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Vibrational ladder-descending photostabilization of a weakly bound molecule:
Quantum optimal control with a genetic algorithm
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We propose an optical control scheme for driving a polar diatomic molecule from a high-lying vibrational level
to a target low-lying one, within the same electronic state. The scheme utilizes an infrared chirped laser pulse with
an analytical shape, whose parameters are optimized by means of a heuristic formulation of quantum optimal
control based on a genetic algorithm. We illustrate this methodology computationally for a KRb Feshbach
molecule in the lowest triplet electronic state.
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I. INTRODUCTION

The formation of cold (1 mK < T < 1 K) and ultracold
(T < 1 mK) ensembles of diatomic molecules in a controlled
fashion [1,2] is a current challenge of great interdisciplinary
interest [3–6]. Proposals have been put forth for the creation of
such ensembles from the binary collisions in cold or ultracold
atomic gases by one-step photoassociation (PA) [7–11], two-
step PA [12], a combination of one-step and two-step PA [13],
magnetoassociation [14], and electroassociation [15]. One-
step PA, magnetoassociation, and electroassociation involve
only one Born-Oppenheimer potential-energy curve (PEC),
whereas two-step PA involves several PECs.

In all these association methods the molecules are typically
left in a distribution of rovibrational levels of the ground
and/or an excited electronic state. Hence, to achieve cool-
ing, control schemes must be applied for the subsequent
stabilization into low-lying rovibrational levels of the ground
electronic state, including the absolute ground state. For the
situation where the molecules are left in high- or intermediate-
lying levels of the ground electronic state, and if they are
polar, controlled stabilization schemes within the same elec-
tronic state have been devised [9,16–19]. Of particular interest
for this paper are those that entail a consecutive descent across
the ladder of vibrational levels, using a single chirped laser
pulse. For example, Marquetand and Engel employed local
control theory to achieve one-step PA together with some sta-
bilization during H+F and H+I collisions [9], and Devolder
et al. applied a quantum optimal control (QOC) method for
the stabilization of a RbSr molecule formed previously via
one-step PA [19]. However, the resulting optimal pulse has
a complicated structure, making it very difficult to achieve
experimentally. Regardless of whether the molecules are left
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in the ground or an excited electronic state, it has been demon-
strated that pump-dump [20,21] and STIRAP [19,22,23]
methodologies can achieve stabilization. Nevertheless, both
methodologies involve intermediate excited electronic states,
which can introduce complications, like internal conversions,
intersystem crossings, and fast radiative decay into other elec-
tronic states. In addition, it may be the case that the populated
bound levels of the initial electronic state have relatively small
Franck-Condon factors for the transitions to the vibrational
levels of the intermediate excited electronic states [21]. In this
situation, it would be convenient to introduce a prior step to
drive the molecules to the levels of the initial electronic state
with the highest Franck-Condon factors.

In this paper, we address the problem of driving a polar di-
atomic molecule from an initial level into a target level of the
same electronic state. Specifically, we demonstrate that QOC
based on genetic algorithms (GAs) is an attractive alternative
to accomplish vibrational ladder descending (LD), employing
a linear chirped pulse (LCP) with an analytical shape that can
be achieved experimentally with relative ease. This scheme
can be utilized in two cases: Either as a final step for achieving
further stabilization, after application of any of the associa-
tion methodologies mentioned in the first paragraph of this
Introduction, or as a prior step in pump-dump or STIRAP
methodologies for maximizing the Franck-Condon factors. In
Sec. II we explain our LD scheme in the context of the second
case. Specifically, we apply it to the model of Ref. [21], where
driving a weakly bound KRb Feshbach molecule in the lowest
triplet electronic state to a lower-lying vibrational level is
a desirable prior step to optimize a subsequent pump-dump
stabilization method. In Sec. III we briefly describe the nu-
merical methods we used for solving the time-independent
and time-dependent Schrödinger equations and the QOC+GA
methodology we employed for the optimization of the an-
alytical pulse shape. In Secs. IV A and IV B we present
and discuss the simulation results for one-rung-at-a-time
(OLD) and multiple-rung-at-a-time (MLD) variants of LD,
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FIG. 1. Potential-energy curves for the KRb molecule.

respectively. In addition, at the end of Sec. IV B we comment
on the current experimental feasibility of our proposal, given
the state of the art in the generation of ultrashort laser pulses
in the mid-to-far infrared domain. Finally, in Sec. V we state
the conclusions of this work and suggest some perspectives
for future developments.

