encircling times, where the dynamics is nonadiabatic in both
encircling directions, distinct from the typical chiral state transfer in non-Hermitian systems. While our results
are applicable to several recent experiments, we examine a recent cold-atom experiment in particular, and show
that the observed long-time chirality is limited to the special encircling path therein. Our paper provides further
insight into the chiral state transfer under experimental conditions, and is helpful for controlling open-system
dynamics from the perspective of non-Hermitian physics.
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I. INTRODUCTION

An open quantum system exchanges energy, particle,
or information with its environment, and thus defies the
description of Hermitian Hamiltonians. A convenient, if phe-
nomenological, alternative is provided by the non-Hermitian
framework [1]. With complex eigenspectra and ramified sym-
metries [2], non-Hermitian Hamiltonians exhibit rich and
exotic features, including the parity-time symmetry [3–14],
the non-Hermitian nodal phases [15–19], and non-Hermitian
topology [20–34]. These phenomena have stimulated intense
research interest in recent years, not only because of the fresh
insights they offer regarding open systems, but also for their
potential applications.

The recent surge of interest in non-Hermitian physics can
be traced back to the discovery of the parity-time symmetry
[3,4], under which a non-Hermitian Hamiltonian can acquire
a completely real eigenspectrum. At the critical point where
the symmetry becomes spontaneously broken, eigenenergies
and eigenstates coalesce, as the eigenspectrum transits from
being completely real to complex. These so-called exceptional
points (EPs), while absent in Hermitian systems, generally
exist in non-Hermitian settings, even without the parity-time
symmetry [35]. Their sensitive dependence on the tuning pa-
rameters and spectral landscapes is promising for enhanced
sensing [36–38] and quantum-device design [39–41]. In the
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latter case, a particularly useful feature is the chiral state
transfer near an EP [42–47]. By slowly varying the parameters
on a closed loop near the EP (encircling the EP is preferred
but not necessary), the dynamics could lead to a state ex-
change, depending on the direction of the encircling—the
state is switched only one way around. Though seemingly
contradictory to the adiabatic theorem, the chiral state transfer
is a consequence of the complex eigenspectral structure in the
parameter space, together with the path-dependent amplifica-
tion of the nonadiabatic couplings [46].

Experimentally, the chiral state transfer has been observed
in classical systems with gain and loss [48,49], and in dis-
sipative quantum settings of photons [50], superconducting
qubits [51,52], trapped ions [53], solid spins [54], and cold
atoms [55]. In quantum systems, the non-Hermiticity can be
realized by enforcing postselection [56,57]. More specifically,
most of these open quantum systems feature weak interactions
with a Markovian environment, with the full, unconditional
dynamics described by a Lindblad master equation. The time
evolution of the Lindblad master equation can be understood
as the average of infinitely many quantum trajectories, each
represented by a stochastic wave function, whose time evolu-
tion is driven by a non-Hermitian effective Hamiltonian and
interrupted by quantum jumps. Hence, for trajectories where
quantum jumps are absent, their quantum-state dynamics are
driven by the non-Hermitian effective Hamiltonian. Enforcing
postselection constitutes picking out these trajectories, along
which the dynamics are governed by the non-Hermitian effec-
tive Hamiltonian alone. This is called conditional dynamics,
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as the dynamics are conditioned upon the absence of quantum
jumps [1]. However, realistic open systems often consist of
many degrees of freedom, wherein additional quantum-jump
processes are inevitable. In a series of recent experiments
[51,52,55], for instance, it has been demonstrated that the
EP-induced chiral state transfer persists despite these addi-
tional quantum jumps. This is perhaps not too surprising, if
the quantum-jump processes are to be glossed as perturba-
tions whose impact on the non-Hermitian dynamics manifests
only as decoherence or heating. But from the perspective
of open quantum systems, it is more appropriate to analyze
the dynamics using the full Lindblad master equation, where
the time evolution of the density matrix is driven by the Li-
ouvillian superoperator. Since the Liouvillian is intrinsically
non-Hermitian and can host its own EPs [51,52,58,59], it
is natural to pose the question whether the impact of the
quantum jumps on the EP-induced chiral state exchange can
be understood from the Liouvillian spectra. The question is
nontrivial, not least because the spectral landscape of Liouvil-
lians, along with the Liouvillian EPs, are in general distinct
from those of the corresponding non-Hermitian Hamiltoni-
ans. Dynamics can therefore be quite different when the
decoherence-inducing quantum jumps are present.

