
PHYSICAL REVIEW A 108, 013117 (2023)

Floquet interpretation of attosecond RABBITT traces
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Originally proposed for the temporal characterization of train of attosecond pulses, the reconstruction of
attosecond beating by interference of two-photon transitions (RABBITT), has become a wide-spread, powerful
technique, capable of capturing ultrafast electron dynamics through an interferometric approach. Starting from
the well-known strong-field approximation (SFA) description of a two-color photoelectron spectrum, here
we develop a model that interprets a RABBITT trace as the interference of different Floquet ladder states
generated in the continuum by a femtosecond infrared (IR) pulse after ionization by the attosecond radiation.
In turn, this allowed us to develop an analytical model capable of predicting the amplitude and phase of the
oscillating sidebands and main bands while including the effect of nonstandard interference paths and, in
first approximation, of the finite IR pulse envelope. Our results thus suggest a way to extend the RABBITT
model to higher intensities and beating frequencies, and disentangle different oscillating signals in a congested
photoelectron spectrogram as the one associated with molecular targets.
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I. INTRODUCTION

Alongside with attosecond streaking [1,2], in the recent
years the reconstruction of attosecond beating by interference
of two-photon transitions (RABBITT) [3,4] has established
itself las a powerful technique capable to access electron
dynamics [5,6] in atoms [7], molecules [8], liquids [9], and
solids [10]. Pioneering experiments have shown the capabil-
ity of this interferometric approach to resolve the ultrafast
processes which unfold during photoemission [11,12], dis-
closing the effect of different kind of resonances [13–19],
nuclear motion [20,21], local potential profile [22], spatial
field distribution [23], continuum-continuum transitions [24],
and angular beatings [25,26].

In a RABBITT experiment a train of attosecond pulses
(APT) in the extreme-ultraviolet (XUV) spectral region and
a delayed femtosecond infrared (IR) pulse are focused onto
the target to induce a two-color photoemission process. When
the two radiations overlap in time, two-color ionization paths
that involve the absorption of one XUV photon and the ab-
sorption or emission of one IR photon can lead to the same
electron final energy. As a result the amplitude of the asso-
ciated photoemission probability oscillates with the relative
delay between the APT and the IR pulse, and valuable in-
formation about the energy-dependent phase of the electron
wave-packet is encoded in the oscillation phase [27]. In the
standard implementation of the technique the IR intensity
is kept relatively low (typically IIR ≈ 1011 W/cm2 [28]) in
order to avoid ionization paths that involve more than one
IR photon. If, on the one side, this assures a clear interpre-
tation of the experimental data, one of the major strengths of
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RABBITT over other techniques like streaking [29], on the
other side it limits the energy resolution with which the phase
of the electron wave packet is sampled and the IR intensity
range that can be explored. While several approaches have
been proposed to increase the energy sampling of the tech-
nique [13,21,30,31], the possibility to exploit higher-order
interference paths to increase the information redundancy in
a RABBITT trace has been little pursued [32]. Starting from
an approach similar to that reported in Ref. [33], in this work
we will interpret a RABBITT trace in terms of interference
of Floquet ladder states [34,35] and develop an analytical
form that can be used to extract time-delay information from
all the interference paths, including those avoided in a stan-
dard RABBITT regime. We will show that while ionization
paths involving more than one IR photon become relevant
already at relatively low IR intensities, their effect can be
accounted for.

This work is organized as follows: Section II presents the
mathematical model we developed and its validation against
numerical simulation based on the well-known strong-field
approximation (SFA) formula [36]. In Sec. III we discuss the
effect of the IR intensity on the RABBITT phases and the
activation of higher-order interference paths, while in Sec. IV
we show how the model can be nonadiabatically extended to
include the effect of a finite IR pulse envelope. Finally, the last
section presents the conclusion.

II. MATHEMATICAL MODEL

Within SFA and in absence of atomic resonances [37,38],
the photoelectron spectra obtained by ionizing an atom of
binding energy Ip with an XUV pulse, Ex(t ), and an oppor-
tunely delayed IR pulse described by a vector potential AIR(t ),
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can be calculated as (atomic units are used hereafter) [36]:

S(ω, τ ) =
∣∣∣∣
∫ ∞

−∞
χ (t − τ )eiφ(p,t )eiIpt dt

∣∣∣∣
2

, (1)

where φ(p, t ) is the quantum phase acquired by the electron
emitted at the time instant t in the continuum due to the effect
of the IR field,

φ(p, t ) = −
∫ ∞

t

1

2
[p + AIR(t ′)]2dt ′, (2)

and the quantity χ (t ) is the temporal electron wave packet.
It is given by the inverse Fourier transform of the product
between the XUV spectrum, Ẽx(ω), and the dipole matrix
element which describes the transition from the ground state
to the continuum [39]. This latter can be expressed in terms of
the target photoionization cross-section amplitude σ (ω) and
phase ϕat (ω) [11,40], so that

χ (t ) = F−1{Êx(ω)σ (ω)eiϕat (ω)}. (3)

Since the phase acquired during photoionization from a noble
atom [41] is usually small when compared with the intrinsic
chirp of the harmonic radiation (so-called attochirp) [42],
∠{Êx(ω)} � ϕat (ω). Therefore, we can here consider only
the effect of σ (ω) and impose ϕat (ω) = 1 without losing
generality.

