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By numerically solving the three-dimensional time-dependent Schrödinger equation, we have studied the
energy- and angle-resolved time delay in H2

+ photoionization using the reconstruction of attosecond beating
by the interference of two-photon transition (RABITT) technique. Around the electron energy of Ec ∼ 1.4
a.u., the RABITT time delay varies significantly with the energy and emission angle. The time delay changes
from positive values to negative values as the increasing energy and emission angle. We have applied the
spheroidal wave analysis to reveal this interesting time delay. By analyzing the time-delay dependent modulation
of the anisotropic parameters, the energy and angle dependence of the time delay is well interpreted from the
perspective of spheroidal wave interference. It shows that the Cooper-like minimum of a p spheroidal wave is
responsible for this sign change of the RABITT time delay.
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I. INTRODUCTION

Photoionization of atoms and molecules is one of the most
fundamental processes in attosecond science and it can be
considered as a half-scattering process where the electron
only moves out of the atoms and molecules [1]. The released
electron wave function accumulates phase during its escape
from atomic and molecular potentials, the energy derivative
of which is defined as the Wigner time delay [2–4]. It en-
codes molecular structure [5,6] and electron dynamics [7,8]
information. Measurement of this time delay has attracted in-
creasing interest in the attosecond community. The generation
of isolated attosecond pulses [9] and the coherent attosecond
pulse train (APT) [10] enabled the attosecond time delay
measurement. Using a pump extreme-ultraviolet (XUV) APT
assisted by a probe infrared (IR) laser pulse, the reconstruction
of attosecond beating by interference of two-photon transi-
tion (RABITT) technique has been applied in various noble
gases, both theoretically and experimentally [7,8,11–14]. For
instance, the time delay difference between the electrons emit-
ted from the 3s and 3p subshell of argon atom has been
measured from the angle-integrated photoelectron spectra [7].
The time delay in shake-up ionization has been revealed with
RABITT [8]. Moreover, the angle-resolved time delay has
been explored with the RABBIT technique [15–25]. By fitting
the anisotropy parameters from the momentum distribution of
the sidebands, the time delay of different partial waves was
successfully extracted [23–26].

In molecules, the complicated structure gives rise to
additional interesting phenomena of time delay in photo-
nionization and it has attracted a considerable amount of
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effort [5,6,27–33]. The attosecond time delays for single-
photon ionization of homonuclear and heteronuclear diatomic
molecules was presented [28]. Molecular stereo Wigner time
delay has also been measured by the orientation- and energy-
resolved experiments [5]. Apart from the anisotropic time
delay in molecular photoionization, of particular interest is the
time delays around shape resonance [32–36] or Cooper mini-
mum, where the time delay changes significantly and it carries
electron correlation and internal structure information [31].
With the time-independent R-matrix approach, molecular RA-
BITT time delays of various molecules were calculated and
the effects of partial-wave interference and shape resonances
were analyzed [32]. The time delay near the shape reso-
nance has been widely measured with the RABBIT technique
[33–35], while the time delay around the Cooper minimum
has been less explored [37–39]. Recently, time delays between
3s and 3p subshells of argon atom over a large energy range
covering the Cooper minima in both subshells was investi-
gated and the sign change of the time delay was observed
[39]. The atomic Cooper minimum is attributed to the nodal
structure of the radial bound wave function [40]. Regarding
photoionization in diatomic molecules, the Cooper-like min-
imum (CM), which instead owes to the angular bound wave
function from the perspective of partial spheroidal waves in
the prolate spheroidal coordinate [41,42], occurs more gener-
ally. The partial spheroidal waves view of the photoionization
is a counterpart picture of the two-center interference as pro-
posed by Cohen and Fano [43,44]. The partial spheroidal
wave method has wider applications in diatomic molecule
photoionization [45] and nuclear vibrations [46]. Two pictures
are consistent at the high-energy regime, where the two-center
interference minima correspond to the minima of different
partial spheroidal wave cross sections [42]. Recently, the two-
center interference induced oscillation of the time delay in
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a photoionization diatomic molecule has been theoretically
predicted [47] and experimentally observed [47,48].

In this work, we applied the partial spheroidal wave
analysis of the time delay in molecular RABITT. First, we
employed the partial spheroidal wave method to describe
the angular distribution in single-photon ionization of H2

+
at a low-energy region, where the p-spheroidal wave shows
the Cooper-like minimum. Then, we studied the energy- and
angle-resolved time delay around this minimum using the
RABITT technique. The time delay varies abruptly as a func-
tion of the photoelectron energy and the emission angle. This
energy and angle dependence of the time delay are well
interpreted from the point of spheroidal wave interference.
Previous studies have focused on the angle-resolved time de-
lay in molecular RABITT, which is attributed to the geometry
property of the molecules and qualitatively described by the
two-center model [47,48]. With the spheroidal wave method,
similar to the partial wave method in atomic photoionization,
one is able to describe the angle-resolved time delay in di-
atomic molecular photoionization where the two-center model
fails.