In this paper, we focus on the chiral state transfer under
quantum-jump processes that lead to dephasing. These
terms are relevant in recent experiments of EP encirclings
in superconducting qubits [51,52] and cold atoms [55]. We
start from the full Lindblad master equation, and demonstrate
that the presence of quantum-jump processes opens up a
finite gap in the eigenspectra landscape of the Liouvillian. A
direct consequence is that the chiral state transfer does not
occur when the encircling time approaches infinity. When
the encircling time is long enough, the system always ends
up in a quasisteady state of the Liouvillian, regardless of
the encircling direction. While the chirality of the state
transfer can be restored at intermediate encircling times, the
dynamics then is distinct from that under the non-Hermitian
Hamiltonian. In the non-Hermitian case, the encircling
dynamics is adiabatic in one direction and nonadiabatic in the
other, and the final state is a pure state. By contrast, under
dephasing and at intermediate times, the dynamics in either
direction is nonadiabatic, and the final state is mixed. We note
that our analysis does not rely on the connection between EPs
of the non-Hermitian Hamiltonian and the Liouvillian EPs,
and is therefore distinct from previous theoretical studies of
hybrid Liouvillian setups [58,59].

In the light of these understandings, we discuss the recent
EP-encircling experiment in cold atoms [55]. Therein, non-
Hermiticity is implemented by postselecting the internal states
of atoms undergoing laser-induced spontaneous decay. How-
ever, branching of the spontaneous decay necessarily gives
rise to additional quantum-jump processes, causing dephas-
ing and heating. While the experiment reports chiral state
transfer under a fairly long encircling time, we show that this
is facilitated by the particular choice of the encircling path
in the experiment. Therein, the path consists of a segment
where the dynamics is driven by a purely Hermitian Hamil-
tonian. The Liouvillian gap closes along this segment, such
that the dynamics is decidedly nonadiabatic on the Liouvil-
lian eigenspectral landscape in either encircling direction. We
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FIG. 1. (a) Schematic illustration of the four-level system con-
sidered in this paper. States |1〉 and |2〉 are coupled with a coupling
rate �1 and detuning δ1. Dissipation is introduced by coupling states
|2〉 and |3〉 with a rate �2 and detuning δ2. The spontaneous decay
rates for |3〉 → |4〉 and |3〉 → |2〉 are denoted, respectively, as γ0 and
γ2. (b) The real components of the Liouvillian spectra Reλ without
(upper panel) and with (lower panel) the recycling term LφρL†

φ ,
respectively (see the main text for the definition of Lφ). A Liouvillian
gap is opened in the lower panel, as indicated by the vertical dashed
line in the lower panel. The parameters in (b) are γ0 = 50, �2 =
1, δ2 = 0, and �1 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. We
take γ2 = 0 (γ2 = 10) for the upper (lower) panel. Here �2 is taken
as the unit of energy.

demonstrate that, by choosing a more general encircling path,
the chiral state transfer occurs only at intermediate encircling
times, consistent with our prediction above. The effect of
the Liouvillian-gap closing along the Hermitian segment can
therefore be understood as pushing the chirality condition
from the intermediate-time to the infinite-time limit.

Our paper is organized as follows. In Sec. II, we present
the four-level system that we consider, inspired by the recent
cold-atom experiment. We analyze the encircling dynamics in
detail in Sec. III. In Sec. IV, we discuss the experiment [55]
from the perspective of the Liouvillian eigenspectrum, and
consider a general encircling path where the results in Sec. III
can be recovered. We conclude in Sec. V.

II. MODEL

Motivated by the recent experiments [51,52,55], we
consider a four-level system illustrated in Fig. 1. The
two-level open system is encoded in the states {|1〉, |2〉},
which are coupled to each other. For simplicity, we assume
the coupling does not involve momentum transfer, so that the
external degrees of freedom are decoupled. A laser-induced
loss is imposed on state |2〉 by coupling it to an excited state
|3〉, which undergoes spontaneous decay. We consider the
case where the decay has two different channels, one into a
bystander state |4〉, the other back into state |2〉. Adiabatically
eliminating state |3〉 and projecting out state |4〉, we derive the
Lindblad master equation governing the dynamics of the open
system (see the Appendix for a detailed derivation where we
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take h̄ = 1):

