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Second-order imaginary differential operator for effective absorption in the numerical
solution of the time-dependent Schrödinger equation
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We propose a method to implement absorbing layers for the numerical solution of the time-dependent
Schrödinger equation (TDSE) in the open domain. The method is based on introducing an imaginary second-
order differential operator which effectively absorbs waves propagating both toward the boundary and away from
it. The survival probability is 0.01 for de Broglie wavelength equal to the layer width and decreases exponentially
as the wavelength decreases. The proposed method can be used in both length and velocity gauges for the electric
field when solving strong-field physics problems. We also propose the propagator for the absorbing operator for
convenient use in the Fourier split-step method of the TDSE solution. We demonstrate the high accuracy of using
the proposed method in simulations of the high-order harmonics generation in atomic hydrogen by femtosecond
laser pulses and calculations of photoelectron momentum distributions using projections of the absorbed wave
packets onto Volkov states.
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I. INTRODUCTION

The time-dependent Schrödinger equation (TDSE) is one
of the main tools to study various physical phenomena in
strong-field physics, as well as in several other areas, which
include nonlinear optics, plasma physics, condensed matter
physics, and others. When studying various phenomena in
strong fields, the TDSE can be used as a stand-alone tool or
be an integral part of approximate many-electron approaches
such as the time-dependent Kohn-Sham equations (TDKSE).
In the mathematical formulation of many problems based
on TDSE (for example, when considering the interaction of
atoms and molecules with laser fields), the considered domain
is open, i.e., boundaries are at infinity. However, the com-
putational domain always has a finite size when performing
numerical simulations using grid methods. Therefore, absorb-
ing layers are used that suppress unphysical waves appearing
near computational grid boundaries due to wave packets’
reflection (and wrap-around when using numerical periodic
boundary conditions) [1–9].

During simulations of strong-field phenomena within the
TDSE, efficient absorption in a wide range of de Broglie
wavelengths is often of fundamental importance. When an
atom or molecule interacts with an ionizing infrared (IR)
laser pulse, the freed electrons can be accelerated up to high
energies. Due to rescattering, photoelectrons can gain energy
close to ∼10Up, where Up is the electron ponderomotive
energy [10–14]. Therefore, the wave function has a very
broad spatial spectrum. In the case of insufficient absorption
in some wavelength ranges, the artifact wave packets that
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appear near boundaries can lead to incorrect calculation of
the high-energy part of photoelectron momentum distribution
(PMD) or low-energy structures in PMD, which currently
attract much attention [13,15–19]. It should be noted that
the need for effective absorption is present in all methods
of PMD calculation, including the time-dependent surface
flux (t-SURFF) method [13,19–23]. Inefficient absorption can
also strongly affect the excited low-frequency currents that
determine the secondary generated radiation in terahertz and
mid-IR ranges [24–32]. Finally, efficient absorption is im-
portant in the numerical simulations of high-order harmonics
generation (HHG) of a laser pulse by atoms and molecules
caused by the ionization and acceleration of electrons by the
laser field and their recombination with parent ions [2,33–36].
This becomes especially important when studying harmonics
with small yield, which appear, for example, beyond the cutoff
of the plateau in the HHG spectrum when extreme-ultraviolet
(XUV) pulse is added to the driving IR field [37–41].

The currently used methods for implementing absorb-
ing layers include exterior complex scaling (ECS), in
which a linear scaling transformation of the coordinate
outside a certain region is performed so that outgoing
waves fall off with increasing coordinate [1,3,4,22,42]. Al-
though ECS can provide a wide absorption range and
does not distort the wave-function behavior in the inner
region (out of the absorbing layer), this method has es-
sential disadvantages. First, the application of the Fourier
split-step method along with ECS is impeded by the ex-
plicit coordinate dependence of the scaled kinetic energy
operator [43]. Second, when describing the interaction with
an external field, the ECS method works only in the velocity
gauge (VG) and fails in the length gauge (LG) [1,3]. Another
absorption method called “perfectly matched layers” (PMLs)
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is based on replacing the kinetic energy operator with the
operator − 1

2 c(x)[ ∂
∂x c(x) ∂ψ

∂x ], where ψ is the wave function;
c(x) = 1/[1 + eiγ σ (x)]; σ (x) is a real, non-negative function,
which is zero outside the layer; and 0 < γ < π/2 to ensure
decay of the wave packet as it travels out of the interior
domain [5,9,44]. PMLs effectively absorb freely propagating
wave packets but lead to large errors when solving TDSE
in the LG; in the VG, the errors appear if the ion potential
reaches into the absorbing domain [9]. In addition, there is
no proposed propagator to implement PMLs in the Fourier
split-step method. In this regard, the PMLs are currently not
used in simulations of strong-field phenomena.

The most commonly used absorption method is based on
complex absorbing potentials (CAPs) [13,45–51]. CAPs can
be used for different grid-based algorithms for solving TDSE
in both LG and VG for the electric field [52,53]. In particular,
purely imaginary CAPs are used in open-source codes for
solving three-dimensional (3D) TDSE QPROP [19,54] SCID-
TDSE [55], CLTDSE [56], and QPC-TDSE [23] that use the
expansion of wave function in spherical harmonics, as well as
codes PCTDSE [57] and OCTOPUS [58,59] developed in Carte-
sian coordinates (codes QPROP and OCTOPUS can also solve
TDKSE). The use of negative imaginary potential is equiv-
alent to multiplying the wave function by a mask function
less than unity with some small time step [2,42]. The parts
of the wave function that pass into regions with imaginary
potential are absorbed and do not appear later on the grid
but can be projected onto Volkov states. The sum of these
projections gives the residual wave function in momentum
space, the square of which is PMD [48,60]. The latter is
widely used to calculate PMD for both single-electron and
multielectron systems [14,57,61–63]. However, the range of
de Broglie wavelengths effectively absorbed by CAP is fi-
nite and strongly depends on the shape and amplitude of the
potential [2,35,64,65]. Effective absorption in a wide range
requires a wide layer and a specially selected potential shape,
dependent on the parameters of the physical problem. In our
recent work [65], we proposed to use CAPs containing several
imaginary humps with different widths and amplitudes that
absorb different waves. This method can provide the required
absorption level in a given finite wavelength range, whose
upper limit equals the layer width. However, the parameters
of the imaginary humps and their number need to be carefully
defined based on the physical problem being solved. In this
regard, the development of simple, universal, and efficient
absorption methods is still a topical problem.