II. LADDER-DESCENDING SCHEME

Arango and co-workers [21] implemented a pump-dump
scheme for the vibrational stabilization into the electronic
ground state, X 1�+, of a model 39K 87Rb Feshbach molecule
formed in the lowest electronic triplet state, a 3�+, using
the [b − A] scheme that involves the spin-orbit-coupled in-
termediate electronic states b 3� and A 1�+ [23]. The PECs
corresponding to these electronic states are illustrated in
Fig. 1. The pump pulse stimulates the b 3� ← a 3�+ ab-
sorption and the dump pulse stimulates the A 1�+ → X 1�+
emission. Gaussian LCPs optimized by means of a GA
were employed, either without (direct mechanism) or with
(assisted mechanism) explicit consideration of the dynam-
ics of the b 3� → A 1�+ spin-orbit-induced radiationless
transition. The molecule was assumed to be initially in high-
lying vibrational levels of the a 3�+ state, where it may be
formed through Feshbach tuning. Unfortunately, for driving
the molecule into its absolute ground state, |X 1�+, υ = 0〉,
using this scheme such levels are far from optimal, since their
(intercurve) dipole couplings with the vibrational levels of the
intermediate b 3� state are weak. It turns out that the strongest
intercurve couplings occur for the υ = 10 level. Hence it
is desirable to drive the molecule down to this level before
applying the pump pulse. However, a direct transition is not
feasible, due to the (intracurve) dipole coupling between well-
separated levels being too weak. In this paper we illustrate our
infrared LD scheme by addressing this issue. Specifically, we
show that this scheme allows bringing the molecule from any
of the initial levels |a 3�+, υ = 20, 24〉 to the optimal level
|a 3�+, υ = 10〉.

The idea behind our OLD scheme can be viewed as the re-
verse of the ladder-climbing scheme proposed by Chelkowski

FIG. 2. Schematic illustration of the one-rung-at-a-time (left)
and multiple-rung-at-a-time (right) ladder-descending schemes.

et al. [24]: The molecule is successively driven from the initial
level υ = i down the ladder i − 1, i − 2, . . . , f , where υ = f
is the target level, employing a single LCP (see Fig. 2). We
employ a QOC method to adjust the parameters that define the
shape of this pulse so as to maximize the sequential population
transfer between the ladder rungs. This is possible in het-
eronuclear diatomic molecules where the permanent electric
dipole moment, D(R), provides a significant coupling between
adjacent levels. To assess such coupling, we examine the
squared dipole matrix elements (SDMEs) within the a 3�+
electronic state,

Dυ,υ ′ ≡ |〈υ|D|υ ′〉|2. (1)

Figure 3(a) displays the corresponding SDME map. It can
be observed that, indeed, the coupling of the level υ = 10
with the levels υ > 16 is very weak. Moreover, it can be seen
that the dipole coupling between adjacent levels is relatively
strong, except that around υ = 14 there is a “hole” in the
coupling map, as can be more clearly appreciated in Fig. 3(b),
where such hole is zoomed in. Since this can represent a prob-
lem for an OLD scheme, we also consider a MLD scheme,
where this hole is skipped (see Fig. 2).

III. METHODOLOGY

We used the KRb a 3�+ PEC, V (R), and D(R) reported
in Ref. [23]. We calculated the vibrational eigenenergies and
eigenfunctions of the (nonrotating) 39K 87Rb isotopologue
by numerical integration of the time-independent nuclear
Schrödinger equation,[

− h̄2

2μ

d2

dR2
+ V (R) − Eυ

]
ψυ (R) = 0, (2)

where μ is the reduced mass of the nuclei, using a Colbert-
Miller discrete variable representation (DVR) [25]. Then, we
evaluated the SDMEs (1) by numerical quadrature.