ρ̇ = −i(Heffρ − ρH†
eff ) + LφρL†

φ − 1
2 L†

φLφρ − 1
2ρL†

φLφ,

(1)

where the non-Hermitian effective Hamiltonian is

Heff = H0 − i�|2〉〈2|. (2)

In the basis of {|1〉, |2〉}, the matrix for the Hermitian part of
the Hamiltonian is

H0 =
[

δ1
2 −�1

−�∗
1 − δ1

2

]
, (3)

where the coupling rate �1 and the detuning δ1 are illustrated
in Fig. 1. The quantum-jump operator Lφ = √

γφ|2〉〈2|
accounts for the spontaneous decay |3〉 → |2〉, which leads to
the dephasing of the {|1〉, |2〉} subsystem. The non-Hermitian
term in Eq. (2) characterized by � originates from the decay
|3〉 → |4〉, and is enforced through postselection in the
experiment by considering dynamics of atoms in the states
|1〉 and |2〉 only [55,60]. Explicit expressions for γφ and �

in terms of the control parameters �1,2, δ1,2, and γ0,2 (all
illustrated in Fig. 1) are summarized in the Appendix.

In the absence of the decay process |3〉 → |2〉, the dynam-
ics of the subsystem {|1〉, |2〉} is driven by the non-Hermitian
effective Hamiltonian Heff . It is based on similar non-
Hermitian Hamiltonians with which EP encircling and chiral
state transfer were studied in recent experiments [55]. The de-
cay channel |3〉 → |2〉, besides modifying � and introducing
an additional non-Hermitian contribution 1

2 L†
φLφ to Heff , gives

rises to the quantum recycling term LφρL†
φ that is responsible

for dephasing (see the Appendix).
The impact of dephasing is further visible on the eigen-

spectral landscape of the Liouvillian superoperator L. Specif-
ically, vectorizing the density matrix [58,61]

ρ =
[
ρ11 ρ12

ρ21 ρ22

]
→ |ψ〉 =

⎛⎜⎜⎝
ρ11

ρ12

ρ21

ρ22

⎞⎟⎟⎠, (4)

we cast the Liouvillian in the matrix form

LM =

⎡⎢⎢⎢⎢⎢⎣
0 −i�∗

1 i�1 0

−i�1 −iδ1−|�2|2γ 3


4 0 i�1

i�∗
1 0 iδ1−|�2|2γ 3


4 −i�∗
1

0 i�∗
1 −i�1 −|�2|2γ0γ

2


4

⎤⎥⎥⎥⎥⎥⎦.

(5)

The density-matrix dynamics is then captured by |ψ̇〉 =
LM |ψ〉 in an enlarged Hilbert space. The eigenspectrum λ of
L is defined as LM |φ〉 = λ|φ〉. In Fig. 1(b), we show the real
component of the Liouvillian spectrum Reλ in the parameter
space of (�1, δ1), which has a significant impact on the system
dynamics.

To see this, we define the right and left eigenvectors of
LM as LM |φR

n 〉 = λn|φR
n 〉 and 〈φL

n |LM = 〈φL
n |λn, where λn

is the nth eigenvalue. We then express the density-matrix

dynamics as

|�(t )〉 =
∑

n

eReλnt+iImλnt
〈
φL

n

∣∣�(0)
〉∣∣φR

n

〉
. (6)

While Reλn � 0 for dissipative systems, states with the small-
est |Reλn| are either steady states (Reλ = 0) or quasisteady
states (Reλ < 0), toward which the dynamics would in-
evitable converge at long times according to Eq. (6).

In our system, the dynamics is not trace preserving, be-
cause of the population of state |4〉 which is outside of the
two-level open system. This is manifested in the Liouvillian
spectra as the deviation of the high-lying band from Reλ = 0.
We therefore regard the high-lying band in Fig. 1(b) as the
quasisteady state. Furthermore, the speed at which the quasis-
teady states are approached is determined by the Liouvillian
gap, herein defined as the minimum spectral difference be-
tween the real eigenvalue of the quasisteady state and those of
the other eigenstates of L. According to Eq. (6), a finite Liou-
villian gap indicates that the quasisteady state is approached
exponentially fast. In our system, a Liouvillian gap emerges
as soon as the recycling term is switched on [see Fig. 1(b)]. It
follows that, under a slow parameter change (compared to the
corresponding time scale of the Liouvillian gap), the system
should adiabatically follow the quasisteady state, meaning the
absence of the chiral state transfer.