This paper is organized as follows. The numerical methods
are given in Sec. II, where we briefly describe the numerical
solution of the three-dimensional time-dependent Schrödinger
equation (TDSE) and the partial spheroidal wave in the prolate
spheroidal coordinate for the diatomic molecule. In Sec. III,
we first introduce the spheroidal wave method to explain the
angular distributions in single photon ionization. Then, the
energy- and angle-resolved time delay around the CM is pre-
sented and explained from the perspective of spheroidal wave
interference. Conclusions are presented in Sec. IV. Through-
out this paper, atomic units (a.u.) are used unless otherwise
noted.

II. NUMERICAL METHODS

A. Three-dimensional time-dependent Schrödinger equation

The photoelectron momentum distributions (PEMD) are
obtained by numerically solving the three-dimensional TDSE
of hydrogen molecule ion H2

+. It reads

i
∂ψ (r, t )

∂t
= H (r, t )ψ (r, t ), (1)

where the Hamiltonian in velocity gauge within the dipole
approximation is

H (r, t ) = − 1
2∇2 + V (r; R) − iA(t ) · −→∇ (2)

and
−→∇ is the gradient operator. Here V (r; R) is the molecular

potential. The nuclei of H2
+ are fixed at z-axis z = ±R/2

with the internuclear distance R = 1.4 a.u. A(t ) = ẑ[AIR(t ) +
AAPT(t )] is the total vector potential polarized along the z axis.
The vector potential of the IR laser field is

AIR(t ) = Ai cos2

(
π (t − τ )

τi

)
cos[ω(t − τ )], (3)

where Ai is the peak amplitude, ω = 0.1 a.u. is the IR fre-
quency, and τi = 16T is the IR pulse duration with T =
2π/ω. τ is the time delay between the APT and IR laser
pulses ranging from 0 to T separated by T/40. The vector

potential of APT is represented as the sum of 17 attosecond
pulses separated by T/2

AAPT(t ) =
8∑

n=−8

An exp

[
−2 ln 2

(
t − nT/2

0.05T

)2
]

× (−1)n cos[Ncω(t − nT/2)], (4)

where the APT envelope is An = Aa exp[−2 ln 2(t/4T )2] and
Nc = 29 is the center harmonic order. The peak intensities
of IR and APT pulses are 5 × 1011 and 5 × 1013 W/cm2,
respectively.

The 3D-TDSE in Eq. (1) is solved by the finite-element
discrete variable representation method [49] in the spherical
coordinate and the details of numerical solution have been
given in our previous works [50,51]. The molecular potential
V (r; R) for the nuclei-electron interaction is represented by
the single-center method [52] and expanded up to maximum
angular quantum number lmax = 10. The maximum box size
for the radial coordinate is 80 a.u. and an absorbing mask
function is employed with a radius of 30 a.u. At the end
of the laser pulse, the wave function propagates under the
field-free Hamiltonian for four additional optical cycles of the
IR laser pulse to collect the slow electrons. The outer part
of the wave function propagates under Volkov Hamiltonian
until the end of the laser pulse. The ionization amplitudes
are obtained by projecting the outside wave function on the
set of scattering states of helium ion He+ at each time step.
The convergence of our calculations has been confirmed by
changing the simulation parameters.

B. One-electron two-center problem

To understand to angular distribution of the photoelec-
tron and the energy and emission-angle dependence of the
RABITT time delay in the TDSE calculations, we ana-
lyze the results in the prolate spheroidal coordinate. For the
one-electron two-center Coulomb problem, the Schrödinger
equation is written as[

−1

2
∇2 − Z1

r1
− Z2

r2

]
ψk(r; R) = Ekψk(r; R), (5)

where Ek = k2/2 is the electron energy and r1 and r2 are the
distances between the electron and two nuclei, respectively.
The prolate spheroidal coordinate (ξ, η, φ) is introduced as
[53]

ξ = (r1 + r2)/R (ξ � 1),

η = (r1 − r2)/R (−1 � η � 1),

φ = φ (0 � φ < 2π ). (6)

In this coordinate the solutions of Eq. (5) are separable and
expressed as [54–57]

ψkmq(ξ, η, φ; R) = Xmq(ξ, k)Smq(η, k)
exp(imφ)√

2π
. (7)

Here, m is the magnetic quantum number and q is the an-
gular quantum number, which represents the node number of

013112-2



SPHEROIDAL-WAVE ANALYSIS OF TIME DELAY IN … PHYSICAL REVIEW A 108, 013112 (2023)

FIG. 1. (a)–(c) PEMDs for single-photon ionization by the XUV
laser pulses with the frequencies of 1.7, 2.7, and 3.7 a.u., respectively.
(d) The angular distributions of photoelectron with the emission
angle ranging from 0◦ to 90◦. The peak laser intensities and the
internuclear distance R are fixed at 5 × 1012 W/cm2 and 1.4 a.u.,
respectively.