Within the semiclassical dipole approximation, the time-
dependent nuclear Schrödinger equation takes the form[

− h̄2

2μ

d2

dR2
+ V (R) + ε(t )D(R) − ih̄

d

dt

]
�(R, t ) = 0, (3)
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FIG. 3. (a) Squared dipole matrix element map (in atomic units)
of the a 3�+ potential-energy curve of KRb. (b) Zoom of the “hole”
around υ = 14.

where ε(t ) is the electric-field amplitude. We integrated this
equation numerically, representing the wave function on a
space-time grid and approximating the short-time evolution
operator by means of the midpoint quadrature and the sym-
metric Strang splitting,

Û (tn, tn+1) ≈ e−iT̂ δt/2h̄e−iW (t̄n )δt/h̄e−iT̂ δt/2h̄, (4)

where δt ≡ tn+1 − tn is the time step, t̄n ≡ tn + δt/2 is the
midpoint time, T̂ is the kinetic-energy operator, and W (t ) ≡
V (R) + ε(t )D(R) is the effective time-dependent potential.
This approximation is accurate to O(δt3) [26].

Since the interaction with the field can induce absorption
above the dissociation threshold, besides stimulated emission,
part of the wave function can escape into the continuum.
When the latter reaches the end of the grid, an artificial re-
flection occurs that introduces a spurious backemission into
the bound levels. To avoid this effect, we added a complex
absorbing potential (CAP) [27] in the asymptotic region, with
the form

VA(R) = −iη(R − R0)2, (5)

where R0 is the grid point at which this potential starts acting.

FIG. 4. Flow chart illustrating the steps involved in the ge-
netic algorithm for pulse optimization. NG denotes the number of
generations.

The electric field of the LCP has the Gaussian shape [26]

ε(t ) = ε0 exp

[
− (t − τ0)2

2τ 2

]

× cos

[
ω0(t − τ0) + 1

2
C(t − τ0)2

]
, (6)

where ε0 and ω0 are the central amplitude and frequency,
τ0 and τ are the time shift and width, and C = dω/dt is
the chirp parameter, with ω(t ) = ω0 + C(t − τ0) being the
instantaneous frequency. In this particular case, the energy dif-
ference between successive levels down the ladder increases;
hence C > 0.

To find the optimal LCP parameters, we adapted the
QOC+GA methodology of Arango and co-workers [21,26].
The kth individual is a pulse whose chromosome consists
of the five-vector of genes γk ≡ (ε0, ω0, τ0, τ,C). According
to the criteria explained below, we chose an initial popula-
tion of 40 individuals (k = 1, . . . , 40), which constitute the
generation zero. Then, we evolved this population through the
following optimization cycle (see Fig. 4). (1) Propagation of
the initial wave function ψυ=i(R) ≡ �k (R, 0) → �k (R, tmax)
with each one of the pulses separately and calculation at tmax

of their scores with the fitness function and the cumulative
fitness. For the fitness function, we chose the survival proba-
bility of the target level,

Jk = |〈 f |�k (tmax)〉|2. (7)

Once the individuals are organized from lowest to highest
fitness, the cumulative fitness for a given individual, k, is given
by

∑k
j=1 Jj/

∑40
j=1 Jj , where the denominator is a normaliza-

tion factor. (2) Selection of the best five individuals using
the roulette-wheel selection method based on the cumulative
fitness. This method involves the generation of a random num-
ber between 0 and 1 and its comparison with the cumulative
fitness value of each individual; the higher the cumulative
fitness of an individual, the greater the chance of being
selected. (3) Elimination of the remaining 35 individuals
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from the population. Here, if the number of generations is
less than 10 we continue with step (4); otherwise, we stop the
optimization and choose the best individual. (4) Replacement
of the eliminated individuals with the children generated by
crossing over the survivors’ genes with probability �X . (5)
Sampling of the mutation probability of all genes of each
individual of the new population, followed by mutation of
those with probabilities less than �M . This operation is not
applied to the individuals selected in step (3). (6) Return to
step (1).