If the IR pulses are long enough for the slowly varying
envelope approximation (SVEA) to be valid, φ(p, t ) can be
expanded in a Fourier series [43] and the spectrogram of
Eq. (1) can be rewritten as [33,35]

S(ω, τ ) �
∣∣∣∣∣
∫ ∞

−∞
dtχ (t − τ )

∞∑
n=−∞

Jn(α, β )ei(ω′−nω0 )t

∣∣∣∣∣
2

, (4)

where α = −pE0(t )/ω2
0 and β = −Up(t )/2ω0. Here E0(t ) =

E0g(t ) is the IR field envelope, EIR(t ) = −dAIR(t )/dt =
E0(t ) sin(ω0t ) is the IR electric field, ω′ = p2/2 + Up(t ) + Ip

is the photoelectron energy shifted by the target ionization po-
tential and the instantaneous ponderomotive energy Up(t ) =
E2

0 (t )/(4ω2
0 ). Jn indicates the generalized Bessel function

of order n, given by sum of products of ordinary Bessel
functions Jj :

Jn(x, y) =
∞∑

j=−∞
Jn−2 j (x)Jj (y). (5)

For monochromatic XUV and IR fields [g(t ) = 1], Eq. (4)
expresses the probability to ionize an atomic initial state of
binding energy Ip, |0〉 = eiIptφ0(r), with the XUV radiation
and reach a Floquet (Volkov) state created by the IR field in
the continuum [43,44],

|ψV (t )〉 = e−iεt
∞∑

n=−∞
Aneinω0t |an〉, (6)

where |an〉 are normalized spatial function, while the Floquet
quasienergy ε and the Floquet ladder amplitudes An, are

FIG. 1. Cartoon describing the interference (middle) between
the Floquet ladder states associated with harmonic 31st (left) and
33rd (right) ionization in presence of a relatively strong IR field
(7 × 1011 W/cm2). Their coherent sum gives oscillating signals
where the two ladder spectrally overlap.

given by

ε = p2/2 + Up,

An = Jn

(
−p

E0

ω2
0

,− Up

2ω0

)
. (7)

In this framework, each term Jn in Eq. (4) is thus linked to
the probability to absorb or emit n IR photons, describing
the creation of sidebands (SBs) above and below the main
band (MB) associated with the direct XUV ionization into the
continuum [45] (Fig. 1). The SB amplitude is directly linked
to the amplitude of the Floquet ladder states created by the IR
in the continuum An and this holds also for IR pulses that last
only few optical cycles [35].

If we now assume that the XUV radiation is made of a
perfect comb of odd harmonics with identical Gaussian enve-
lope of width σe. The electron wave packet in the frequency
domain, χ̂ (ω), can then be written as

χ̂ (ω) =
∞∑

q=0
q,odd

Aqe− σ2
e
2 (ω−qω0 )2

eiϕq , (8)

where the quantities Aq and ϕq represent the spectral ampli-
tude and phase of each harmonic [Fig. 2(a)], already rescaled
by the target cross section σ (ω) (eventually including also the
target phase ϕat). By considering only the short trajectories
and neglecting any dependence over the radial profile, the
harmonic phase (i.e., the attochirp) can be estimated with the
following analytical formula [28]:

ϕq = γ

I

(
q − Ip

ω

)2

ω2, (9)

where γ = 1.03 × 10−18 s2 W/cm2 for all gas targets and
I is the laser intensity used to drive the harmonic gener-
ation (here set to 1014 W/cm2). The attochirp calculated
with Eq. (9) while considering harmonic generation in Ne
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FIG. 2. (a) Spectral amplitude (solid violet) and phase (dashed blue) of the electron wave packet generated by an attosecond pulse train
in Ne. Black solid and blue open circles respectively mark the amplitude, Aq, and phase, ϕq of each harmonic contribution. Schematic of
the mechanism that brings to the formation of the SB of even order k, and (b) the main band of odd order k (MBk), (c) considering up to
the multiple absorption of five IR photons. The violet vertical arrows indicate the ionization by a harmonic of order k + i. The red arrows
correspond to the absorption or emission of n IR photons coming from the nth Floquet ladder state, whose probability scales with Jn.