the angular spheroidal functions Smq. The angular and radial
Coulomb spheroidal functions follow:

[
d

dη
(1 − η2)

d

dη
+ R1η − c2η2 − m2

1 − η2
+ Amq

]
Smq = 0,

(8a)[
d

dξ
(ξ 2 − 1)

d

dξ
+ R2ξ + c2ξ 2 − m2

ξ 2 − 1
− Amq

]
Xmq = 0,

(8b)

respectively. Here R1 = R(Z2 − Z1), R2 = R(Z2 + Z1), and
c = kR/2. In our calculations, Z1 = Z2 = 1 for H2

+. The sep-
aration constant Amq is obtained by the Killingbeck method
[58] and then the angular wave functions Smq(η) are calculated
by the expansion of associated Legendre polynomials (see
Appendix 1 for more details) [57]. The radial wave func-
tions Xmq(ξ ) are solved by means of the direct integration of
Eq. (8b) for intermediate values of the variable ξ [57]. The
scattering state has the form



(−)
k (r) =2π

k

∞∑
m=−∞

∞∑
q=|m|

iqe−i�mq Smq(cos θ, k)

× Xmq(ξ, k)Smq(η, k)
exp[im(φ − φe)]

2π
, (9)

where �mq is the scattering phase shift.

III. RESULTS AND DISCUSSIONS

A. Energy dependent angular distribution
in single-photon ionization

Figures 1(a)–1(c) show the photoelectron momentum dis-
tributions in the polarization plane by single XUV photon
ionization with frequency ωX = 1.7, 2.7, and 3.7 a.u., re-
spectively. For the low-energy case in Fig. 1(a), the PEMD
presents two-lobe structure like a p wave. While for the high-
energy cases in Figs. 1(b) and 1(c), the PEMDs show the
six-lobe structure like an f wave. The corresponding angular
distributions (obtained by integrating over the radial momen-
tum) are given in Figs. 1(d). Only the angular distributions
with the emission angle ranging from 0◦ to 90◦ are shown
for symmetry reason. Note that the angular distributions of
ωX = 2.7 (orange dash-dotted line) and 3.7 a.u. (green dashed
line) are slightly different. The position of the minimum is
located at larger angle for ωX = 3.7 a.u. Additionally, the pho-
toelectron yield at the minimum for ωX = 2.7 a.u. approaches
zero, while for ωX = 3.7 a.u. the yield is higher around the
minimum.

The angular distributions can be explained from the
perspective of partial spheroidal waves. The single-photon
transition amplitude is written as

M (1)
�k = 〈
 (−)

k |ẑ|ϕ0〉 =
∑

q

(−i)qei�q Sq(k̂)TEq, (10)

where TEq is the partial transition amplitude

TEq =
∫

ψEq(ξ, η, φ)ẑϕ0(ξ, η, φ)dV. (11)

Here, the volume element is dV = ( R
2 )3(ξ 2 − η2)dξ dη dφ

and the dipole operator ẑ = R
2 ξη. The angular and radial parts

of ground state ϕ0, with the ionization potential Ip = 1.29 a.u.,
are available by the Miller’s algorithm [59]. In Eqs. (10) and
(11), the index m is neglected for simplicity since the magnetic
quantum number is conserved with m = 0. The single-photon
ionization photoelectron angular distributions are described
by I (1)(k, θ ) ∝ |M (1)

�k |2.
For the lack of spherical symmetry in molecular poten-

tial, more spheroidal waves contribute to the final angular
distributions in molecular one-photon photoionization. Due
to the up-down symmetry of H2

+ ground state, only those
spheroidal waves of odd parity in Eq. (10) contribute to the
final angular distributions. The partial transition amplitudes
in Eq. (11) of the lowest odd spheroidal waves (q = 1, 3, 5)
are presented in Fig. 2(a), where the p and f (q = 1, 3)
spheroidal waves dominate and the contribution of the higher-
order (q = 5) spheroidal wave is negligible for the parameters
in our calculations. In Fig. 2(a), the transition amplitude of
the f -spheroidal wave changes slightly as the photoelectron
energy increases, while the transition amplitude of the p-
spheroidal wave varies much more rapidly and changes sign
at about energy Ec = 1.45 a.u., which is similar to the atomic
Cooper minimum, mentioned as the Cooper-like minimum
(CM). Three vertical dashed lines in Fig. 2(a) indicate the
energies corresponding to Figs. 1(a)–1(c), respectively. The
angular distribution Sq of the p and f spheroidal waves at
these energies are shown in Figs. 2(b) and 2(c). The angular

013112-3



KE, ZHOU, LIAO, LI, LIU, AND LU PHYSICAL REVIEW A 108, 013112 (2023)

FIG. 2. (a) Partial wave transition amplitudes TEq as a function
of photoelectron energy. The three vertical dashed lines from left to
right correspond to the electron energies in Figs. 1(a)–1(c), respec-
tively. The mainband order are also labeled at the top. Figures (b) and
(c) are the angular spheroidal function of S1 and S3 at E = 0.4, 1.4,
and 2.4 a.u. The angular part of bound state (dark-blue dashed line) is
also shown in (b). The inset in (c) shows the square of S3 for E = 1.4
a.u.

part of the ground state (q = 0) is also shown in Fig. 2(b).
The inset figure in Fig. 2(c) presents the square of S3 for
E = 2.4 a.u.