In this paper, we develop an absorption method based on
a second-order imaginary differential operator with a smooth
bell-shaped envelope. The second derivative of the wave func-
tion multiplied by a properly chosen constant corresponds to
the optimal damping rate, which is a quadratic function of
the wave number. The resulting survival probability decreases
exponentially with decreasing de Broglie wavelength. We
propose an algorithm for the efficient implementation of this
method using the Fourier split-step technique of the TDSE
solution for both LG and VG. The effectiveness of the absorp-
tion algorithm is demonstrated in calculating HHG spectra in
a two-color field consisting of IR and XUV components and
in calculating PMD in the IR field based on the projections of

absorbed wave packets onto Volkov states. In addition, we find
a way to eliminate the unphysical circles structure in PMDs
seen in many published numerical results (see, e.g., Fig. 1(a)
in Ref. [12] or Fig. 1 in Ref. [66]).

The article is organized as follows. In Sec. II, we construct
an imaginary absorbing operator, examine its absorbing prop-
erties, and adapt it for convenient use in the Fourier split-step
method. In Sec. III, we demonstrate the developed absorption
method performance in calculating HHG spectra of a hydro-
gen atom in a two-color IR and XUV pulse, as well as the
calculation of PMD in a hydrogen atom under the action of
a short IR pulse based on the 3D TDSE solution in Cartesian
coordinates. Section IV concludes the research. Atomic units
(a.u.) are used throughout this paper unless noted otherwise.

II. CONSTRUCTION OF IMAGINARY DIFFERENTIAL
ABSORBING OPERATOR

The construction of the complex differential operator is
based on absorption properties of bell-shaped imaginary
potentials [65]. Let us consider the one-dimensional (1D)
stationary Schrödinger equation (SSE)

−1

2

d2ψ

dx2
+ Vimag(x)ψ = k2

2
ψ (1)

with the boundary conditions corresponding to a plane wave
incident from the left with a wave number k:

ψ (x) =
{

eikx + r̃e−ikx, x → −∞,

t̃ eikx, x → ∞,
(2)

where it is supposed that the potential Vimag(x) tends to zero at
infinity. We consider single-hump imaginary potentials of the
Gaussian shape [65]:

Vimag(x) = −iu f [(x − xc)/l], f (ξ ) = e−(4 ln 2)ξ 2
. (3)

Here, f (ξ ) is a smooth bell-shaped function such that f (0) =
1, f (1/2) = 1/2, l is the width of the potential at the level 1/2,
and xc is the potential center. Both the amplitude u and the
width l of the potential are positive quantities that determine
the transmission and reflection coefficients, T = |t̃ |2 and R =
|r̃|2, respectively. The sum of these coefficients, S = R + T , is
called survival probability, and S � 1 due to the wave function
outflow in the imaginary potential region. The less the survival
probability, the higher the absorption efficiency.

For a fixed width of the single-hump potential, there is an
optimal amplitude at which the survival probability for a given
wave number k is minimal. The optimal amplitude u = uopt of
potential (3) found from numerical calculations in the range
of wave numbers kl ∼ 1 − 10 is well approximated by the
quadratic function [65]

uopt = εopt (kl )/l2, εopt (κ ) = C + Dκ2, C = 2.2,

D = 0.9.

When the amplitude is lower or higher than uopt, the survival
probability is higher due to the transmission or reflection
coefficient increase. Similarly, for a given amplitude u and
width l , there is an optimal wave number below or above
which the survival probability is higher due to an increase in
the reflection or transmission coefficient; as a result, the range
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FIG. 1. The dependences of reflection (R) and transmission (T )
coefficients and survival probability S = R + T on the normalized
wavelength ν = λ/l for two imaginary differential operators: origi-
nal [Eq. (4), thick red lines] and modified [Eq. (16), thin blue lines].
The green thin solid line denotes the wavelength dependence of the
minimal survival probability Smin (corresponding to the optimal am-
plitude uopt for a given wavelength) provided by imaginary potential
(3).

of de Broglie wavelengths λ = 2π/k corresponding to effec-
tive absorption is limited. The minimum survival probability
Smin = S(uopt ) corresponding to the optimal amplitude uopt

decreases exponentially with decreasing λ, which is demon-
strated in Fig. 1 (see Appendix A for details of calculations).