III. EP ENCIRCLING UNDER DEPHASING

In the absence of dephasing (γ2 = 0), an EP exists at
{δ1 = 0, � = 2|�1|} under Heff alone. When the system pa-
rameters are adiabatically tuned in a closed loop near the EP,
depending on the encircling direction, the time-evolved state
can be switched or remain unchanged, on returning to the
initial parameters. This is illustrated in Figs. 2(a) and 2(b) by
the cyan trajectories, calculated according to

Ē0(t ) =
∑

i=±
∣∣〈χL

i (t )
∣∣ψ0(t )

〉∣∣2Ei(t )∑
i=±

∣∣〈χL
i (t )

∣∣ψ0(t )
〉∣∣2 , (7)

where 〈χL
i | (i = ±) are left eigenstates of Heff, with

H†
eff|χL

i 〉 = E∗
i |χL

i 〉, and E± are the eigenvalues of Heff . The
time-evolved state |ψ0(t )〉 is given by

i
d

dt
|ψ0(t )〉 = Heff(t )|ψ0(t )〉. (8)

Such a chiral state transfer originates from the interplay of
the topology of the eigenspectra landscape of the Hamiltonian
in the parameter space, and the non-Hermitian amplification
of the nonadiabatic coupling terms. As analyzed in previous
theoretical studies and confirmed in various experiments, the
dynamics adiabatically follows the eigenspectral landscape
(the state gets switched) in one direction, and is nonadiabatic
in the other (the state remains the same). Here the chirality
is signaled by the different final states for different encircling
directions. However, this is no longer the case when γ2 �= 0.

In the upper panels of Figs. 2(a) and 2(b), we show, re-
spectively, the trajectories (in black) for the clockwise and
counterclockwise encirclings in the presence of dephasing.
We evolve the density matrix according to Eq. (1), and cal-
culate the trajectories on the eigenspectra landscape E±. Note
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FIG. 2. Trajectories of the encircling dynamics in the adiabatic limit, for (a), (c) clockwise rotations and (b), (d) counterclockwise rotations.
(a), (b) Trajectories (black and cyan) against the eigenspectra of the non-Hermitian Hamiltonian Heff. The red (blue) color code indicates the
eigenstate with a larger (smaller) imaginary component, and hence smaller (larger) loss. The black trajectory corresponds to the dynamics under
the master equation, calculated using Eq. (9). The cyan trajectory corresponds to the ideal EP-encircling dynamics under Heff alone, calculated
using Eq. (7). (c), (d) Trajectories against the eigenspectra of the Liouvillian L. The black trajectory is calculated according to Eq. (10). For all
cases, the initial state is an eigenstate of Heff, and the encircling path is δ1(t ) = 0.5 sin (±2πt/T ) and �1(t ) = 0.5 + 0.5 cos (±2πt/T ), with
the total encircling time T = 15 000. Other parameters are �2 = 1, γ0 = 50, γ2 = 10, and δ2 = 0. The units of energy and time are taken as
�2 and 1/�2, respectively.

that, throughout our paper, we calculate the eigenspectra of
Heff by setting γ2 = 0. Specifically, the trajectories in black
are calculated according to

Ē (t ) =
∑

i=±
〈
χL

i (t )
∣∣ρ(t )

∣∣χL
i (t )

〉
Ei(t )∑

i=±
〈
χL

i (t )
∣∣ρ(t )

∣∣χL
i (t )

〉 . (9)

The key observation from Figs. 2(a) and 2(b) is that, when
the recycling term (or dephasing) is switched on, the chirality
disappears—the final states of different encircling directions
lie close together, and would asymptotically approach one
another in the long-encircling-time limit (not shown here but
see Fig. 4).

Such a behavior can be straightforwardly understood from
the trajectories on the eigenspectra landscape of the Liou-
villian. This is shown in Figs. 2(c) and 2(d), where the
trajectories (in black) are calculated according to

λ̄(t ) =
∑4

i=1

∣∣〈φL
i (t )

∣∣ψ (t )
〉∣∣2λi(t )∑4

i=1

∣∣〈φL
i (t )

∣∣ψ (t )
〉∣∣2 , (10)

where |ψ (t )〉 is the vectorized density matrix ρ(t ), and
|φL

i (t )〉 satisfies L†
M (t )|φL

i (t )〉 = λ∗
i |φL

i (t )〉. Apparently, be-
cause of the presence of the dephasing-induced Liouvillian
gap, the state first relaxes to and then adiabatically follows the
quasisteady state of the Liouvillian (high-lying band). The
chirality thus vanishes.