From Fig. 2(a), the p-spheroidal wave dominates at the low
energy in Fig. 1(a). In Fig. 1(b), where the transition ampli-
tude of the p-spheroidal wave is approximately zero and thus
only the f -spheroidal wave matters, the angular distribution
in Fig. 1(d) shows a minimum around 40◦, which is almost
the same as the inset figure in Fig. 2(c). At higher energy in
Fig. 1(c), the transition amplitude of the f wave is twice as
large as that of the p wave. The interference of the p and f
partial waves results in the minimum shifting to the value large
than 40◦ and meanwhile the nonzero yield at the minimum, as
shown in Fig. 1(d).

B. Time delay in RABITT

In Fig. 3(a), we display the angle-resolved photoelectron
spectrum ionized by the APT and IR laser pulses with the
time delay τ = 0 and the corresponding angle-integrated pho-
toelectron energy spectrum is presented in Fig. 3(b). The
electron absorbs one XUV photon, reaching the mainbands
(MB), and subsequently absorbs or emits one IR photon,
reaching and interfering at the sidebands (SB). The SB orders
are labeled at the right side of Fig. 3(b). The angle-integrated
and angle-resolved SB yields exhibit the cosine modulation as
a function of the APT/IR time delay τ . Note that the angle-
resolved SB yields at each delay τ are obtained by integrating

FIG. 3. (a) Angle-resolved PEMD at the APT/IR time delay τ =
0. (b) The angle-integrated photoelectron energy spectrum of (a). The
sideband orders are labeled at the right side.

over a small energy range [shadow regions in Fig. 3(b)]. The
oscillation of the SB yield as a function of the APT/IR delay
τ can be written in general form

I (E , θ, τ ) = A(E , θ ) + B(E , θ ) cos[2ω(τ − δτ )]. (12)

By fitting the photoelectron yield at each SB with Eq. (12),
the energy- and angle-resolved RABITT time delay δτ (E , θ )
is extracted, as presented in Figs. 4(a) and 4(b). In Fig. 4(a),
the energy-resolved time delay is positive at lower energy

FIG. 4. (a) Angle-integral and (b) angle-resolved RABITT time
delay. The vertical dashed line in (a) indicates the CM energy.
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FIG. 5. Photoionization schematic diagram of H2
+. Starting

from the ground state (q = m = 0), the electron absorbs one XUV
photon reaching the MBs and subsequently exchanges an IR photon
reaching the SBs. The numbers at the right side are the angular and
magnetic quantum number (q, m). The positive or negative signs
behind represent absorption or emission of an IR photon to reach the
SB. The related MB and SB orders are labeled at the left side. The
Cooper-like minimum of a p-spheroidal wave locates slightly above
MB27.

and turns negative above the CM (indicated by the vertical
dashed line). Correspondingly, at the lower orders of SBs
in Fig. 4(b), the angle-resolved time delays are positive at
small angles and change sign around 40◦. At the higher order
of SBs, the time delays are negative over the entire angle
range. The energy and angle dependence of the RABITT time
delay in H2

+ photoionization has not been reported in atomic
photoionization.

In order to identify the origin of the energy- and angle-
resolved RABITT time delay, we present the photoionization
schematic diagram around the CM in Fig. 5. Unlike the
case in atomic photoionization, there is no strict selection
rule for angular quantum number in the transition process,
but the dominant channels can be determined by numerical
calculations. The magnetic quantum number is conserved
for cylindrical symmetry. Starting from the ground state of
H2

+ (q = 0, m = 0), the one-photon channels (1, 0) and/or
(3, 0) dominate over the energy range, as indicated in
Fig. 2(a). The CM of a p-spheroidal wave occurs at slightly
above MB27 and thus only the f -channel (3,0) matters at
MB27. At MB29 (E = 1.6 a.u.), the transition amplitudes
of a p-spheroidal wave are also negligibly small, as shown
in Fig. 2(a). For the model molecule and the laser pa-
rameters in our calculations, absorption or emission of an
IR photon to the SBs changes the angular quantum num-
ber by �q = ±1. Consequently, the SB channels with even
angular quantum numbers q up to 4 contribute. The quan-
tum numbers (q, m) of dominant channels at the MBs and
SBs around the CM are listed at the right side in Fig. 5.
The positive or negative sign beside indicates absorption
(+) or emission (−) of one IR photon to reach the SBs,
respectively.