The quadratic dependence of the optimal amplitude of
potential on the wave number allows us to construct a second-
order complex differential operator with optimal absorption
for different de Broglie wavelengths. For a sufficiently smooth
function f , multiplying the plane wave eikx by k2 f is equiv-
alent to applying the second derivative to − f eikx. Thus, we
propose to use a complex absorbing operator of the form

V̂absψ = −i
C

l2
f ψ + iD

∂

∂x

(
f
∂ψ

∂x

)
. (4)

When an operator (4) is used in the TDSE, the norm of the
wave function in the absorbing layer strictly decreases with
time for an arbitrary wave function. To show this, let us
consider 1D TDSE with an absorbing operator V̂abs,

i
∂ψ

∂t
= Ĥψ + V̂absψ, Ĥ = −1

2

∂2

∂x2
+ V (x, t ), (5)

where V (x, t ) is the time-dependent potential. The TDSE (5)
with V (x, t ) = Vc(x) + xE (t ) describes the evolution of the
electron wave function ψ in the core potential Vc(x) under
the action of the electric field E (t ) in the LG assuming that
electron charge is e = −1. Multiplying (5) by the complex
conjugate wave function, subtracting the complex conjugate
equation, and integrating over x gives the time derivative of
the norm N (t ) = ∫ |ψ |2dx:

dN

dt
= γ , γ = −2C

l2

∫
f |ψ |2dx − 2D

∫
f

∣∣∣∣∂ψ

∂x

∣∣∣∣
2

dx. (6)

Since the integrands are positive, the norm of the wave func-
tion is a monotonically decreasing function of time. Also,
absorption is equally efficient for waves propagating in pos-
itive and negative directions.

To implement the proposed method in the TDSE solution,
one should introduce the absorbing operator near the bound-
aries of the computational grid. The Gaussian function (3)
used to define the shape of the envelope of the absorbing
differential operator is nonzero for any arguments but decays
rapidly; as a result, the effective absorption occurs in the
layers with sizes 2l near the grid boundaries.

In order to study the absorbing properties of the con-
structed operator (4), we solve the 1D SSE

−1

2

d2ψ

dx2
+ V̂absψ = k2

2
ψ, (7)

with boundary conditions (2). The details of numerical cal-
culations can be found in Appendix A. Figure 1 shows the
survival probability and reflection and transmission coeffi-
cients as functions of the normalized wavelength ν = λ/l .
The survival probability is exponentially small for ν � 1 and
increases monotonically with ν, similar to the dependence
Smin(ν) for the single-hump imaginary potential. However, the
survival probability for operator (4) is smaller than Smin(ν) for
ν > 2, which means that the absorbing operator is even more
effective than imaginary potential with optimal wavelength-
dependent amplitude. For ν = 4, the difference is three times,
approximately. For ν < 2, the obtained survival probability is
slightly higher than Smin(ν), with a difference increasing to-
wards smaller ν. In this range, the reflection is much less than
the transmission, while for ν > 4, on the contrary, the survival
probability is determined mainly by the reflection from the
layer. In particular, S(ν) takes the values S(1) ≈ 6 × 10−4,
S(2) ≈ 0.01, S(10) ≈ 0.3. At ν → ∞, S(ν) asymptotically
tends to unity.

A. Implementation in the Fourier split-step method

The proposed imaginary absorbing operator (4) can be
used both in finite difference methods [46,54,58,59] and the
Fourier split-step method [25,57,66,67] of TDSE solving. Let
us consider the last one with regard to 1D TDSE (5). The
corresponding second-order propagator over the time step �t
is [67]

ψ (x, t + �t ) = e−iV̂abs�t/2ÛH e−iV̂abs�t/2ψ (x, t ) + O[(�t )3]

(8)

ÛH = e−iV (x,t̄ )�t/2e−i p̂2�t/2e−iV (x,t̄ )�t/2, (9)

where t̄ = t + �t/2, ÛH is the propagator of the Hamilto-
nian Ĥ and p̂ = −i(∂/∂x) is the momentum operator. The
time-evolution operator e−iV̂abs�t/2 responsible for absorption
cannot be expressed as a product of operator exponents which
could be applied exactly in coordinate or momentum space,
i.e., V̂abs is not separable. To show this, let us rewrite (4) as

V̂absψ = −i

(
C

l2
+ Dp̂2

)
[ f ψ] + Dp̂

[
df

dx
ψ

]
. (10)
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Here, the momentum operator acts on f ψ and (df /dx)ψ , but
not on ψ as the kinetic energy operator in the Hamiltonian.

Consider the absorbing propagator over some small time
step �tabs:

Ûabs = e−iV̂abs�tabs . (11)

The first-order expansion of Ûabs in �tabs is

Ûabsψ ≈ (1 − i�tabsV̂abs)ψ (12)

= ψ + F̂−1

[
B1(p)F̂[ f ψ] + B2(p)F̂

[
df

dx
ψ

]]
, (13)

B1(p) = −(C/l2 + Dp2)�tabs, B2(p) = −iDp�tabs, (14)

where F̂[ψ] = ∫ ∞
−∞ ψe−ipxdx and F̂−1[·] are the forward and

backward Fourier transforms, respectively. The use of this
approximation applied to e−iV̂abs�t/2 in propagator (8) makes
the numerical scheme for TDSE solving unstable due to the
growth of |B1(p)| and |B2(p)| with increasing |p|. To improve
the accuracy, one can try to use the second-order propagator
(for example, using the method suggested in Ref. [68]), but
this is associated with the need to calculate several additional
fast Fourier transforms (FFTs) along with three FFTs in the
case of (13). We suggest to replace B1(p) in (13) by its expo-
nent form and neglect the second term:

B1(p) = e−(C/l2+Dp2 )�tabs − 1, B2(p) = 0. (15)

The first term in the expansion of B1(p) from (15) in �tabs

gives B1(p) from (14). Propagator (13) with (15) requires
only two FFTs and makes the numerical scheme stable for
an arbitrarily large time step due to the limitation of |B1(p)|
growth with increasing |p|. Also, this propagator retains the
high absorbing properties of the original absorbing operator
(4). To show this, first note that for the waves with squared
momenta p2 � (D�tabs)−1, the action of propagator (13) with
(15) corresponds to an absorbing operator

V̂absψ = −i

(
C

l2
+ Dp̂2

)
[ f ψ], (16)

which is the same as (10) but without the last term containing
p̂[(df /dx)ψ]. Note that as |p| grows, B1(p) tends to −1,
which means that for rapidly moving wave packets with p2 �
(D�tabs)−1, the action of Ûabs is equivalent to multiplying the
wave function by the mask function M(x) = 1 − f (x) equal
to zero at the center of the layer and unity outside the layer.
At the same time, wave packets with p2 � (D�tabs)−1 are
absorbed more weakly with the rate defined by |B1(p)|.