However, when the total encircling time T is finite, the
chiral behavior can emerge even under dephasing, though the
dynamics is always nonadiabatic regardless of the encircling
direction. This is illustrated in Fig. 3, where we choose an
intermediate encircling time. Notice how the trajectories al-
ways involve nonadiabatic jumps, whether projected onto the
spectral landscape of Heff [as in Figs. 3(a) and 3(b)], or that of
the Liouvillian L [as in Figs. 3(c) and 3(d)]. This scenario

is actually what has been observed in [51,52], as we have
numerically checked that the reported chiral state transfer
would disappear at longer encircling times.

To quantify our observations above, we adopt the definition
of chirality [52]

C = 1
2 Tr[

√
(̃ρcw − ρ̃ccw)†(̃ρcw − ρ̃ccw)]. (11)

Here ρ̃cw,ccw = ρcw,ccw/Tr(ρcw,ccw), with ρcw,ccw being the
final-time density matrix of the clockwise (cw) and counter-
clockwise (ccw) encircling. The chirality C takes values in
between 0 and 1, and represents the distinguishability between
the final density matrices for clockwise and counterclockwise
encirclings. We have C = 0 when the two density matrices are
the same, and C = 1 when they are orthogonal pure states.

We show the calculated chirality as a function of the en-
circling time T , for different γ2 in Fig. 4(a). In the absence
of dephasing (γ2 = 0), C approaches a finite value close to
unity in the long-time limit. By contrast, as long as γ2 is finite,
C always approaches zero for a sufficiently long encircling
time. Another prominent feature of Fig. 4(a) is the emergence
of a chirality peak at intermediate T , which corresponds to the
parameter regime of the chiral transfer illustrated in Fig. 3. We
note that the fast oscillatory behavior at small T [see inset of
Fig. 4(a)] originates from the phase factor eiImλnt in Eq. (6).
Interestingly, the final-time chirality manifests a universal
scaling with γ2 and T , as shown in Fig. 4(b), with the relation
C = f (γ2T 1/ν ). We have numerically checked that, while the
scaling function f (x) is trajectory dependent, ν appears to be
universal and remains close to ν ≈ 1.561 regardless of the
encircling path.

Hence, along a general encircling path, the chiral state
transfer only emerges at intermediate encircling times under
dephasing, which is qualitatively different from the EP-
encircling dynamics in a purely non-Hermitian system. In
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(c) (d)

(a) (b)

FIG. 3. Trajectories of the encircling dynamics for an intermediate encircling time T = 150, for (a), (c) clockwise rotations and (b),
(d) counterclockwise rotations. (a), (b) Trajectories against the eigenspectra of the non-Hermitian Hamiltonian Heff, calculated according to
Eq. (9). (c), (d) Trajectories against the eigenspectra of the Liouvillian L, calculated according to Eq. (10). The encircling path is δ1(t ) =
0.5 sin (±2πt/T + 2π/3) and �1(t ) = 0.5 + 0.5 cos (±2πt/T + 2π/3). Other parameters are the same as those in Fig. 2. The units of energy
and time are taken as �2 and 1/�2, respectively.

the long-time limit, dephasing opens up a Liouvillian gap,
and the dynamics is essentially adiabatic on the Liouvillian
spectral landscape, regardless of the encircling direction. The
conclusions above should apply to a series of recent experi-
ments [51,52,55], where EP encircling has been studied in the
presence of dephasing. Using numerical simulations, we have
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FIG. 4. (a) Chirality as a function of the total encircling time
T under different values of γ2. The inset shows detailed oscillatory
behavior of chirality for γ2 = 0 where more data points are sampled
within the range T ∈ [50, 100]. (b) Scaling relation of the chirality
with respect to γ2 and T . The initial state is ρ(0) = |1〉〈1|. We
determine ν ≈ 1.561 from numerical fitting (see main text). The
units of energy and time are taken as �2 and 1/�2, respectively.

checked that the chiral behavior reported in [51,52] indeed
occurs only at intermediate encircling times, and disappears in
the long-time limit. Nevertheless, such a conclusion seems to
contradict the observations of a recent cold-atom experiment
[55], where the chiral state transfer is observed at sufficiently
long encircling time. In the following, we show that such an
observation is based on the special encircling path adopted
therein.