Following the notations in atomic perturbation theory [60],
the two-photon ionization amplitude in RABBIT can be

written as

M (2±)
�k = 1

i
ẼAPT(�≶)ẼIR(±ω)e±iωτ

∑
q=0,2,4

(−i)qei�q Sq(k̂)

× lim
ε→0+

∑
λ

∫ 〈ψq|ẑ|ψλ〉〈ψλ|ẑ|ϕ0〉
ε0 + �≶ − ελ + iε

,

=
∑

q±=0,2,4

e±iωτ T (2±)
q± Sq± , (13)

where �≶ are the frequencies of the lower or upper order
of harmonics and ε0 (ελ) is the energy of the ground (inter-
mediate) state. ẼAPT and ẼIR are the complex amplitudes of
the harmonic and IR laser fields in the frequency domain.
Therein T (2±)

q± denotes the two-photon transition matrix of
the partial spheroidal wave channels and it can be written as
T (2±)

q± = |T (2±)
q± |eiη(±)

q± with q± the angular quantum numbers of
the absorption or emission channels, respectively. In diatomic
molecule photoionization, angular spheroidal functions Sq(k),
instead of Legendre polynomials, are adopted to describe the
angular distributions. The interference of the spheroidal waves
results in the modulation of ionization yield at the SBs,

I (E , θ, τ )

=
∣∣∣∣∣

∑
q+=0,2,4

T (2+)
q+ Sq+eiωτ +

∑
q−=0,2,4

T (2−)
q− Sq−e−iωτ

∣∣∣∣∣
2

= A(E , θ ) + 2
∣∣T (2+)

4

∣∣2B(E , θ, τ ), (14a)

where

A(E , θ ) =
∣∣∣∣∣

∑
q+=0,2,4

T (2+)
q+ Sq+

∣∣∣∣∣
2

+
∣∣∣∣∣

∑
q−=0,2,4

T (2−)
q− Sq−

∣∣∣∣∣
2

,

and the interference term

B(E , θ, τ )

=
∑

q+=0,2,4

∑
q−=0,2,4

r (+)
q+ r (−)

q− fq+,q−Sq+Sq−

= r (+)
0 r (−)

0 f0,0S0S0 + r (+)
2 r (−)

2 f2,2S2S2 + r (−)
4 f4,4S4S4

+ [r (+)
0 r (−)

2 f0,2 + r (−)
0 r (+)

2 f2,0]S0S2

+ [r (+)
0 r (−)

4 f0,4 + r (−)
0 f4,0]S0S4

+ [r (+)
2 r (−)

4 f2,4 + r (−)
2 f4,2]S2S4, (14b)

with fq+,q− = cos[2ωτ − δηq+,q− )], δηq+,q− = η(−)
q− − η(+)

q+ ,

and the positive ratios of the partial transition matrix r (±)
q′ =

|T (2±)
q′ |/|T (2+)

4 |. The product of two angular spheroidal func-
tions Sq+Sq− can be decomposed into a sum of angular
spheroidal functions, whose orders mainly range from |q+ −
q−| to q+ + q−. From Eq. (14a), the ionization probabilities
at the SBs can also be written as

I (Ek, θ, τ ) =
qmax∑

q′=0,2,4,...

γq′ (τ )Sq′ (cos θ, k), (15)

where the real coefficients γq′ , defined as the anisotropy pa-
rameters (AP) [23], quantitatively characterize the angular

013112-5



KE, ZHOU, LIAO, LI, LIU, AND LU PHYSICAL REVIEW A 108, 013112 (2023)

FIG. 6. Anisotropic parameters γq′ obtained at (a) SB26 and
(b) SB28 as a function of the APT/IR delay τ . (c) The phases
δϕq′ extracted from the τ modulations of anisotropic parameters.
The angle-integral time delay δτI in Fig. 4(a) is also shown in a
solid-purple line. The vertical dashed line indicates the CM energy.

distributions of the SBs and encode the relative contributions
of different partial spheroidal waves. The exact expressions of
the APs are given in Appendix 2. The APs γq′ (τ ) at SB26
and SB28, obtained by projecting the angular distributions
at each delay τ to the angular spheroidal functions Sq′ of
order up to qmax = 10, are shown in Figs. 6(a) and 6(b).
The APs of orders up to q = 8 are dominant, while γ10 and
higher orders are negligibly small. This verifies the two-
photon channel analysis in Fig. 4. Moreover, the modulations
of different APs exhibit the relative phase shift δϕq′ , which
is obtained by fitting the AP oscillations using the general
form γq′ (τ ) = Aq′ + Bq′ cos(2ωτ − δϕq′ ), shown in Fig. 6(c).
The vertical dashed black line indicates the p-spheroidal wave
CM at Ec = 1.45 a.u. The phase shifts δϕq′ of the APs for
low orders q′ = 0, 2, 4 are positive at low energy and become
negative at high energy, while those for high orders q′ = 6, 8
are negative at low energy and increase monotonically over
the whole energy range.