Let us now study the absorbing properties of the modified
absorbing operator (16). The derivative of the norm of the
wave function when solving the TDSE (5) using the operator
(16) contains an extra term with df /dx in the integrand:

dN

dt
= γ − D

∫
df

dx

∂|ψ |2
∂x

dx, (17)

where γ is taken from (6). When considering a plane wave in-
cident from the left, we have ∂|ψ |2/∂x < 0, and df /dx takes
positive values in the left half of the absorbing layer; then,
the extra term is positive. Thus, the absorption should be less
effective compared to the original operator (4) [or (10)]. How-
ever, the decrease in absorption is pronounced in a narrow

wavelength range. Figure 1 shows the survival probability and
reflection and transmission coefficients found based on solv-
ing the SSE (7) with operator (16) and boundary conditions
(2) (see Appendix A for details). For ν < 2, the reflection
coefficient (and, accordingly, the survival probability) practi-
cally does not change compared with the original operator (4).
For ν > 2, the survival probability S(ν) is higher compared to
the original operator and very close to the dependence Smin(ν)
obtained for the single-hump imaginary potential. Thus, the
efficiency of absorption of the modified operator corresponds
to the efficiency of the imaginary potential with the optimal
amplitude.

Since the absorbing propagator (13) with (15) provides
numerical scheme stability for arbitrary time step, it is not
necessary to apply two time-evolution operators Ûabs every
time step �t in the Fourier split-step method. One can make
the step �tabs in the Ûabs propagator many times larger than
the main Hamiltonian propagator step �t . Since the absorbing
propagator is time independent, the upper constraint on the
time step �tabs is the impossibility of waves passing through
the layer in the interval �tabs, i.e., �tabs � l/p0 [60]. When
�tabs = n�t , the absorption is performed once every n times,
and the total propagator is

ψ (x, t + �tabs) = Ûabs

⎡
⎣T

⎛
⎝ n∏

j=1

Ûj

⎞
⎠ψ (x, t )

⎤
⎦, (18)

where T is time ordering operator and Ûj is the Hamiltonian
propagator from t + ( j − 1)�t to t + j�t :

Ûjψ = e−iV (x,t̄ j )�t/2F̂−1[e−ip2�t/2F̂[e−iV (x,t̄ j )�t/2ψ]],

where t̄ j = t + ( j − 1/2)�t . As a result, applying the prop-
agator Ûabs does not decrease the computer program perfor-
mance.

It should be noted that earlier in the paper [35], an ab-
sorption algorithm was proposed for the Fourier split-step
method based on the same propagator as (13), (15) but with
a different wave absorption rate, corresponding to B1(p) =
exp(−β|p|�tabs) − 1, where β is a constant. The resulting
survival probability tends to some constant dependent on β

as the wavelength decreases [35], while when using (15) it
tends to zero exponentially. As our calculations show, in the
region of long waves, the absorption algorithm from Ref. [35]
and our algorithm have comparable efficiency.

B. The case of velocity gauge

When solving strong-field physics problems, TDSE can be
written in the LG [Eq. (5)] or the VG; the following formula
gives the transformation from the LG wave function to the
VG:

ψV (x, t ) = ψ (x, t ) exp

(
−iA(t )x + i

2

∫ t

−∞
A2(t ′)dt ′

)
, (19)

where A(t ) = − ∫ t
−∞ E (t ′)dt ′ is the projection of the vector

potential onto the x axis. As a result, the TDSE is written as

i
∂ψV

∂t
=

(
p̂2

2
+ A(t ) p̂

)
ψV + Vc(x)ψV + ˆ̃VabsψV . (20)
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The absorbing operator ˆ̃Vabs is given by the formulas (4) or
(16) with the replacement of all partial derivatives of the wave
function by

∂ψV

∂x
→

(
∂

∂x
+ iA(t )

)
ψV . (21)

For the case when the TDSE is solved by the Fourier split-
step method, the total propagator by time step �tabs = n�t ,
where �t is the time step in the Hamiltonian propagator, is
given by (18) with

Ûjψ = e−iVc (x)�t/2F̂−1[e−i[p2/2+A(t̄ j )p]�t F̂[e−iVc (x)�t/2ψ]],

which propagates the wave function from t + ( j − 1)�t to
t + j�t , t̄ j = t + ( j − 1/2)�t . The absorbing propagator is

Ûabsψ = ψ + F̂−1[B1(p)F̂[ f ψ]], (22)

B1(p) = e−(C/l2+D[p+A(ta )]2 )�tabs − 1, (23)

where ta = t + �tabs/2. Note that the absorbing propagator
Ûabs is time dependent in contrast to the case of LG. Therefore,
the time step �tabs must be much smaller than the vector
potential oscillations time scale, which may be essential for
the case of a high-frequency driving field.