IV. EXPERIMENTAL RELEVANCE

In [55], the collective chiral state transfer of an ultra-
cold gas of fermions is observed, where the fermionic atoms
are subject to a synthetic spin-orbit coupling and laser-
induced atom loss. For atoms that remain in the system,
their dynamics is driven by a non-Hermitian effective Hamil-
tonian with an EP embedded in the parameter space. The
laser-induced loss, however, is accompanied by spontaneous
decay back into the system, similar to the |3〉 → |2〉 decay
channel in Fig. 1. Such a decay channel inevitably intro-
duces decoherence to the system, which, according to our
analysis above, should significantly impact the encircling
dynamics.

To understand the experimental observation from the
perspective of the master equation (1), we replace H0 in
Eq. (1) as

H0 =
[

δ1
2 − 2qx −�1

−�∗
1 − δ1

2 + 2qx

]
, (12)

which corresponds to the Hermitian part of the Hamiltonian
in [55], within the momentum sector qx (the q2

x terms are
dropped since they are the same for the two spin compo-
nents). For our calculations, we take the recoil energy Er =
2π × 1.41 kHz as the unit of energy, kr = √

2mEr (m is the
atomic mass) as the unit of momentum, and tr = 1/Er as
the unit of time. We focus on the momentum sector qx/kr =
−0.81, as the location of the Fermi surface under typical
experimental conditions [55]. Taking typical experimental
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FIG. 5. (a) Encircling path adopted in the experiment [55]. For the various symbols, we adopt the convention in [55]: red star, the EP of
Heff in the parameter space; green dot, the initial point of encircling; blue numbers, the ratio of time spent on each segment. (b) Chirality as
a function of ln(v) for various �max

2 . Here �max
2 is the maximum �2 on the encircling path. (c), (d) Trajectories against the real eigenspectra

of the non-Hermitian Hamiltonian Heff (c) and the Liouvillian L (d) for clockwise rotations (left panel) and counterclockwise rotations (right
panel) for ln(v) = −2.66. In (c), the black and cyan trajectories are calculated according to Eqs. (9) and (7), respectively. In (d), the black
trajectory is calculated according to Eq. (10). Here the units of energy and time are respectively taken as the recoil energy Er = 2π × 1.41 kHz
and tr = 1/Er .

parameters, we also fix γ0/Er = 110.57, γ2/Er = 18.43,
�1/Er = −2.25, and δ2 = 0 for our simulations below.

The experimental encircling path is reproduced in Fig. 5(a)
and the calculated chiralities under different encircling times
are plotted in Fig. 5(b). The initial parameters and state are,
respectively, {�2/Er = 3, δ1/Er = 0} (point A) and ρ(0) =
|2〉〈2|. For the counterclockwise encircling, we first ramp up
�2 to �max

2 within the time 0.1/10.1T (A → B), and then de-
crease δ1/Er to −6 within 1/10.1T (B → C). This is followed
by decreasing �2/Er to zero within 4/10.1 T (C → D), and
ramping up δ1/Er to 3 (D → A). The clockwise encircling
(A → D → C → B → A) is the exact reverse process of the
above. Since all the parameters are tuned in a linear fashion,
we parametrize the encircling time by the encircling velocity
v = 2π/(T/tr ). The long-time limit is thus toward the left
of the plot in Fig. 5(b), when v approaches zero. While the
chirality peaks at intermediate velocities (or intermediate en-
circling times), it approaches unity when v approaches zero
(or long encircling time). In [55], ln(v) ≈ −2.66, where the
chirality is already approaching unity, as shown in Fig. 5(b).
Under the same parameters, ideal EP encircling dynamics can
be observed on the spectral landscape of the non-Hermitian
Hamiltonian, as illustrated in Fig. 5(c). Curiously, this ob-
servation seems to contradict our conclusions in the previous
section.

