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Signatures beyond the rotating-wave approximation in retrieving the photoionization
time delay from an ω-2ω interferometric method
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We propose a protocol to retrieve the photoionization time delay that employs a pair of oppositely cir-
cularly polarized attosecond extreme ultraviolet pulses with frequencies ω and 2ω. By numerically solving
the three-dimensional time-dependent Schrödinger equation, we observe an oscillation in the energy-resolved
photoionization time delay encoded in the relative optical phase between ω and 2ω pulses when the emission
asymmetry of the photoelectron is maximal. Our results show that this oscillation arises from the interference
between two one-photon ionization pathways from the ground state due to the broad bandwidth effect of an ultra-
short pulse: the absorption of one left-handed circularly polarized photon and the emission of one right-handed
circularly polarized photon. The latter is regarded as a consequence of the breakdown of the rotating-wave
approximation (RWA). We compare the perturbation theory with and without RWA and demonstrate that photon
emission plays a crucial role in retrieving photoionization time delay. Our study enriches the underlying physics
of attosecond spectroscopy and provides a framework for accurately measuring photoionization time delays in
atoms and molecules.
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I. INTRODUCTION

By probing the attosecond photoionization time delays
[1–5], which provide precise timing of electronic motion
in atoms and molecules [6–8], scientists can observe the
electronic evolution in real time [9,10]. The complex pho-
toionization amplitudes describing the transitions between
the ground state and the continuum state can fully describe
the photoionization process in quantum mechanics. Conven-
tional pump-probe schemes, such as attosecond streaking
[11–16] and RABBIT (reconstruction of attosecond beating
by interference of two-photon transitions) [17–21], have been
proposed to measure the photoemission delay, which can be
expressed as the energy derivative of the transition phases
of photoionization amplitude [22–24]. Recently, a circular
holographic ionization-phase meter [25], which uses pump
bicircular attosecond pulse train (APT) in combination with
a co- or counter-rotating probe infrared (IR) pulse, and the
quantum beat method [26] can provide direct access to com-
plex structures in the energy-resolved phase of ionization
amplitudes.

In addition to the above-mentioned schemes involving an
IR dressing pulse, an interferometric method without a dress-
ing field, using two phase-locked linearly polarized extreme
ultraviolet (XUV) pulses of frequency ω and 2ω, from a free-
electron laser, is proposed to precisely determine the absolute
phase relationship of a fundamental wavelength and its second
harmonic [27] and to measure the angle-resolved photoion-
ization phase [28]. By adjusting the relative optical phase
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between two pulses, one can achieve the resonant control of
photoelectron directionality [29], and even get access to the
phase differences of two-photon ionization (TPI) paths involv-
ing energetically distant intermediate states [30]. It is well
known that the asymmetry in angular distribution of photo-
electron is very sensitive to the carrier-envelope phase (CEP)
of the few-cycle circularly polarized pulse [31,32], which can
be attributed to the interference between one- and two-photon
ionization pathways [33,34]. Therefore, the phase difference
between one- and two-photon ionization amplitudes can be
easily retrieved from the photoemission asymmetry by chang-
ing the relative CEP of circularly polarized pulses.

Most theoretical frameworks that describe the components
of final states in one- or two-photon ionization employ the
rotating-wave approximation (RWA), which takes into ac-
count only the corotating field with the system and neglects
the counter-rotating part [35,36]. This approximation is often
used in the determination of the orbital angular momentum
and magnetic quantum number of the partial wave of the scat-
tering states [25,26,29]. For multiphoton ionization processes
with the attosecond pulse in the XUV regime and experi-
mentally accessible intensities below 1014 W/cm2, the RWA
is valid, i.e., it is legitimate to neglect photon emission pro-
cesses in the perturbation theory (PT) analysis [37,38] for the
circularly polarized XUV pulses. However, in the RABBIT
for retrieving the complete phase profiles of attosecond wave
packets, the role of IR photon emission cannot be ignored. It
is because two-photon pathways (absorption and stimulated
emission of an IR photon) can interfere with each other across
the whole spectral width of the ultrashort APT. Another recent
example is the attosecond transient absorption spectroscopy
[39], in which the breakdown of RWA has been clearly seen
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for a few-cycle XUV pump and near-infrared pulse probe
scheme in experiment.

In this work we present an interferometric method, using
the right-handed circularly polarized (RCP) pulse with fre-
quency ω and time-delayed left-handed circularly polarized
(LCP) pulse with frequency 2ω, to retrieve the energy-
resolved photoionization time delay. By varying the relative
phase between the two pulses while keeping the pulse
delay fixed, the time delay can be extracted from the pho-
toelectron emission asymmetry. We observe an oscillation
in the extracted time delay in the numerical solutions of
the time-dependent Schrödinger equation (TDSE). The good
agreement between TDSE and PT without RWA supports the
conclusion that the oscillation arises due to the interference
between two one-photon ionization pathways, i.e., the ab-
sorption of LCP photon and the emission of RCP photon.
The latter clearly demonstrates the breakdown of the RWA.
Furthermore, the pulse-delay and pulse-duration dependence
of this oscillation are also investigated in this work. Atomic
units are used unless explicitly stated.