To generate the initial population of LCPs, we chose
the initial parameters randomly within appropriate ranges,
which were determined heuristically resorting to physical
considerations, as follows. The spectral bandwidth of the
LCP [28],

σ = 2
√

2 ln 2

√
1

τ 2
+ τ 2c2, (8)

must include at least the range of frequencies required for the
successive transitions, �ω ≡ ω f −1, f − ωi,i−1, where ω f −1, f

and ωi,i−1 are the frequencies of the last and first transitions,
respectively, in the LD scheme. We set C ≈ �ω/6τ ; hence
this bandwidth takes the form

σ ≈ 2
√

2 ln 2

√
1

τ 2
+ �ω2

36
. (9)

The condition σ ∼ �ω allows us to estimate a lower bound
for τ . Then, we chose τ0 to be about three times the stan-
dard deviation of the Gaussian in Eq. (6). We made sure that
the values of τ and τ0 are much shorter than the radiative
lifetime of the initial vibrational level with respect to spon-
taneous emission into the vibrational manifold of the a 3�+
electronic state (the lifetimes of the lower-lying levels are
longer), τi = ∑

υ<i A−1
i,υ , where Ai,υ = 2ω3

i,υD2
i,υ/3ε0c3h̄ is an

Einstein coefficient, with ωi,υ being a transition frequency.
Since ω(t = 0) ≈ ωi,i−1, we get that ω0 ≈ ωi,i−1 + τ0�ω/6τ .

To determine the range of ε0 we took into account that
the Rabi period for any of the sequential transitions is T ∼
(ε̄Dυ,υ ′ )−1, where ε̄ is the mean amplitude of the pulse during
the transition, and that the range of T must be consistent with
the range of τ . The resulting value of ε0 must not be too high,
to avoid ionization of the molecule.

To perform the numerical integration of Eq. (3), coupled
with the QOC+GA pulse optimization, we adapted the com-
puter code [29] employed in Ref. [21].

IV. RESULTS AND DISCUSSION

For the numerical integration of Eqs. (2) and (3), we ob-
tained converged results employing a grid of 140 bohr and
5600 grid points and a CAP with R0 = 100 bohr and η =
5 × 10−6 hartree/bohr2. We found 30 bound vibrational levels
in the a 3�+ electronic state. We obtained that the lifetime of
the highest-lying vibrational level with respect to spontaneous
emission into the vibrational manifold of the a 3�+ electronic
state is τυ=30 ≈ 13 s.

After a few trials, we determined that suitable values for the
GA probabilities are �X = 0.25 and �M = 0.9. For the initial
states i = 20, 24 we obtained the condition τ > 3.17 × 105

atomic units = 7.7 ps.

TABLE I. Ranges of the LCP parameters for the GA optimiza-
tion and optimal values obtained in the OLD scheme. All quantities
are given in atomic units.

i = 20

Min Max Optimal

τ 1.0 × 106 1.0 × 107 9.798 × 106

τ0 3.3 × 106 3.5 × 107 4.104 × 107

C 4.0 × 10−13 5.0 × 10−12 6.259 × 10−13

ω0 3.1 × 10−5 3.6 × 10−5 3.531 × 10−5

ε0 1.0 × 10−3 1.0 × 10−2 8.011 × 10−3

i = 24

Min Max Optimal

τ 1.0 × 106 1.0 × 107 1.146 × 107

τ0 3.3 × 106 3.5 × 107 3.723 × 107

C 6.0 × 10−13 7.0 × 10−12 7.300 × 10−13

ω0 3.3 × 10−5 3.6 × 10−5 3.723 × 10−5

ε0 1.0 × 10−3 1.0 × 10−2 9.168 × 10−3

A. One-rung-at-a-time ladder descending

Table I presents the initial ranges, chosen in accordance
with the criteria explained in Sec. III, and the optimal values,
yielded by the GA methodology, of the LCP parameters. (Note
that an optimal value may lie outside its initial range, which is
an indication of the flexibility of the algorithm. The same ob-
servation applies to Table III below.) The optimal amplitudes
turned out to be of the same order of magnitude as the ones
reported in Ref. [16].

The optical spectrum of the LCP is given by

I (ω) =
√

τ 4

1 + c2τ 4
ε2

0 exp

[
− (ω − ω0)2

2σ 2

]
. (10)

Figure 5 displays the optical spectra of the LCPs for the two
initial levels. It is seen that the range of excitation frequencies
is of the order of 1012 Hz, that is, in the infrared region, as
expected for vibrational transitions.