(Ip = 21.5646 eV), is displayed by the blue dashed curve in
Fig. 2(a).

If the bandwidth of each harmonic is narrow enough so
that the final electron momentum p can be substituted with
the central momentum pk of each spectral feature (k ∈ N, k =
q + n),

p → pk = √
kω0 − Up − Ip,

the quantity α does not vary significantly within the harmonic
bandwidth

α → αk = −pk
E0(t )

ω2
0

,

and the spectrogram of Eq. (4) becomes a sum of Fourier
transform:

S(ω, τ ) �
∣∣∣∣∣

∞∑
n=−∞

F{χ (t − τ )Jn(αk, β )e−inω0t }
∣∣∣∣∣
2

. (10)

Under the assumption of a long IR pulse it is possible to
factorize the time dependence in the generalized Bessel func-
tions of Eq. (10) through the approximation Jn(αk, β ) �
Jn(α0

k , β
0)g(t )|n|, where g(t ) = 1 is the IR pulse envelope, α0

k
and β0 are calculated using the peak field amplitude E0 [35].
From the properties of the Fourier transform, it follows that

F{Jn(αk (t ), β(t ))} → Jn
(
α0

k , β
0
)
δ(ω),

and the spectrogram of Eq. (4) can thus be written as the
coherent sum of replicas of the photoelectron spectrum,
weighted by the coefficients Jn and shifted in energy by n
IR photons:

S(ω, τ ) �
∣∣∣∣∣

∞∑
n=−∞

Jn
(
α0

k , β
0)χ̂ (ω′ − nω0)ei(ω′−nω0 )τ

∣∣∣∣∣
2

. (11)

Finally, making use of definition of Eq. (8), S(ω, τ ) can be
further rewritten has:

S(ω, τ )

�

∣∣∣∣∣∣∣∣
∞∑

n=−∞

∞∑
q=0

q,odd

Jn
(
α0

k , β
0
)

Aqe− σ2
e
2 [ω′−(q+n)ω0]2

eiϕq ei(ω′−nω0 )τ

∣∣∣∣∣∣∣∣

2

,

(12)

which corresponds to the coherent sum of all the Floquet
ladder states associated with each harmonic of order q. As the
intensity of the spectrogram around the final electron energy
ωk = p2

k/2 is given by the sum of all the addends which satisfy
q + n = k, the formulation above allows an easy derivation of
the expected harmonic MB and SB signals:

Sk (τ ) �

∣∣∣∣∣∣∣∣
∞∑

n=−∞
n,even or odd

Jn
(
α0

k , β
0
)
Ak−neiϕk−n e−inω0τ

∣∣∣∣∣∣∣∣

2

, (13)

where we have neglected the effect of the common harmonic
envelope and the phase term eiω′τ . The integer n has the
opposite parity of k. Odd values of k correspond to a MB
while even values to a SB. Using the complex definition of
the sinusoidal functions, Sk (τ ) can be rewritten as a sum of
cosines oscillating at even multiples of the IR frequency ω0.
If m is an even, integer number, the term oscillating at mω0 is
thus given by

S(m)
k (τ ) = 2

∞∑
n=−∞

n,even or odd

Jn
(
α0

k , β
0
)
Ak−nJn−m

(
α0

k , β
0
)

× Ak−n+m cos (mω0τ + ϕk−n+m − ϕk−n), (14)
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where n has the opposite parity of the chosen k. The above
formula allows us to predict the strength and phase of each fre-
quency component constituting the SB or MB signal. Since,
the sum of different cosine functions beating at the same
frequency can be rewritten as

∑
n

Bn cos (x + φn) = B cos (x + φ). (15)

The amplitude and phase of each oscillatory component of
Sk (τ ) is thus given by

B2 =
[ ∑

Bn cos (φn)

]2

+
[ ∑

Bn sin (φn)

]2

φ = atan2

(∑
Bn sin (φn),

∑
Bn cos (φn)

)
, (16)

where

Bn = Jn
(
α0

k , β
0
)
Ak−nJn−m

(
α0

k , β
0
)
Ak−n+m

φn = ϕk−n+m − ϕk−n. (17)

For a chosen value of m, the summation of Eq. (14) can
thus be rewritten as a single cosine whose amplitude and
phase depend on the harmonic strengths Ai and the probability
to exchange n IR photons at a given final electron energy
Jn(α0

k , β
0), i.e., the Floquet ladder state amplitudes An. Fi-

nally, if compared with a Fourier analysis of the SB signals,
we note that Eq. (14) gives a deeper insight as it disentangles
the cross-effect of the nth order excitation paths in each 2mω0

component.