C. The multidimensional case

The generalization of the proposed method to the case
of several dimensions is straightforward: the corresponding
absorbing operator represents the sum of operators located
near different computational domain boundaries and acts in
mutually orthogonal directions. Let us consider the 3D TDSE
written in the Cartesian coordinates (x, y, z) in the LG for
the electron wave function in the time-dependent potential
V (r, t ):

i
∂ψ

∂t
= Ĥψ + V̂3D,absψ, Ĥ = p̂2

2
+ V (r, t ), (24)

p̂2 =
∑

α

p̂2
α, p̂α = −i

∂

∂α
, α = x, y, z. (25)

The total absorbing operator represents the sum of the op-
erators that absorb the waves propagating along orthogonal
directions:

V̂3D,abs =
∑

α

V̂abs,α. (26)

Let us suppose that the 3D TDSE (24) is solved by the
Fourier split-step method in the computational domain xmin �
x � xmax, ymin � y � ymax, zmin � z � zmax. To obtain high
performance, the absorbing operator is set in the form (16)

V̂abs,αψ = −i

(
C

l2
α

+ Dp̂2
α

)
[Fα (α)ψ],

Fα (α) = f [(α − αmin − lα )/lα] + f [(α − αmax + lα )/lα].

Here, lα is the width of the envelope of the absorbing oper-
ator acting along α coordinate; the resulting absorbing layer
width is, approximately, labs,α = 2lα . The corresponding total

propagator of the wave function by step �tabs is

ψ (r, t + �tabs) = Ûabs

⎡
⎣T

⎛
⎝ n∏

j=1

Ûj

⎞
⎠ψ (r, t )

⎤
⎦. (27)

Here, Ûj propagates the wave function under action of the
Hamiltonian from t + ( j − 1)�t to t + j�t ,

Ûj = e−iV (r,t̄ j )�t/2F̂−1
3D [e−ip2�t/2F̂3D[e−iV (r,t̄ j )�t/2ψ]], (28)

where F̂3D[·] and F̂−1
3D [·] are forward and backward 3D

Fourier transforms, t̄ j = t + ( j − 1/2)�t , p2 = ∑
p2

α , pα is
projection of the momentum p on the α axis, and propagator
Ûabs absorbs the wave function every nth step:

Ûabs =
∏
α

Ûabs,α, (29)

Ûabs,αψ = ψ + F̂−1[Bα (pα )F̂[Fαψ]], (30)

Bα (pα ) = e−(C/l2+Dp2
α )�tabs − 1, �tabs = n�t . (31)

III. THE USE OF THE ABSORBING DIFFERENTIAL
OPERATOR IN STRONG-FIELD PHYSICS PROBLEMS

A. Calculations of HHG spectra in a two-color IR
and XUV pulse

High-order harmonic generation is one of the main prob-
lems of strong-field physics. The numerical simulation of
HHG is based on the calculation of the electron acceleration
a(t ) = −〈ψ |∇V (r, t )|ψ〉, which determines the generated
electromagnetic radiation [33]. Let us test the proposed ab-
sorption method when calculating the electron acceleration
Fourier spectrum (HHG spectrum) for a hydrogen atom in an
external two-color IR and XUV field. As is known from pre-
vious works [38–41], in such a field, HHG spectrum contains
the infinite number of additional plateaus with widths equal
to XUV field frequency ωXUV. The physical reason for the
additional plateaus is associated with the absorption of XUV-
field photons at the electron recombination stage. Calculating
the HHG spectrum beyond the main plateau cutoff requires
efficient absorption of wave packets at the boundaries of the
computational domain to minimize artifact wave packets that
appear at the boundaries and the corresponding noise signal in
the spectrum. In particular, the more efficient the absorption,
the greater the number of additional plateaus visible in the
spectrum.

We consider the linearly polarized field

E(t ) = x̂E (t ), E (t ) = EIR(t ) + EXUV(t ), (32)

Eα (t ) = Eαg(t ) cos(ωαt + ϕα ), α = IR, XUV, (33)

where the envelope has the intensity full width at half max-
imum (FWHM) duration τp = 10 fs and Gaussian shape
g(t ) = e−(2 ln 2)t2/τ 2

p . The wavelengths λα = 2πc/ωα (where
c is the speed of light) of IR and XUV components are,
respectively, λIR = 800 nm and λXUV = 40 nm. The inten-
sities of the IR and XUV components Iα = IaE2

α/E2
a (where

Ia and Ea are the atomic intensity and field) are equal to
IIR = 1.2 × 1014 W/cm2 and IXUV = 2 × 1013 W/cm2, re-
spectively. The carrier-envelope phases are ϕα = 0.
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FIG. 2. The HHG spectrum obtained by solving the 3D TDSE
for the H atom in the Cartesian coordinates by the Fourier split-step
method using propagator (27) (thin red line). The thick blue line
denotes the reference HHG spectrum obtained by solving the 3D
TDSE in spherical coordinates. The calculations were performed for
the two-color laser pulse with the central wavelengths of components
800 nm and 40 nm with 10 fs FWHM duration and peak intensities
1.2 × 1014 W/cm2 and 2 × 1013 W/cm2, respectively.

We solve the 3D TDSE (24) with the potential V (r, t ) =
xE (t ) + Vc(r), where Vc(r) is the smoothed Coulomb ion po-
tential [36]:

Vc(r) = −1

r

[
tanh

(
r

a

)
+ r

b
sech2

(
r

a

)]
, a = 0.3,

b = 0.46.