According to the orthonormal property of angular
spheroidal function for given k, the cross terms in Eq. (14b)
with q+ = q− cancel out after the angle integration and thus
the modulations of the angle-integrated yields at SBs have the
form

Iint(E , τ ) = ∣∣T (2+)
4

∣∣2 ∑
q′=0,2,4

[|r (+)
q′ |2 + |r (−)

q′ |2

+ 2|r (+)
q′ ||r (−)

q′ | fq′,q′ ]

= Aint + Bint cos[2ω(τ − δτI )], (16)

where δτI is the angle-integral RABITT time delay in
Fig. 4(a), presented as the solid-purple line in Fig. 6(c) as
well. The angle-integral time delay is positive from SB22
to SB26 and turns negative at higher orders of SBs. From

FIG. 7. (a) Same data as Fig. 4(a) but displayed as the curves
to show the angular dependence of the RABITT time delay at each
SB more clearly. (b) The angular spheroidal functions Sq for q =
0, 2, 4 with E = 1.4 a.u. (c) The product of two angular spheroidal
functions Sq+ Sq− .

Eq. (16), the angle-integral time delay is determined by
the weighted sum of f0,0, f2,2, and f4,4. Notice that the
negative phase shift δϕ8 in γ8 is equal to δη4,4 in f4,4,
since the highest order of AP has the explicit form γ8(τ ) ∝
|T (2+)

4 |2 + |T (2−)
4 |2 + 2|T (2+)

4 ||T (2+)
4 | f4,4 (see Appendix 2 for

more details), which results from the interference of the ab-
sorption and emission channels (0, 0) → (3, 0) → (4, 0)±.
At the SBs below MB27, the interference of the channels
(0, 0) → (1, 0) → (0, 0), (2, 0)± gives rise to positive phase
shift δϕq′ (q′ = 0, 2, 4), owing to the CM of the p-spheroidal
wave. The positive angle-integral time delay at low energy
from SB22 to SB26 is attributed to the larger ratio products
|r (+)

q′ ||r (−)
q′ |(q′ = 0, 2) than |r (−)

4 |.
From the perspective of channel competition around the

CM, the angle-resolved RABITT time delay in Fig. 4(b) can
be also understood. To see more clearly, the angle-resolved
time delay is plotted in Fig. 7(a). The time delays at SB22
and SB24 are positive at small angles and turn negative at
43◦. Particularly at SB26, the time delay jump occurs at
θ = 40◦. For higher orders of sidebands, the time delay is
always negative. Comparing Eq. (14a) and Eq. (12), we have
the relation 2|T (2+)

4 |2B(E , θ, τ ) = B(E , θ ) cos[2ω(τ − δτ )].
The angle-resolved RABITT time delay δτ is determined
by the weighted sum of all the fq+,q−Sq+Sq− in Eq. (14b).
The angular spheroidal functions Sq for q = 0, 2, 4 and the
products of two spheroidal functions Sq+Sq− are presented
in Fig. 7(b) and Fig. 7(c), respectively. In Fig. 7(c), only
S0S4 and S2S4 are negative around θ = 40◦. At low energy
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E ≈ 1 a.u., the transition amplitudes of the one-photon ion-
ization channels (1,0) and (3,0) are comparable as shown
in Fig. 2(a). For SB22 and SB24, the two-photon channels
(0, 0) → (1, 0) → (0, 0)±, (2, 0)± with larger transition am-
plitude ratios dominate over the channels (0, 0) → (3, 0) →
(4, 0)±. The interference terms f0,4 and f2,4 with positive
phase shift matter and their corresponding angular spheroidal
products S0S4 and S2S4 in Eq. (14b) change sign over the
emission angle, as shown in Fig. 7(c). Hence the time delay
at SB22 and SB24 below the CM is positive at small angle
and turns negative at large angle. Considering the contribution
of other channels, the zero RABITT time delay occurs at
larger emission angle 43◦ than the magic angles of S4. For
SB26 around the CM (Ec = 1.45 a.u.), the emission chan-
nels (0, 0) → (1, 0) → (0, 0)−, (2, 0)− are negligible. As a
consequence, the interference terms r (+)

0 r (−)
0 f0,0, r (+)

2 r (−)
0 f2,0,

and r (−)
0 f4,0 in Eq. (14b) are negligible and the contribu-

tions of the terms r (+)
0 r (−)

2 f0,2, r (+)
2 r (−)

2 f2,2, and r (−)
2 f4,2 are

much reduced. The sum of the remaining oscillation terms
r (+)

0 r (−)
4 f0,4, r (+)

2 r (−)
4 f2,4, and r (−)

4 f4,4 changes sign around
the emission angle 40◦, where the absolute values of two
spheroidal function products are approximately the same. The
RABITT time delay jump at SB26 depends on the exact
values of the ratios. At higher energy above the CM from
SB28 to SB36, the transition amplitude of an f -spheroidal
wave is twice as large as that of a p-spheroidal wave in
Fig. 2(a). The absorption and emission channels (0, 0) →
(3, 0) → (2, 0)±, (4, 0)± dominate, the interference of which
gives rise to the negative phase shift, including δϕ8 in
Fig. 6(c). Because of the suppression of the channels (0, 0) →
(1, 0) → (0, 0)±, (2, 0)±, the interference terms r (+)

0 r (−)
4 f0,4

and r (+)
2 r (−)

4 f2,4 with angular spheroidal function products
S0S4 and S2S4 are suppressed, which is responsible for the sign
changes of the angle-resolved RABITT time delay. Thus the
weighted sum of rest interference terms is always positive and
does not change its sign. As a result, the RABITT time delay
for higher order in Fig. 4 is negative over the whole angle
range.