A. Sideband signal

For even values of k, the summation in Eq. (13) runs over
the odd values of n and Sk (τ ) describes a SB signal [Fig. 2(b)].
It is given by the coherent sum of all the paths that lead to the
same final electron energy ωk . Therefore, besides the usual
paths in RABBITT, i.e., the absorption of an XUV photon of
energy (k + 1)ω0 and the emission of one IR photon (n = −1)
and the absorption of an XUV photon of energy (k − 1)ω0

and the absorption of one IR photon (n = 1), all the other
paths that involve a higher number of exchanged IR photons
(|n| > 1) are considered. The relative strength of each path is
determined by the relative harmonic amplitude Ak−n and the
amplitudes of the Floquet ladder states Jn(α0

k , β
0). The phase

of each frequency component of Sk can be evaluated with
Eq. (14) with n odd. It is worth noticing, that while Eqs. (16)
and (17) suggest that, in general, the oscillating components of
a SB depend on the IR intensity (through the terms Jn) and the
harmonic phase and strength (through the ϕi and Ai), at low IR
intensities Jn → 0 for |n| > 1, and the only photoionization
paths that survive are those framed by the blue dashed box
in Fig. 2(b). As a consequence, the SB signal is given by the
interference of the first positive and negative Floquet ladder
states of adjacent harmonics and it oscillates only with twice
the IR frequency. S(2)

k (τ ), calculated with Eq. (14), gives the
standard RABBITT formula

S(2)
k (τ ) = 2J1Ak−1J−1Ak+1 cos (2ω0τ + �ϕk ), (18)

where the oscillation phase corresponds to the difference be-
tween the phase of the adjacent harmonics �ϕk = ϕk+1 −
ϕk−1, regardless the exact IR intensity and harmonic strength.

The stronger the IR intensity the more interfering
paths do contribute to the total signal. As a result, more
terms compete to the definition of SB(2)

2q (τ ) [the colored
rectangles in Fig. 2(b) indicate all the interfering paths when
processes involving up to five IR photons are considered], and
the phase of the 2ω0 component of the SB depends on IIR and
the spectral properties of other neighboring harmonics.

B. Harmonic signal

Odd values of k and even values of n in Eq. (13) describe
an MB. Also in this case, the total signal is given by the
interference of different ionization paths and its frequency
components can be calculated with Eq. (14). At the low IR
intensity limit, Sk (τ ) [Fig. 2(c)] is proportional to J0 and it
does not oscillate, corresponding to what is expected in the
RABBITT model and perturbation theory. With increasing IR
intensity, the paths involving ladder states with |n| = 2 [J±2,
orange and green dashed boxes in Fig. 2(c)] become relevant
and the MB signal oscillates with 2ω0 as

S(2)
k (τ ) ∝ [J2Ak−2 cos (2ω0τ + �ϕ0,−2)

+J−2Ak+2 cos (2ω0τ + �ϕ2,0)], (19)

with �ϕi, j = ϕk+i − ϕk+ j . The 2ω0 component of Sk (τ ) thus
behaves as ∝ cos(2ω0τ + φ), where the phase φ contains
information on the phase difference between the chosen har-
monic and the adjacent ones, in a way that depends on the IR
intensity, the harmonic strengths, and the Floquet ladder state
amplitudes J±2:

tan (φ) = J2Ak−2 cos (�ϕ0,−2) + J−2Ak+2 cos (�ϕ2,0)

J2Ak−2 sin (�ϕ0,−2) + J−2Ak+2 sin (�ϕ2,0)
.

(20)

The higher the IR intensity, the stronger the Jn terms with
|n| > 2 become, and the more paths have to be included in the
summation of Eq. (14), to evaluate S(2)

k [the boxes in Fig. 2(c)
display the relevant paths considering Floquet ladder states
with |n| � 4].

C. Comparison with the strong-field approximation model

Figure 3(a) shows a portion of a RABBITT trace calculated
with the SFA formula of Eq. (1) assuming Ar as the atomic
target. The electron wave packet, χ̂ (ω), is the same as in
Fig. 2(a), generated in Ne with a linear attochirp obtained with
Eq. (9). The IR pulse is centered around 800 nm, has a full-
width half-maximum (FWHM) time duration of nine cycles
(9Tc � 24 fs) and a peak intensity, IIR = 9 × 109 W/cm2. The
horizontal lines in the left panel of Fig. 2(a) correspond to
the direct harmonic ionization, i.e. the MBs, while the weaker
oscillating signals in between, visible only in the saturate
colormap of Fig. 2(a) (right panel), are the SBs. To extract
the SB and MB oscillation phase delay we integrated the
spectrogram in a 0.4-eV-wide energy window centered around
the nominal transition values. To minimize the effect of the
finite IR envelope the resulting delay-dependent signal is fit
with a function of the form a cos(2ω0τ + b) while considering
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FIG. 3. (a) On the left: portion of a RABBITT trace simu-
lated with the SFA formula of Eq. (1) and an IR intensity IIR =
109 W/cm2. On the right: same trace with saturated colors, showing
the oscillating SB signals. The blue(black) open circles mark the SB
(MB) delay τSB (τMB) extracted with a sinusoidal fit performed in
the range [−Tc, Tc]. (b) Comparison between the SB phase delay
extracted from the SFA simulations in panel (a), black open circles,
and the prediction of the Floquet-based model of Eq. (14), red full
dots. (c) Comparison between the MB phase delay as simulated with
SFA (open blue circles) and calculated with the Floquet-based model
(full orange dots).