The initial condition corresponds to the ground state in the
hydrogen atom. The 3D TDSE is solved numerically using the
Fourier split-step method according to Sec. II C. The time step
is �t = 0.02, spatial steps are �x = �y = �z = 0.4, and the
numbers of grid nodes are Nx = 512 and Ny = Nz = 256. We
use the following widths of envelopes of the absorbing opera-
tors acting along x, y, z: lx = 15, ly = lz = 7.5 (i.e., the widths
of absorbing layers are 30 along x and 15 along y and z). The
resulting calculation domain covers four oscillatory radii in
the IR field in the longitudinal direction. The shape of the ab-
sorbing differential operator’s envelope and coefficients C and
D are the same as in Sec. II. The action of absorbing operators
is taken into account numerically with propagator (29) applied
every n = 5 time steps �t . The results of calculations of the
HHG spectrum are compared in Fig. 2 with the reference
spectrum from the 3D TDSE solution in a spherical coordinate
system with the size of computational grid many times greater
than the oscillatory radius in the IR field. A method for solving
3D TDSE in spherical coordinates is described in Appendix B.
As can be seen from Fig. 2, the HHG spectra coincide with all
small-scale oscillations at all frequencies, including those at
low-order harmonic range and above the IR-induced cutoff
at ω ≈ 40 eV. For both calculations, the difference in the
noise level relative to the level of the main plateau in the
HHG spectrum is 19 orders of magnitude. As a result, four
XUV-induced plateaus are distinguished in the HHG spectrum
in the region beyond the main plateau cutoff. Note that such a
small noise level was obtained using rather narrow absorbing
layers. Thus, the proposed absorption method is suitable for
studying the harmonics with a very small yield.

B. Calculations of photoelectron momentum distributions

Above-threshold ionization is another strong-field physics
phenomenon actively studied by solving the TDSE. Here,
we demonstrate the capability of the absorbing differen-
tial operator as applied to calculations of PMD in an
intense IR pulse. We solve the TDSE (24) for a hy-
drogen atom in Cartesian coordinates numerically for the
linearly polarized IR field given by (32) with λIR = 800 nm,
IIR = 1.2 × 1014 W/cm2, ϕIR = π/4, and IXUV = 0. In
this example, we set g(t ) = cos2(πt/2Tm) for |t | < Tm =
πτp/[4 arccos(2−1/4)] and g(t ) = 0 for |t | > Tm, where τp =
2.67 fs is the intensity FWHM duration. The initial condition
corresponds to the ground state in the atom. We define PMD
as the square of the projection of the wave function onto plane
waves at the time tfin = Tm + 200 (after the end of the laser
field),

P(p) = |�(p)|2, �(p) =
∫

ψfree(r)e−iprd3r, (34)

where ψfree(r) is the wave function in the continuum after
the passage of the laser pulse. Assuming that the absorbing
layer is sufficiently far from the ion and the influence of the
interaction of the absorbed wave function with the ion on
the PMD can be neglected, the PMD can be written using
projections onto Volkov states [10,11,57,60]

�(p) = �grid(p)+
∫ tfin

−T
dtδψ exp

(
− i

2

∫ tfin

t
[p +A(t ′)]2dt ′

)
,

δψ = i
∫

e−i[p+A(t )]rV̂absψ (r, t )d3r,

A(t ) =
∫ tfin

t
E(t ′)dt ′,

where V̂abs is the absorbing operator, A(t ) is vector potential
of the external field, and

�grid(p) =
∫

ψ (r, tfin)M(r)e−iprd3r (35)

is the wave function of free electrons staying on the grid at
the time moment tfin. Here, M(r) is the mask function that
helps to filter out the most populated bound states from the
full wave function ψ (r, tfin) and to vanish the wave function
at the boundary of the computational domain. We set the mask
function as

M(r) = Mbs(r)Mx(x)My(y)Mz(z), (36)

Mbs(r) = H (r − 40, 5), (37)

Mξ (ξ ) = H (ξ − ξmin − d, 7.5)H (−ξ + ξmax − d, 7.5),
(38)

H (ξ, s) = 1

2

[
1 + tanh

(
ξ

s

)]
, (39)

ξ = x, y, z, d = 25. (40)

Here, H (ξ, s) is a smoothed step function with scale s, and
ξmin, ξmax are minimum and maximum values of the coordi-
nate on the grid.

We use the following algorithm to calculate PMD. We
solve 3D TDSE in Cartesian coordinates using the Fourier
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split-step method with the time step �t = 0.02, spatial
steps �x = �y = �z = 0.4, and numbers of grid nodes
Nx = 1024, Ny = Nz = 512 (xmax = −xmin = 204.6, ymax =
−ymin = 102.2, zmax = ymax, zmin = ymin). The absorption is
performed by propagator (29) with lx = 50, ly = lz = 25 ev-
ery n = 5 steps of the main propagator (28). Every time
moment when the absorption is performed, we extend the ab-
sorbed part of the wave function ϕ = (1 − Ûabs)ψ beyond the
computational domain by filling with zero values; the result-
ing wave function array has sizes Ñx = 2048, Ñy = 1024, and
Ñz = 512 along x, y, and z, respectively. Then we make the
phase shift of ϕ, calculate the forward 3D FFT of the resulting
array, and add it to the momentum-space wave function �(p):

�(p) → �(p) + e−(i/2)
∫ tfin

t [p+A(t ′ )]2dt ′F̂3D[e−iA(t )rϕ(r, t )].

At the final time moment tfin, the wave function remaining on
the grid ψ (r, tfin) is multiplied by M(r), extended beyond the
computational domain, projected onto plane waves, and added
to �(p):

�(p) → �(p) + F̂3D[ψ (r, tfin)M(r)].

The calculation results are compared with the reference
PMD obtained as a result of the 3D TDSE solution in spher-
ical coordinates with a large computational grid (similar to
testing of the t-SURFF method of PMD calculation used in
Refs. [13,23]). The used size of numerical grid rmax = 1200
exceeds the distance over which the rescattered electrons
move at the end of the laser pulse, which we estimate as
∼Tm p0 ∼ 300 a.u. (see Appendix B for the details of PMD
calculation).