Figure 6 shows the populations

pυ (t ) = |〈υ|�(t )〉|2 (11)

for the case where the initial level is υ = 20. It is observed
that, once the pulse begins to act on the system, the population
is transferred down the ladder of levels in an approximately
sequential manner. Naturally, the transfer between any pair
of levels cannot be complete, since the pulse amplitude
and chirped frequency cannot fulfill exactly the conditions

TABLE II. Selected transitions in the MLD scheme for the two
initial states. Energy differences are given in atomic units.

υ0 = 20 υ0 = 24

υ −→ υ ′ � E υ −→ υ ′ � E

20 −→ 16 1.068 × 10−4 24 −→ 17 1.372 × 10−4

16 −→ 13 1.110 × 10−4 17 −→ 13 1.423 × 10−4

13 −→ 10 1.378 × 10−4 13 −→ 10 1.430 × 10−4
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FIG. 5. Optical spectra of the optimal pulses in the OLD scheme
for the two initial levels.

FIG. 6. Time evolution of the populations in levels 10 � υ � 20
in the OLD scheme when the initial level is υ = 20. (a) Selected
levels. (b) All levels.

TABLE III. Ranges of the LCP parameters for the GA optimiza-
tion and optimal values obtained in the MLD scheme. All quantities
are given in atomic units.

i = 20

Min Max Optimal

τ 3.2 × 105 3.2 × 106 1.489 × 106

τ0 1.0 × 106 1.0 × 107 4.900 × 106

C 1.8 × 10−12 1.6 × 10−11 8.254 × 10−12

ω0 1.0 × 10−4 1.8 × 10−4 1.211 × 10−4

ε0 1.0 × 10−3 1.0 × 10−2 5.154 × 10−3

i = 24

Min Max Optimal

τ 1.0 × 106 1.0 × 107 1.003 × 106

τ0 3.3 × 106 3.5 × 107 4.835 × 106

C 1.0 × 10−13 1.0 × 10−12 5.832 × 10−12

ω0 1.3 × 10−4 1.6 × 10−4 1.378 × 10−4

ε0 1.0 × 10−3 1.0 × 10−2 5.720 × 10−3

required for a full population transfer in a two-level system.
However, the initial level is totally emptied before the pulse is
over.

At the end of the pulse, the population in the target level is
pυ=10 = 25%, while a large portion of the remaining popula-
tion remains in level υ = 15. In Fig. 3 it can be appreciated
that this level is at the edge of the hole in the SDME map,
thus causing a bottleneck for the population transfer towards
lower-lying levels.

The final populations in the bound levels add up to only
55%. The population loss is attributed to the aforementioned
dissociation that results from absorption, especially at early
stages of the molecule-field interaction. We will discuss this
phenomenon in more detail in Sec. IV B.

Figure 7 displays the populations for the case where the
initial level is υ = 24. The LD mechanism is very clear until
level υ = 15 is reached, when the bottleneck is strongly man-
ifested, causing the population in the target level at the end
of the pulse to be only pυ=10 = 5%, while pυ=15 = 23%. The
total population in the bound levels is 45%. The population
lost to dissociation is now higher, as the initial level is closer
to the dissociation threshold.

The explanation of the marked difference in the two cases
is the following. When the initial level is υ = 20, the system
must climb down 10 levels to reach the target level, υ = 10.
Hence the center of the hole, υ = 14, is almost at the middle
of the vibrational ladder, which is reached when the pulse
amplitude is at its maximum, ε(τ0). Consequently, the low
coupling between adjacent levels within the hole is compen-
sated by the high field amplitude, permitting a significant
population transfer before the chirp takes the field out of
resonance. On the other hand, when the initial level is υ = 24
the system must climb down 14 levels to reach the target
level and this matching cannot occur. Such mismatch could be
mitigated by tailoring asymmetric pulse shapes, but this would
complicate the optimization and, even worse, the experimental
implementation of the LD scheme. Therefore, we next explore
a strategy where the system is made to “jump over the hole”
still using a Gaussian pulse shape.
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FIG. 7. Time evolution of the populations in levels 10 � υ � 24
in the OLD scheme when the initial level is υ = 24. (a) Selected
levels. (b) All levels.