only the delay range τ ∈ [−Tc, Tc]. The phase delay of the
2ω0 component is then given by τi = b/2ω0 with i = SB or
MB. The result for the SB signal, τSB, is marked by the black
open circles in Fig. 3(b), while the MB phase delay, τMB, is
shown by the blue open circles in Fig. 3(c).

The SB phase delays extracted from the SFA calculations
are compared with the prediction of Eq. (14) [Fig. 3(b), red
dots] showing a nice agreement. Due to the relatively low
IR intensity, only the terms that depend on J±1 survive in
Eq. (14) and τSB can be fully explained with the standard
RABBITT formula [Eq. (18)], which accounts only for one-IR
photon processes. This underlines that, in this regime, the
standard RABBITT analysis of the SB signals will produce
the correct phase delays. Figure 3(c) compares τMB as ex-
tracted from the SFA calculations of Fig. 3(a) (open blue
circles) with the prediction of Eq. (14) (orange dots). At
these low IR intensities, only the paths governed by J0 and
J±2 are relevant. As a result, the simulated τMB can be fully
reproduced with Eq. (19), proving that the MB oscillation
comes from the interference of ionization paths that involve

the simultaneous absorption of two IR photons. This result
validates the model of Eq. (14) for low IR intensities, suggest-
ing a way to disentangle congested RABBITT traces where
SBs and MBs of diverse order may energetically overlap
[17,46–49]. We note that the possibility of accounting for the
amplitude of the oscillations and the phase of the MB signals
goes beyond the standard RABBITT treatment, already at
these low IR intensities.

III. DEPENDENCE ON THE INFRARED INTENSITY

The model introduced in Sec. II allows us to investigate
the effect of high-order IR processes (i.e., associated with the
interference of ladder states with |n| > 2) in shaping the SB
and MB phases. Figure 4(a) shows a portion of a RABBITT
trace calculated as in Fig. 3(a) but for IIR = 1011 W/cm2, a
typical value used in RABBITT experiments [3]. Besides a
stronger SB signal, also the MBs display clear oscillations
in this case. The phase of this latter [open blue circles in
Fig. 4(c)] can be fully reproduced with Eq. (19) [orange dots
in Fig. 4(c)], showing that the MB oscillations originates from
the interference of transitions with n = 2. The SB phase
delay, [black open circles in Fig. 4(b)] starts instead to deviate
from the RABBITT formula of Eq. (18) (green dotted curve).
The difference between the two (gray open diamonds, right
vertical axis) is of the order of few tens of attoseconds and can
be recovered by including the terms with |n| = 3 in Eq. (14)
and using Eqs. (16) and (17) to extract the phase delay [red
and light-blue dots in Fig. 4(b)]. We note that this delay dif-
ference expresses the error that one would make by analyzing
the spectrogram with a standard RABBITT approach. Even
if, at these intensities, the error is of the order of tens of
attosecond, it could be not negligible when evaluating small
photoemission delays.

The higher IIR the stronger the contribution of high-order
Floquet ladder states and the more the phase delay of the 2ω0

oscillations deviates from the RABBITT formula of Eq. (18).
Figure 4(d) shows a portion of RABBITT trace calculated
with an IR intensity of 7 × 1011 W/cm2. The SB and MB
signals oscillate with more than one frequency component.
Moreover, τSB and τMB [open markers in Figs. 4(e) and 4(f)]
deviate from what predicted by Eqs. (18) and (19) [green
dotted curve in Figs. 4(e) and 4(f)]. While the behavior of
τMB can be explained by including 4-IR-photon processes in
Eq. (14), n up to five has to be considered in the summation in
order to recover the correct τSB.