Figure 3 shows the PMD in the (px, py) plane with pz = 0
calculated in (a) Cartesian coordinates and (b) spherical coor-
dinates. Figure 3(c) shows PMD distributions along px for the
zero transverse momentum. The PMD calculated in Cartesian
coordinates is in exact agreement with the reference PMD.
In particular, the hemisphere associated with rescattered elec-
trons is exactly reproduced, despite the probability density
corresponding to rescattering electrons being seven orders of
magnitude lower than for direct electrons. The low-energy
structures are also in exact agreement. The ratio of the noise
level to the maximum in PMD for the considered parameters
is ten orders of magnitude. Thus, the method for calculating
PMD using the proposed absorbing operator has high accu-
racy and can be used even in cases where the PMD amplitude
is extremely small.

Note that the expansion of the numerical grid when cal-
culating the projection onto Volkov states is necessary to
increase the momentum resolution. If no grid expansion is
performed, the resulting PMD contains unphysical modula-
tion in the form of circles (see Fig. 4), which is also seen
in many published numerical results (see, e.g., Fig. 1(a) in
Ref. [12] or Fig. 1 in Ref. [66]). When we use the grid
expansion, this unphysical structure is absent. In this case,
the momentum steps along the x, y, z directions are, respec-
tively, �px = 7.7 × 10−3, �py = 0.015, and �pz = 0.031,
in accordance with the formula �pα = 2π/(Ñα�α), α =
x, y, z. Such steps are sufficient to resolve oscillations in PMD
for given laser-pulse parameters. We estimate the scale of
oscillations as ∼ωIR/p0 ≈ 0.03, where p0 = √

20Up is the

FIG. 3. Photoelectron momentum distribution in (px, py) plane
for pz = 0 for the H atom irradiated by linearly polarized laser
pulse with wavelength 800 nm, intensity 1.2 × 1014 W/cm2,
FWHM duration τp = 2.67 fs, and carrier-envelope phase ϕIR =
π/4. (a) Calculation in the Cartesian coordinates using projections
of the absorbed wave packets onto Volkov states with grid expan-
sion to Ñx = 2048, Ñy = 1024, Ñz = 512; (b) reference calculation
in spherical coordinates with large computational grid (see text).
(c) Probability density at zero transverse momentum (py = pz = 0)
as a function of px .

FIG. 4. The same as in Fig. 3(a), but without grid expansion to
calculate the projections of the wave function onto Volkov states (see
text).
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maximum momentum gained by rescattered wave packets and
Up = E2

IR/4ω2
IR. Thus, the steps in the resulting momentum

distribution in the (px, py) are much smaller than the oscilla-
tions period, in contrast to the case when no grid expansion
is performed. Since projections are calculated once per n � 1
steps of the Hamiltonian propagator, the proposed computa-
tional grid expansion does not lead to a noticeable decrease in
program performance.

IV. CONCLUSION

We have proposed the use of the absorbing second-order
imaginary differential operator to prevent undesirable reflec-
tion from the boundaries or wrap-around of the wave packets
when solving the TDSE. For the one-dimensional case, the
absorbing operator for the LG of the electric field is given
by (4), while for the VG it is given by (4) with the re-
placement of the derivative ∂

∂x → ∂
∂x + iA(t ) when applied to

the wave function (see Sec. II B). The generalization for the
multidimensional case is straightforward: the corresponding
absorbing operator represents the sum of operators acting in
mutually orthogonal directions near different computational
domain boundaries, and the envelopes of operators need not
be identical (see Sec. II C). The operator suppresses de Broglie
waves propagating towards the boundaries and away from
them with equal efficiency. The survival probability decreases
exponentially with decreasing wavelength. For the operator
with the Gaussian envelope with a width of l , the survival
of de Broglie wavelength of size 2l (equal to the width of
the absorbing layer) is 0.01. In the wavelength range higher
than 2l , absorption efficiency is higher than that provided by a
bell-shaped imaginary potential having optimal amplitude for
a given wavelength.

Operator (4) can be directly used to solve TDSE by finite
difference methods and does not affect the performance of
calculations since the numerical approximation of the absorb-
ing operator is similar to the approximation of the kinetic
energy operator. In particular, this operator can be imple-
mented when solving 3D TDSE or TDKSE using high-order
finite difference methods in Cartesian coordinates [58,59] or
the expansion in terms of spherical harmonics and solution
of the system of 1D TDSE for the radial wave functions
[21,46,54,56,65]. When using the Fourier split-step method
[25,57,66], implementation of operator (4) can be provided
by the propagator (13), (14) but needs a small time step to
ensure the stability of the numerical scheme. In this regard,
we proposed to specify the absorbing operator in a slightly
modified form (16); the corresponding propagator for the LG
is given by (13), (15), and for the VG, as (22), (23) and is
stable at an arbitrarily large time step, which can be much
higher than the time step in the propagator of the Hamilto-
nian. Thus, the absorption propagator can be applied at every
nth step of the main propagator, and for n � 1, there is no
reduction in computer code performance. For the modified
absorbing operator (16), the absorption efficiency is slightly
decreased compared to the original operator in the narrow
range of the de Broule wavelengths ∼3–10l , and the resulting
absorption efficiency is similar to the case of the single-
hump imaginary potential with optimal amplitude for a given
wavelength.