IV. CONCLUSIONS

In conclusion, we have studied the RABITT time delay
in H2

+ photoionization around the CM of a p-spheroidal
wave. Our single-photon ionization 3D-TDSE results show
that the angular photoelectron distribution sensitively depends
on the photoelectron energy, which can be understood with
spheroidal wave methods. In RABITT, the angle-integral time
delay changes from the positive values to the negative val-
ues as the photoelectron energy increases. Moreover, there
is a sign change in the angle-resolved RABITT time de-
lay at lower orders of SBs for small emission angles, while
at higher orders of SBs the time delay is always negative
within the angle range. Assisted by the anisotropic param-
eters, the energy- and angle-resolved RABITT time delay
is qualitatively interpreted from the perspective of partial
spheroidal wave interference. The two-photon channel com-
petition around the Cooper-like minimum in the p partial
spheroidal wave is responsible for this sign change of the
RABITT time delay. This work develops the spheroidal wave

method in diatomic molecule photoionization, within the
philosophy of methods previously implemented in atomic
systems. As a counterpart to the two-center interference
model, the spheroidal analysis shows the potential in the
future study of photoionization at low energy of homo-
and heteronuclear diatomic molecules with small internuclear
distance.
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APPENDIX

1. Solution of the one-electron two-center Coulomb problem

In Sec. II B, we present the solution to the one-electron
two-center Coulomb problem. The implemention details are
given in this subsection. The solution of Eq. (8a) can be
written as an expansion of associated Legendre polynomials
[57]

S(η; k, R) =
∞∑

t=m

at P
m
t (η). (A1)

Inserting Eq. (A1) into Eq. (8a), one obtains the five-term
recurrence relation of the expansion coefficients at ,

g1at+2 + g2at+1 + (g3 + A)at + g4at−1 + g5at−2 = 0,

(A2)

for t = m + 2 and

g1(t ) = c2(t + m + 1)(t + m + 2)/(2t + 3)(2t + 5),

g2(t ) = −R1(t + m + 1)/(2t + 3),

g3(t ) = t (t + 1) + c2[2t (t + 1) − 2m2−1]/(2t − 1)(2t + 3),

g4(t ) = −R1(t − m)/(2t − 1),

g5(t ) = c2(t − m − 1)(t − m)/(2t − 1)(2t − 3).

The separation constants A can be obtained by the Killingbeck
method [58]. In this method, the separation constants and
eigenvalues can be calculated from the recurrence relations
satisfied by the expansion coefficients. For the continuum
states, only the separation constants are unknown. An al-
ternative method is applied to solve the angular part of the
continuum state. For given c (= kR/2), Eq. (A2) can be writ-
ten in matrix form

g(t )a = −Aa, (A3)

where a = [am, am+1, am+2, . . .]T . The separation constants
Amq and corresponding coefficients vectors at are obtained
by directly diagonalizing the five-diagonal coefficient matrix
g(t ). Finally, the angular spheroidal functions are normalized
so that

∫ 1
−1 S2(η; k, R)dη = 1. It is worth noting that S(η)
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tends to associated Legendre polynomial Pm
t (at=m = 1) when

c approaches zero.
Once the separation constant A is known, the

radial part X (ξ ) in Eq. (8b) can be solved to an
intermediate value ξ by a variable-step, variable-order
Adams-Bashforth-Moulton method. The amplitudes
and phase shifts �mq of X (ξ ) are determined by
comparing the intermediate solution and the asymptotic
solution [57].

2. Anisotropic parameters

The dominant APs have the forms

γ0 = c(0,0)
0

[∣∣T (2+)
0

∣∣2 + ∣∣T (2−)
0

∣∣2 + 2
∣∣T (2+)

0

∣∣∣∣T (2−)
0

∣∣ f0,0
]

+ c(2,2)
0

[∣∣T (2+)
2

∣∣2 + ∣∣T (2−)
2

∣∣2 + 2
∣∣T (2+)

2

∣∣∣∣T (2−)
2

∣∣ f2,2
]

+ c(4,4)
0

[∣∣T (2+)
4

∣∣2 + ∣∣T (2−)
4

∣∣2 + 2
∣∣T (2+)

4

∣∣∣∣T (2+)
4

∣∣ f4,4
]
,

(A4)