The difference between the phase delay extracted from the
SFA calculations and what predicted by Eqs. (18) and (19)
gives a direct insight on the growing effect of IR multiphoton
transitions (high-order Floquet ladder states) and the possible
error introduced by applying the standard RABBITT analysis.
The full dots in Fig. 5 present the difference between the
SFA results and Eqs. (18), named �τSB [Fig. 5(a)], and the
difference between the SFA results and (19), �τMB [Fig. 5(b)],
for different values of the IR intensity in the range between
109 and 1012 W/cm2. The colored surface represent the same
quantity as calculated with the analytical model of Eq. (14).
Despite the relatively high IR intensity challenges some of the
approximations upon which the model is based, we found it
to nicely reproduce �τSB and �τMB in the whole range under
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(a)

(d) (e) (f)

(c)(b)

FIG. 4. (a) Portion of a RABBITT trace simulated with the SFA formula of Eq. (1) and an IR intensity IIR = 1011 W/cm2. The blue (black)
open circles mark the SB (MB) delay τSB (τMB) extracted with a sinusoidal fit performed in the range [−Tc, Tc]. [(b), (c)] Comparison between
the phase delay extracted from the SFA simulations in panel (a), open circles, and the prediction of the Floquet-based model of Eq. (14),
full dots, for the SB and MB signals, respectively. The open gray diamonds in panel (b) represent the deviation of the SFA results from the
RABBITT model which accounts only for single-IR-photon processes (green dotted curve). This difference can be predicted with the model
of Eq. (14) by including 3-IR-photon processes (J±3, full light-blue dots). [(d)–(f)], Same as in panels [(a)–(c)] but for IIR = 7 × 1011 W/cm2.
In this case a small deviation from the low-intensity regime of Eq. (19) [J±2, green dotted curve in panel (f)] is observed also in τMB because
of 4-IR-photon interactions (J±4).

consideration. This is true not only for the 2ω0 component, but
also for the other frequency components, described by m > 2
in Eq. (14).

The results reported in Fig. 5 show that the deviation from
the low intensity limit (i.e., the standard RABBITT regime)
can be important (up to hundreds as for IIR ≈ 1012 W/cm2).
Moreover, as three-photon processes are enough to cause a
nonzero �τSB while four-photon processes are necessary for
�τMB, the SB phase delay deviates earlier from the expected
RABBITT phase. As a rule of thumbs, if no 4ω0 is observed
the spectrogram is considered to be in the standard RABBITT
regime where only the first-order Floquet ladder states con-
tribute. Each column in the color plot of Fig. 6 corresponds
to the total spectral power of all SBs and MBs composing a
RABBITT trace for a given IIR. At a fix intensity, this is eval-
uated by performing a line-by-line Fourier transform of the
SFA spectrogram along the delay axis, followed by a sum of
the square modulus along the electron energy axis. A nonzero
4ω0 component is observed at the IR intensity used for the
calculations in Fig. 4(d) (vertical black dashed line in Fig. 6)
confirming that one could use a simple argument to predict a
deviation from the RABBITT regime in this case. At the IR
intensity used for the calculations of Fig. 4(a) (vertical orange
dashed line in Fig. 6), instead, no appreciable 4ω0 component

is observed in the total power spectrum. Nevertheless, both the
results of Figs. 4(a) and 5(a) show that the effect of the high-
order processes cannot be neglected. Indeed, we found that
�τSB �= 0 already for IIR ≈ 1011 W/cm2, while �τMB differs
from zero for about IIR ≈ 3 × 1011 W/cm2. This underlines:
(1) a higher sensitivity of the 2ω0 phase delay to the presence
of multiphoton IR paths, proving that a simple argument based
on the presence of higher components in the SB spectral
power is not always enough, and (2) that the applicability
of the standard RABBITT formula at moderate IR intensities
(≈1011 W/cm2) may not be always justified, especially if the
focus of the experiment is on small photoemission delays.

It is important to stress that the exact magnitude and
energy-dependence of �τSB and �τMB do not only depend
on the IR intensity, but also on the exact spectral shape of the
harmonic radiation (ϕi) and the spectral harmonic strengths
(Ai). A nonlinear XUV chirp (caused for example by different
focusing of the harmonics or by the transmission through a
metallic filter) can produce a non-negligible �τSB at lower IIR.
Finally, since amplitude of the Floquet ladder states scales as
Jn(α0

k , β
0) with α0

k = −pkE0/ω2
0, the actual final photoelectron

momentum also affects the strengths of the transitions. As
a result, the higher pk , the lower the IR intensity needed to
activate high-order processes. It follows that the error intro-

013117-6



FLOQUET INTERPRETATION OF ATTOSECOND RABBITT … PHYSICAL REVIEW A 108, 013117 (2023)

(b)

(a)