B. Multiple-rung-at-a-time ladder descending

For the MLD variant we chose four (nonadjacent) lev-
els, skipping the hole at υ = 14. These must satisfy two
conditions: Subsequent levels exhibit a relatively strong cou-
pling and the energy differences increase down the ladder, so
that C > 0. (The levels could be chosen so that the energy
differences decrease and C < 0, but this would imply that
the energy difference between the first two levels had to be
relatively large, which in turn would imply that the dipole
coupling for the first transition would be relatively weak,
thereby probably rendering the process to be less efficient.)
The selected transitions and their energies for both initial
states are shown in Table II.

Table III displays the initial ranges and the optimal values
of the LCP parameters. The optimal amplitudes turned out to
be somewhat lower than the ones of the OLD variant. Since ω0

for the MLD scheme is an order of magnitude larger than the
one for the OLD scheme, the time scale of the MLD process

FIG. 8. Optical spectra of the optimal pulses in the MLD scheme
for the two initial levels.

is one order of magnitude shorter than the one for the OLD
process, as revealed by the values of τ , τ0, and C.

Figure 8 shows the optical spectra of the LCPs for the two
initial levels. It can be appreciated that the range of excited
frequencies is shifted towards higher values in comparison
with the ones of the OLD scheme, but still is within the
infrared region.

Figure 9 displays the population dynamics for the case
where the initial level is υ = 24. The LD nature of the process
is evident. The final population in the target level is pυ=10 ≈
48%, which amounts to an increase of 43% with respect to
the OLD scheme. At no time during the process is popula-
tion transferred to bound levels not explicitly included in the
scheme. The process takes about 0.175 ns, versus about 1.6 ns
in the OLD scheme, which is an order of magnitude shorter,
as pointed out above. The high-frequency oscillations have
practically disappeared, which is a signature of the decrease
in the antiresonant contributions caused by the increase of ω0

and decrease of ε0, as can be inferred, for example, from the
familiar expression provided by time-dependent perturbation
theory for the transition amplitude, which contains the denom-
inators ω0 + ωυ,υ ′ .

The final populations in the bound levels add up to 52%,
which means that almost all the bound population was trans-
ferred to the target, with the remaining 4% of the bound
population residing in the rest of the levels. But Fig. 9 shows
that nearly all of this 4% resides in levels lying below the
initial one. The missing 48% of the total population must
have been lost to dissociation. To verify this conclusion,
Fig. 10 shows the total probability [〈�(t )|�(t )〉2] and the
dissociation probability [1 − 〈�(t )|�(t )〉2] superimposed on
the time-dependent field amplitude. It is observed that at about
0.1 ns the total probability begins to decrease, as the CAP
begins damping the continuum part of the wave function. The
delay of about 0.05 ns with respect to the beginning of the
pulse is the time taken by such part of the wave function to
propagate to the CAP region. At about 0.18 ns all of the con-
tinuum part of the wave function has been absorbed and the
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FIG. 9. Time evolution of the level populations in the MLD
scheme when the initial level is υ = 24. (a) Chosen levels. (b) All
levels.

FIG. 10. Time evolution of the optimal field amplitude and of the
total bound and continuum populations in the MLD scheme when the
initial level is υ = 24.

FIG. 11. Time evolution of the level populations in the MLD
scheme when the initial level is υ = 20. (a) Chosen levels. (b) All
levels.

remaining probability lies in the bound levels, which, indeed,
amounts to approximately 48%. Naturally, the dissociation
probability mirrors the total probability.

Figure 11 shows the population dynamics for the case
where the initial level is υ = 20. Now, complementary tran-
sient Rabi oscillations in the υ = 16 and υ = 13 populations,
lasting for about 0.075 ns and with a middle time of about
0.12 ns ≈ τ0, are clearly exhibited, indicating that the dynam-
ics get temporarily stuck in this two-level system, although the
LD nature of the process can still be appreciated. This comes
about because when the field frequency sweeps through the
energy difference between those two levels the field amplitude
is at its maximum, making the Rabi frequency sufficiently
high for several oscillations to occur while the two levels are
near resonance. Besides, the populations of the other levels
are very small around this time, causing little interference. As
this two-level system decays, the population of the target level
rises to a final value of pυ=10 = 30%, which amounts to an
increase of only 5% with respect to the OLD scheme. This
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happens because by the time the target level is reached, the
field amplitude is already too low. The total population in the
bound levels is 40%. This case illustrates that the selection of
the levels constituting the ladder is crucial for the efficiency
of the MLD scheme.