However, we notice that along the path AD in Fig. 5(a),
�2 = 0 and the system is purely Hermitian. The Liouvillian
gap closes along this sector. This renders our previous dis-
cussion irrelevant, as the open-system dynamics is typically
nonadiabatic on the eigenspectral landscape of the Liouvil-
lian. This is confirmed in Fig. 5(d). In the long-time limit,
dynamics along BC and AD are both adiabatic: the system

follows the quasisteady state of the Liouvillian along BC,
while it follows the eigenstate of the Hermitian Hamilto-
nian along AD. Along the segments AB and CD however,
the dynamics can be nonadiabatic near the points D and
A, respectively, because of the closing of the Liouvillian
gap.

Upon closer examination, the observed chirality originates
from the distinct eigenstate overlaps between those of the Her-
mitian Hamiltonian and the Liouvillian near the gap-closing
points A and D. For the convenience of discussion, we denote
the two eigenstates of the Hermitian Hamiltonian as |ψ±〉,
where |ψ+〉 (|ψ−〉) has a larger (smaller) eigenvalue. The
system is initialized in the state |2〉 at point A, which is close
(on the spectral landscape) to |ψ−〉. For a counterclockwise
rotation (A → B → C → D → A) starting in the state ρ(0) =
|2〉〈2| at point A, the density matrix is in the quasisteady state
of the Liouvillian when approaching the gap-closing point
D. Since the local quasisteady state has a large overlap with
|ψ−〉 near point D, the system is projected onto a mixed state
with considerable overlap with |ψ−〉 upon the gap closing.
Following the adiabatic evolution along DA, the final state is
then a mixed state that is close to |ψ−〉 at point A, and is also
close to the initial state. By contrast, for a clockwise rotation
(A → D → C → B → A), the quasisteady state is projected
onto a mixed state that is close to |ψ+〉 near point A along
BA. The final state is therefore nearly orthogonal to the initial
state.

We then adopt a different, and more general, encircling
path, as shown in Fig. 6. As expected, the chirality drops to
zero again in the long-time limit. This leaves an intermediate
encircling time as the only window to observe the chiral state
transfer in the presence of decoherence.
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FIG. 6. (a) A more general encircling path, with no purely Hermitian segments. (b) Chirality as a function of ln(v) for various �max
2 . As

in Fig. 5(b), the solid line represents �max
2 = 15, the dashed line represents �max

2 = 20, and the dash-dot line represents �max
2 = 25. Other

parameters are the same as those in Fig. 5. (c), (d) Trajectories against the real eigenspectra of the non-Hermitian Hamiltonian Heff (c) and
the Liouvillian L (d) for clockwise rotations (left panel) and counterclockwise rotations (right panel) when ln(v) = −6. Calculations of the
trajectories are the same as those in Fig. 5. The units of energy and time are respectively taken as the recoil energy Er = 2π × 1.41 kHz and
tr = 1/Er .

V. CONCLUSION

We study the impact of dephasing on the chiral state trans-
fer near EPs in quantum open systems. We show that quantum
jumps responsible for dephasing open up a Liouvillian gap,
making the dynamics in the long-time limit necessarily
adiabatic. Chiral state transfer thus typically emerges at in-
termediate times as an intrinsically nonadiabatic process.
We discuss recent experiments in the light of our results.
Specifically, in [51,52], the observed chiral transfer in the
superconducting qubits belongs to the nonadiabatic category,
which would disappear under a longer encircling time. On
the other hand, the cold-atom experiment [55] observes chiral
transfer at long times thanks to the special path therein where
the Liouvillian gap closes.

Throughout our paper, we consider only the intrinsic
dynamics, assuming a decoupling between the external (mo-
mentum) and internal degrees of freedom. For an atomic gas
with lossy spin-orbit coupling as in [55], the recoil momentum
accompanying the dephasing (quantum jump) process should
also be considered for a better description of the system, par-
ticularly in regards to heating. We leave these considerations
to future studies. Our results provide a unified understanding
for EP encirclings in quantum open systems, and are of direct
relevance to ongoing experimental efforts and quantum device
design under realistic conditions.
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APPENDIX: DERIVATION OF EQ. (1)

Dynamics of the system illustrated in Fig. 1 is governed by
the Lindblad master equation

ρ̇ = −i[H, ρ] +
∑
i=0,1

[
LiρL†

i − 1

2
{L†

i Li, ρ}
]
, (A1)

where L0 = √
γ0|4〉〈3| and L1 = √

γ2|2〉〈3|. In the rotating
frame, with the rotating wave approximation the equations of
matrix elements are