FIG. 5. (a) Difference between the phase delay of the 2ω0 com-
ponent of the SB signal extracted from the SFA calculations and the
phase delay expected from processes that involve only the absorption
or emission of one IR photon [classical RABBITT phase delay,
Eq. (18)]. The black dots are extracted from the SFA numerical
simulations as a function of the SB energy and the IR intensity. The
colored surface, projected in false colors onto the xy plane, represents
the prediction of the Floquet-based analytical model, Eqs. (16) and
(17). (b) Difference between the phase delay of the 2ω0 component
of the MB signal extracted from the SFA calculations and the phase
delay expected from processes that involve only the absorption or
emission of two IR photons [Eq. (19)]. The blue dots are extracted
from the SFA numerical simulations. The colored surface, projected
in false colors onto the xy plane, represents the prediction of the
Floquet-based analytical model.

duced by evaluating the SB phase delays with the standard
RABBITT formula can be relevant also at the moderate IR
intensities, routinely used in real experiments.

IV. EFFECT OF THE FINITE PULSE ENVELOPE

The model presented in the previous sections is developed
for the case of long IR pulses which can be considered to be
almost monochromatic. Nevertheless, RABBITT experiments
are at times performed with relatively short pulses (10–20 fs)
where the IR envelope E0g(t ) may have an influence. Given
the dependence on IIR discussed in Sec. III, we expect that
for high peak intensities, both the spectral components of an

FIG. 6. Sum of the spectral power of the MB and SB signals
composing a RABBITT trace as a function of the IR peak intensity
IIR. Each column is normalized by the intensity of the 2ω0 compo-
nent. The dashed orange and black lines mark the intensities used for
the traces reported in Figs. 4(a) and 4(d), i.e., 1 and 7 × 1011 W/cm2,
respectively. While at low IR intensities, only a peak at 2ω0 is
present, components that oscillate at higher even multiples of ω0

become appreciable for IIR � 5 × 1011 W/cm2.

SB or MB signal and their phase delay will change along
the RABBITT trace following the instantaneous IR intensity
profile. To investigate this phenomenon we extracted the delay
profile of S36(τ ) by integrating the spectrogram of Fig. 4(d) in
a 0.4-eV-wide window centered at 34.3 eV (nominal value of
the electron kinetic energy). The resulting signal is multiplied
with a rectangle of width equal to an IR optical period (Tc)
prior being fit with a function of the form

f (τ ) =
3∑

i=1

ai cos (2iω0τ − bi ).

The resulting amplitudes (ai) and phases (bi) extracted with
this fitting procedure while sliding the rectangular window
across the entire delay axis are displayed with the colored
curves in Figs. 7(a) and 7(b), respectively. The error bars
indicate the confidence interval of the fits. At relatively big
negative and positive delays, when the local IR intensity is
weak, the S36(τ ) oscillates with a 2ω0 component (dark blue
curves) whose phase can be predicted by Eq. (14) considering
only those transitions that involve the exchange of a single
IR photon [J±1, red dashed line in Fig. 7(b)]. The lower the
modulus of the delay, |τ |, the stronger the local IR intensity
and the SB signal exhibits a growing 4ω0 (orange curves) and
6ω0 (yellow curves) components which peak at τ = 0 fs. As
a result, the terms with |n| > 1 cannot be neglected in the
computation of S(2)

36 (τ ) and its phase changes, mostly because
3-IR photon processes [J±3, green dashed line in Fig. 7(b)],
reaching the expected value (J±5, light-blue dashed line)
around delay zero. One way to investigate the evolution of the
spectral amplitudes and phase within the IR pulse envelope is
to compute the Fourier transforms of Eq. (10) while including
the explicit time-dependence of the Jn through αk and β.
Nevertheless, an analytical solution is possible only if the IR
pulse envelope can be described by a well-behaving function
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(b)

(a)

FIG. 7. (a) Amplitude of the different frequency components
extracted from the sideband of order 36 (electron energy about
34.3 eV), generated with IIR = 7 × 1011 W/cm2 [same as Fig. 4(d)].
The amplitudes extracted from the SFA data as described in the main
text are reported with the colored curves. The error bars represent
the confidence interval of the fitting procedure used. The full black
curves represent instead the prediction of the Floquet-based model
which accounts for the instantaneous IR intensity. (b) Phase of the
different spectral components of SB36 as extracted from the SFA
calculations (colored curves with error bars). The solid black curves
represent the prediction of the Floquet-based model. The dashed
lines mark the phase expected for the 2ω0 component when processes
involving the simultaneous absorption or emission of 1 (J±1 in red),
3 (J±3 in green), and 5 (J±5 in light-blue) are considered.