We expect that implementation of the proposed absorption
method in known open-source codes [19,23,55–59] can sig-
nificantly increase the accuracy of calculations, in particular,
reduce the noise level in HHG spectra and PMDs and remove
the unphysical oscillations in the low-energy part of PMDs
when using t-SURFF [19,23]. We have demonstrated that the
use of the proposed absorption method based on propagator
(27), (29) for solving 3D TDSE in Cartesian coordinates
allows obtaining record low noise level in the electron ac-
celeration spectrum (∼19 order of magnitude smaller than
the plateau intensity), which is important for many problems,
such as the study of HHG in IR and XUV pulses [37–41]. We
have also demonstrated the convenience and high accuracy of
using the proposed absorption method for calculating PMDs
based on projecting the absorbed part of the wave function
onto Volkov states. Finally, we have shown that the expansion
of the spatial grid before calculating the projections on Volkov
states can eliminate the unphysical circles structure in PMDs
associated with insufficient momentum resolution.
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APPENDIX A: NUMERICAL SOLUTION OF 1D SSE

To solve SSE (1) or (7) with boundary conditions (2) we
make a change of variables η = −x/l , ψ (x) = ψ̃ (η), κ = kl
and solve the dimensionless SSE

−1

2

d2ψ̃

dη2
+ v̂absψ̃ = κ2

2
ψ̃ (A1)

with boundary conditions

ψ̃ =
{

t̃−1e−iκη + r̃t̃−1eiκη, η → ∞,

e−iκη, η → −∞.
(A2)

The operator

v̂absψ̃ = −iε f (η)ψ̃, ε = ul2 (A3)

corresponds to SSE (1) with imaginary potential (3),

v̂absψ̃ = −iC f (η)ψ̃ + iD
d

dη

(
f (η)

dψ̃

dη

)
(A4)

corresponds to SSE (7) with absorbing operator (4), and

v̂absψ̃ = −i

(
C − D

d2

dη2

)
[ f (η)ψ̃] (A5)

corresponds to SSE (7) with absorbing operator (16). By
making a replacement ψ̃ = e−iκηϕ introducing the notation
q(η) = dϕ/dη we obtain the system of first-order ordinary
equations {

ϕ′(η) = q,

q′(η) = 2iκq + F (q, ϕ, η) (A6)
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with asymptotics ϕ = 1, q = 0 at η → −∞; for η → ∞,

t̃ = (ϕ − q/2iκ )−1, r̃ = qt̃e−2iκη/2iκ. (A7)

For the case when v̂abs is given by (A3),

F (q, ϕ, η) = 2Q(η)ϕ, (A8)

for (A4),

F (q, ϕ, η) = Q(η)ϕ + iD f ′(η)(q − iκϕ)

1/2 − iD f (η)
, (A9)

and for (A5),

F (q, ϕ, η) = Q(η)ϕ + 2iD f ′(η)(q − iκϕ) + iD f ′′(η)ϕ

1/2 − iD f (η)
,

(A10)
where Q(η) = −i f (η)(C + Dκ2). The equations (A6) are in-
tegrated by the fourth-order Runge-Kutta method with the
step �η = 10−3min(ν, 1), where ν = 2π/κ , with initial con-
ditions ϕ = 1, q = 0 at η = −η0, where η0 = 3 + 2ν. The
coefficients t̃ and r̃ are found at η = η0.

APPENDIX B: ALGORITHM FOR THE 3D TDSE
SOLUTION IN SPHERICAL COORDINATES

To solve the 3D TDSE in the spherical system of coordi-
nates (r, θ, φ), the wave function is decomposed into spherical
harmonics [46]

ψ (r, θ, φ, t ) = 1

r

∞∑
l=0

�l (r, t )Yl0(θ, φ), (B1)

where Yl0(θ, φ) = [(2l + 1)/4π ]1/2Pl (cos θ ), l is angular mo-
mentum, Pl (cos θ ) are Legendre polynomials, and θ , φ are
the polar and azimuthal spherical angles, respectively, corre-
sponding to the polar axis x. Due to the cylindrical symmetry
of the problem and initial 1s state, the magnetic quantum
number is restricted to zero. Substituting (B1) in the TDSE,
we obtain a system of equations for �l ,

i
∂�l

∂t
=

[
−1

2

∂2

∂r2
+ l (l + 1)

2r2
+ Vc(r) + UCAP(r)

]
�l

+ rE (t )(cl−1�l−1 + cl�l+1), (B2)

where cl = (l + 1)[(2l + 1)(2l + 3)]−1/2. The electron accel-
eration a(t ) = x̂a(t ) is found as

a(t ) = −E (t ) − 2
∞∑

l=0

cl Re

[∫ ∞

0
dr�∗

l �l+1(∂Vc/∂r)

]
.

The system of equations (B2) is solved using the finite differ-
ence discretization of the radial coordinate with the Numerov
approximation for the second derivative [54]. The calculation
is carried out in the region −2τp � t � 2τp for Fig. 2 and
−Tm � t � Tm + 200 for Fig. 3, 0 � l � Lmax, Lmax = 512,
0 � r � rmax, where rmax = 300 for Fig. 2 and rmax = 1200
for Fig. 3. An equidistant grid with radial step �r = 0.2 is
used. The time step is �t = 0.02. To absorb the wave function
near the grid boundary, the three-hump imaginary potential
UCAP(r) of total width 100 is introduced, which provides high
efficiency of absorption in a wide wavelength range. We use
the algorithm presented in Ref. [65] to set the parameters of
imaginary potential.

Photoelectron momentum distribution is found using (34)
and an analytical expansion of a plane wave in terms of spher-
ical harmonics,

exp (ipr) = 4π

∞∑
l=0

l∑
m=−l

il jl (pr)Y ∗
lm(θ, φ)Ylm(θp, φp), (B3)

where angles θp, φp define vector p direction, and jl are the
spherical Bessel functions. Substituting (B1), (B3) into (34)
and integrating over θ, φ, we obtain an expression for the
projection of the wave function onto plane waves:

�free(p) = 4π

∞∑
l=0

(−i)lYl0(θp, φp)

×
∫ ∞

0
�l (r, tfin)Mbs(r) jl (pr)rdr.

Here, tfin is the final time moment and the mask function
Mbs(r) [given by (37)] serves to exclude populated bound
states.
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