ρ̇11 = i�1ρ21 − iρ12�
∗
1

ρ̇12 = −i[ρ13�
∗
2 + δ1ρ12 + �1(ρ11 − ρ22)]

ρ̇13 = −ρ13(γ + iδ1 + iδ2) − i�2ρ12 + i�1ρ23

ρ̇21 = i[ρ31�2 + δ1ρ21 + �∗
1(ρ11 − ρ22)]

ρ̇22 = γ2ρ33 + i[ρ12�
∗
1 − ρ23�

∗
2 − �1ρ21 + �2ρ32]

ρ̇23 = i[iρ23(γ + iδ2) + ρ13�
∗
1 + �2(ρ33 − ρ22)]

ρ̇31 = −ρ31(γ − iδ1 − iδ2) + i�∗
2ρ21 − i�∗

1ρ32

ρ̇32 = −i[−iρ32(γ − iδ2) + ρ31�1 + �∗
2(ρ33 − ρ22)]

ρ̇33 = i(2iγ ρ33 + ρ23�
∗
2 − �2ρ32) (A2)

with γ = (γ0 + γ2)/2. The dynamics involving the state |4〉 is
decoupled from that in the subspace of {|1〉, |2〉, |3〉}.
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Assuming γ 
 |�1,2|, we set ρ̇13 = 0, ρ̇23 = 0, ρ̇33 = 0, ρ̇31 = 0, and ρ̇32 = 0. We then have

ρ̇11 = −iρ12�
∗
1 + i�1ρ21

ρ̇12 = −iρ12

{
δ1 − i|�2|2

{
2γ (γ − iδ1 − iδ2)

(|�2|2 + γ 2 + δ2
2

)+ |�1|2[|�2|2 + 2γ (γ + iδ2)]
}

2γ
4

}

+ i�1ρ22

{
1 − |�2|2[|�1|2 + (γ − iδ2)(γ − iδ1 − iδ2)]


4

}
+ �2

1|�2|4
2γ
4

ρ21 − i�1ρ11

ρ̇21 = iρ21

{
δ1 + i|�2|2

{
2γ (γ + iδ1 + iδ2)

(|�2|2 + γ 2 + δ2
2

)+ |�1|2[|�2|2 + 2γ (γ − iδ2)]
}

2γ
4

}

− i�∗
1ρ22

{
1 − |�2|2[|�1|2 + (γ + iδ2)(γ + iδ1 + iδ2)]


4

}
+ |�2|4(�∗

1 )2

2γ
4
ρ12 + iρ11�

∗
1

ρ̇22 = −γ0ρ22|�2|2[|�1|2 + γ 2 + (δ1 + δ2)2


4
+ i�1ρ21

{
−1 + (2γ − γ2)|�2|2[|�1|2 + (γ + iδ2)(γ + iδ1 + iδ2)]

2γ
4

}
− iρ12�

∗
1

{
−1 + (2γ − γ2)|�2|2[|�1|2 + (γ − iδ2)(γ − iδ1 − iδ2)]

2γ
4

}
(A3)

where


4 = |�1|2[|�2|2 + 2γ 2 − 2δ2(δ1 + δ2)] + [γ 2 + (δ1 + δ2)2]
(|�2|2 + γ 2 + δ2

2

)+ |�1|4. (A4)

Since 
4 ∼ γ 4, we keep terms at least of the order of γ −1 in Eq. (A3) to get

ρ̇ = −i

⎡⎣ −�1ρ21 + ρ12�
∗
1

(
δ1 − iγ 3|�2|2


4

)
ρ12 + �1(ρ11 − ρ22)

−�∗
1(ρ11 − ρ22) − (

δ1 + iγ 3|�2|2

4

)
ρ21 − iγ0γ

2ρ22|2

4 − ρ12�

∗
1 + �1ρ21

⎤⎦. (A5)

This equation can be expressed as

ρ̇ = −i(Heffρ − ρH†
eff ) + LφρL†

φ − 1
2 L†

φLφρ − 1
2ρL†

φLφ, (A6)

with Lφ = √
γφ|2〉〈2|, γφ = γ2γ

2|�2|2

4 , and

Heff =
[

δ1
2 −�1

−�∗
1 − δ1

2 − iγ0γ
2|�2|2

2
4

]
= H0 − i�|2〉〈2|, (A7)

where � = γ0γ
2|�2|2

2
4 . This gives us Eq. (1) in the main text.
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