As in Ref. [21], we have assumed that the molecule is
isolated and the dynamics are fully coherent. Hence we have
neglected radiative decay and temperature-dependent effects,
namely, vibrational relaxation and population rethermaliza-
tion induced by blackbody radiation. We found that the
radiative lifetimes of the vibrational levels with respect to
spontaneous emission within the same electronic state (a 3�+)
are longer than 13 s, which turns out to be much longer than
the duration of the entire LD process, which takes at most a
few nanoseconds. Moreover, spontaneous emission into the
electronic ground state (X 1�+) is spin forbidden. Therefore,
it is a good approximation to neglect radiative decay alto-
gether. At cold temperatures and sufficiently low gas densities,
vibrational relaxation time scales can be much longer than
nanoseconds [30]. Likewise, at these temperatures population
rethermalization induced by blackbody radiation takes of the
order of seconds [31]. Hence it is valid to neglect these two
effects for our infrared LD processes.

The experimental realization of the proposed schemes
necessitates subnanosecond laser pulses in the far-infrared
range. The generation of ultrashort laser pulses in the
10–40 THz spectral range has been achieved by the excitation
of high harmonics in the organic nonlinear optical crystal
DAST [32,33]. Furthermore, pulses in the spectral range of
those shown in Fig. 8 could be generated by employing
novel quantum cascade molecular lasers, as demonstrated in
Ref. [34]. We expect that, in the near future, even lower
frequencies in the THz spectral range, needed to implement
our scheme in general, will be achieved by designing new
nonlinear crystals [35] or by the exploitation of available
lasing transitions in molecules [36].

V. CONCLUSIONS AND OUTLOOK

We have proposed and implemented computationally an
infrared ladder-descending scheme for the stabilization of a
highly excited polar diatomic molecule into a given target
vibrational level of the same electronic state. The scheme
employs a single linear chirped laser pulse with an analytical
shape that is optimized by means of a quantum optimal control
method based on a genetic algorithm. The implementation re-
quires some heuristics based on the vibrational level structure
and the dipole coupling map of the molecule. This vibrational
stabilization scheme can be used as a “postpulse” for various

types of association methodologies [7–15] or as a “prepulse”
for further optimization of pump-dump [20,21] or STIRAP
[19,22,23] stabilization methodologies.

To prove our concept, as a prototype we considered a
model KRb molecule formed by magnetoassociation in its
lowest-lying triplet electronic state, a 3�+ [21]. This molecule
exhibits a “hole” in the dipole coupling map that can generate
a bottleneck for a one-rung-at-a-time descent down the vi-
brational ladder for some initial levels. We demonstrated that
such a bottleneck can be sidestepped by means of a multiple-
rung-at-a-time variant of the scheme, taking advantage of the
relatively strong overtones present. Other molecules, bialkali
or otherwise, may exhibit more complicated features in their
dipole coupling maps, for example, several holes. It seems that
the multiple-rung-at-a-time variant of our scheme can deal
with these cases by a judicious choice of the rungs, i.e., of
the levels involved in the process.

We employed a Gaussian shape for the laser pulse, which
is relatively easy to achieve experimentally. Our methodology
can accommodate a more flexible shape, but at the obvious
expense of increasing the optimization cost and the experi-
mental difficulty. For the genetic selection operation, we used
the roulette wheel selection method. It would be worthwhile to
try other selection methods that might improve the efficiency
of the optimization.

The model employed does not take into account the ro-
tational structure of the diatomic molecule. However, our
previous study of the one-step photoassociation dynamics,
that took into account the full rovibrational structure, revealed
that for each vibrational level the rotational population dis-
tribution can become considerably wide, beyond what could
be expected from the �J = ±1 one-photon selection rule,
due to the multiphoton character of the transitions when the
field is sufficiently strong [11]. Nevertheless, we expect that
our multiple-rung-at-a-time scheme can achieve simultane-
ous one-step photoassociation and rovibrational stabilization,
by hand-picking rovibrational levels in such a way that the
rung separations increase (or decrease), so that a positive (or
negative) frequency chirp can be employed. Work in these
directions is currently underway in our laboratory.
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