γ2 = c(0,2)
2

[∣∣T (2+)
0

∣∣2 + ∣∣T (2−)
2

∣∣2 + 2
∣∣T (2+)

0

∣∣∣∣T (2−)
2

∣∣ f0,2

+ ∣∣T (2+)
2

∣∣2 + ∣∣T (2−)
0

∣∣2 + 2
∣∣T (2+)

2

∣∣∣∣T (2−)
0

∣∣ f2,0

+ T (2+)
2 T (2+)

0 cos(η(+)
0 − η

(+)
2 )

+ T (2−)
0 T (2−)

2 cos(η(−)
2 − η

(−)
0 )

]
+ c(2,2)

2

[∣∣T (2+)
2

∣∣2 + ∣∣T (2−)
2

∣∣2 + 2
∣∣T (2+)

2

∣∣∣∣T (2−)
2

∣∣ f2,2
]

+ c(2,4)
2

[∣∣T (2+)
4

∣∣2 + ∣∣T (2−)
2

∣∣2 + 2
∣∣T (2+)

4

∣∣∣∣T (2−)
2

∣∣ f4,2

+ ∣∣T (2+)
2

∣∣2 + ∣∣T (2−)
4

∣∣2 + 2
∣∣T (2+)

2

∣∣∣∣T (2−)
4

∣∣ f2,4

+ T (2+)
2 T (2+)

4 cos(η(+)
2 − η

(+)
4 )

+ T (2−)
2 T (2−)

4 cos(η(−)
2 − η

(−)
4 )

]
+ c(4,4)

2

[∣∣T (2+)
4

∣∣2 + ∣∣T (2−)
4

∣∣2 + 2
∣∣T (2+)

4

∣∣∣∣T (2+)
4

∣∣ f4,4
]
,

(A5)

γ4 = c(2,2)
4

[∣∣T (2+)
2

∣∣2 + ∣∣T (2−)
2

∣∣2 + 2
∣∣T (2+)

2

∣∣∣∣T (2−)
2

∣∣ f2,2
]

+ c(0,4)
4

[∣∣T (2+)
0

∣∣2 + ∣∣T (2−)
4

∣∣2 + 2
∣∣T (2+)

0

∣∣∣∣T (2−)
4

∣∣ f0,4

+ ∣∣T (2+)
4

∣∣2 + ∣∣T (2−)
0

∣∣2 + 2
∣∣T (2+)

4

∣∣∣∣T (2−)
0

∣∣ f4,0

+ T (2+)
4 T (2+)

0 cos(η(+)
0 − η

(+)
4 )

+ T (2−)
0 T (2−)

4 cos(η(−)
4 − η

(−)
0 )

]
+ c(2,4)

4

[∣∣T (2+)
4

∣∣2 + ∣∣T (2−)
2

∣∣2 + 2
∣∣T (2+)

4

∣∣∣∣T (2−)
2

∣∣ f4,2

+ ∣∣T (2+)
2

∣∣2 + ∣∣T (2−)
4

∣∣2 + 2
∣∣T (2+)

2

∣∣∣∣T (2−)
4

∣∣ f2,4

+ T (2+)
2 T (2+)

4 cos(η(+)
2 − η

(+)
4 )

+ T (2−)
2 T (2−)

4 cos(η(−)
2 − η

(−)
4 )

]
+ c(4,4)

4

[∣∣T (2+)
4

∣∣2 + ∣∣T (2−)
4

∣∣2 + 2
∣∣T (2+)

4

∣∣∣∣T (2+)
4

∣∣ f4,4
]
,

(A6)

γ6 = c(2,4)
6

[∣∣T (2+)
4

∣∣2 + ∣∣T (2−)
2

∣∣2 + 2
∣∣T (2+)

4

∣∣∣∣T (2−)
2

∣∣ f4,2

+ ∣∣T (2+)
2

∣∣2 + ∣∣T (2−)
4

∣∣2 + 2
∣∣T (2+)

2

∣∣∣∣T (2−)
4

∣∣ f2,4

+ T (2+)
2 T (2+)

4 cos(η(+)
2 − η

(+)
4 )

+ T (2−)
2 T (2−)

4 cos(η(−)
2 − η

(−)
4 )

]
+ c(4,4)

6

[∣∣T (2+)
4

∣∣2 + ∣∣T (2−)
4

∣∣2 + 2
∣∣T (2+)

4

∣∣∣∣T (2+)
4

∣∣ f4,4
]
,

(A7)

γ8 = c(4,4)
8

[∣∣T (2+)
4

∣∣2 + ∣∣T (2−)
4

∣∣2 + 2
∣∣T (2+)

4

∣∣∣∣T (2−)
4

∣∣ f4,4
]
,

(A8)

where the momentum-dependent coefficient is

c(q+,q− )
q′ (k) =

∫ 1

−1
Sq+Sq−Sq′dη. (A9)

Here, cq′ with q′ ranging from |q+ − q−| to q+ + q− matter
and c(q+,q− )

q′ = c(q−,q+ )
q′ .
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