(e.g., a Gaussian bell) for which the integrals can be solved.
A less rigorous approach consists in substituting α0

k and β0 in
Eq. (14) with the same quantities calculated using the local
IR envelope amplitude: αk (τ ) = α0

k g(τ ) and β(τ ) = β0g(τ )2.
The results, plotted in Fig. 7 as solid black curves, nicely
follow the delay-dependence of both amplitude and phase of
the different frequency components of the SB signal. Despite
the crude nonadiabatic approximation, if the IR intensity is
not too high (i.e., IIR � 1012 W/cm2) our model is thus able
to correctly predict the evolution of the SB and MB signals
along the spectrogram.

V. CONCLUSION

Starting from the SFA description of the two-color spec-
trogram generated by attosecond radiation and fs IR pulses,

we have developed an alternative formulation based on the
Fourier decomposition of the IR-dependent phase term. In
case of relatively long IR pulses (quasimonochromatic), this
allowed us to show that the spectrogram originates from the
interference of Floquet ladder states of the continuum (Volkov
states) or, equivalently, from the interference of replicas of
the attosecond radiation spectrum shifted in energy by integer
multiples of the IR photon. If the attosecond radiation is in the
form of a train of pulses, the spectrogram is composed by dis-
crete peaks, SBs and MBs, whose amplitude oscillates along
the delay axis. The model we propose allows an analytical
derivation of those signals, which assume the form of a sum
of cosine functions, oscillating with even multiples of the IR
frequency ω0. Our results show that both the amplitude and
phase of the different frequency components depend on the
spectral properties of the XUV radiation, the IR intensity and
the electron final momentum. We have tested the prediction of
the model against SFA numerical simulations, proving its ca-
pability to describe the amplitude and phase of the oscillations
in an IR intensity range between 109 and 1012 W/cm2.

At the weak IR limit (IIR < 1011 W/cm2), in agreement
with second-order perturbation theory at the basis of the
well-known RABBITT model, the SBs are given by the in-
terference of two-color ionization paths involving only one IR
photon. As a result, the SB phase delay depends only on the
phase of the adjacent harmonics and not on their amplitude.
At higher IR intensities, ionization paths involving Floquet
ladder states with |n| > 2 become relevant affecting both the
amplitude and phase of the SB oscillations. Interestingly, we
found this to produce a deviation from the RABBITT model
already for IR intensities of the order of 1011 W/cm2 where
a simple inspection of the SB power spectrum will reveal no
appreciable high-frequency components. Being of the order of
few tens of as, the effect of the additional interfering paths is
not relevant if RABBITT is used to reconstruct the average at-
tosecond pulse in the train, but it can hinder a proper retrieval
of small photoemission delays if not properly accounted for.

Since the phase delay of the MBs always depends on
the strength of both the involved harmonics and IR induced
transitions, these signals are usually ignored in a RABBITT
analysis. Our model provides an analytical expression to eval-
uate the amplitude and phase of the MBs, showing that they
contain valuable information on the harmonic phase. The
availability of an analytical prediction for the MB signals is
important because (i) it allows their analysis, increasing the
statistics and robustness associated with a standard RABBITT
trace, and (ii) it proves crucial for case of congested traces
generated by ionizing a molecular target characterized by
more then one initial state. Indeed, in this condition, often SBs
and MBs of different order and different initial state overlap
in final energy. The total electron yield is given by their inco-
herent sum, hindering a direct evaluation of the RABBITT
phase delay. If combined with a proper calibration of the
IR intensity at target and an accurate measurement of the
XUV-only photoelectron spectrum (to get the Aq), the model
we proposed can be used to perform a simultaneous nonlinear
fit of the spectrogram and disentangle overlapping SB and
MB signals, thus extending the applicability of RABBITT to
congested traces.

Finally, we show that a nonadiabatic extension of the
model can be used to correctly retrieve the phase and am-

013117-8



FLOQUET INTERPRETATION OF ATTOSECOND RABBITT … PHYSICAL REVIEW A 108, 013117 (2023)

plitude of the spectral components of SB and MB signals
also for the case of finite IR pulses. While the results and
analytical formulas here presented are strictly valid within
the SFA approximation and under the assumption of a pure
free-electron final state (Volkov wave), the general approach
can be applied to all those cases where the electron final state
is dressed by the IR field so that the related wave function can
be expanded in Fourier series following the Floquet theory.
The mathematical formulas will depend on the exact problem
under scrutiny, but their interpretation in terms on interference
of Floquet ladder state will still hold.

By describing RABBITT traces from a different perspec-
tive, our results not only allow an interpretation of RABBITT
phase delays, including higher-order effects, but they also set
the basis for the extension of the technique to congested spec-
trograms and higher IR intensities. While this latter regime

is normally avoided, our work shows that it may be worthy
to explore as a deviation from the presented model can be
ascribed to IR-induced modifications of photoemission itself,
possibly suggesting new ways to gain optical control on this
fundamental process on sub-fs timescales.
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