II. THEORETICAL FRAMEWORK

A. TDSE calculation

The differential ionization probability of atomic hydrogen
is obtained by three-dimensional TDSE in the velocity gauge.
Here, the split-Lanczos propagator is used to propagate the
wave function in time [40–42], which greatly improves the
efficiency of the traditional Lanczos propagator by splitting
out the centrifugal potential from the Hamiltonian. In our
calculations, the wave function is expanded in a product basis
with spherical harmonics for the angular part and a finite-
element discrete variable representation (FE-DVR) [43–46]
for the radial part. To avoid the use of a very large radial box,
the wave-splitting technique [47] is adopted. The maximal
angular momentum of �max = 12, the inner radial box size
Rc = 480 a.u. with maximal box size Rmax = 800 a.u., and
the time step of �t = 0.01 a.u. are sufficient to ensure the
convergence. The vector potential of a pair of oppositely cir-
cularly polarized attosecond pulses having the different carrier
frequencies, with the second pulse delayed in time by τ ,

A(t ) = A1(t ) + A2(t − τ ) ≡ f1(t )Re[e1e−i(ω1t+φ1 )]

+ f2(t − τ )Re
{
e2e−i[ω2(t−τ )+φ2]

}
, (1)

as shown in Fig. 1(a). For the jth pulse ( j = 1, 2), the po-

larization vector is e j = (ex + iη jey)/
√

1 + η2
j , where η j is

the ellipticity; here η j = (−1) j+1. In our simulation, the laser
pulse propagates along the positive z axis and is polarized in
the x-y plane. Each pulse has a temporal envelope f j (t ) =√

I j/ω j cos2( πt
Tj

), where −Tj/2 � t � Tj/2 with Tj = np
2π
ω j

;
np is the number of optical cycles. The peak intensity
I1 = 10I2 = 1 × 1014 W/cm2 and the frequency ω2 = 2ω1 ≡
2ω = 20 eV. φ1 and φ2 denote the respective CEP of two
oppositely circularly polarized pulses and φ = φ2 − φ1 is the
relative optical phase.

According to the wave-splitting technology, at the end
time t f of the propagation, we obtain the final ionization
amplitude f (k, t f ) by adding all the amplitudes at time t f . In
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FIG. 1. (a) Geometry of the angularly resolved detection in a
pair of time-delayed, oppositely circularly polarized, attosecond laser
pulses. Electron is emitted into the polarization plane (x-y) with
azimuthal angle ϕ. The first pulse is right-handed circularly polarized
(RCP), while the time-delayed pulse is left-handed circularly polar-
ized (LCP). (b) In the RWA, according to dipole selection rule, the
ground state of H atom (s, 0) with the bound energy Ei = −13.6 eV
absorbs two RCP photons to reach final scattering state (d, 2) (path 2,
red solid arrows), which can interfere with (p,−1) state with the
same final energy Ek = 2ω − Ip by absorbing one LCP photon
(path 1, blue arrow). The numbers in parentheses denote the angular
momentum and magnetic quantum number, respectively. However,
without RWA, the scattering state (p,−1) can also be achieved by
emitting one RCP photon from the ground state (path 3, red dashed
arrow). The two pathways (path 1 and path 3) to create the state
(p, −1) interfere with each other due to the large spectral width of
the ultrashort attosecond XUV pulse. The blue and red areas denote
the frequency spectral range of LCP and RCP pulses, respectively.

the polarization plane, the differential ionization probability
P(E , θ = π

2 , ϕ) = k| f (k, θ = π
2 , ϕ, t f )|2. The photoelectron

asymmetry in the angular distribution is defined as

fa(E ) = P(E , ϕ)0�ϕ�180◦ − P(E , ϕ)180◦�ϕ�360◦

P(E , ϕ)0�ϕ�180◦ + P(E , ϕ)180◦�ϕ�360◦
, (2)

which gives the difference of electron yield emitted into op-
posite sides of the plane parallel to the light polarization.

B. Photoelectron emission asymmetry calculated by PT

The well-known electric dipole selection rules state that
the absorption of one photon leads to the electron angular
momentum changing by one unit, �� = ±1 [48,49]. For the
magnetic quantum number, in the RWA, it increases by one
unit (�m = +1) for absorption of one RCP photon while
decreasing by one unit (�m = −1) for absorption of one LCP
photon. One-photon ionization of the hydrogen atom from its
ground state |� = 0, m = 0〉 [denoted by (s, 0)] by absorbing
one LCP photon creates a continuum wave at the energy Ek =
2ω − Ip with angular momentum quantum numbers � = 1,
m = −1 ∼ Y1−1(θ, ϕ). Y�m(θ, ϕ) is the spherical harmonics
function. The same energy can be reached via a two-photon
absorption from the RCP pulse; the angular dependence of
the continuum wave populated by the two-photon path is
Y22(θ, ϕ), as shown in Fig. 1(b) (solid lines).
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However, without the RWA, the transition from the ground
state to the partial wave (� = 1, m = −1) also occurs by
emitting one RCP photon, as shown by the dashed arrow in
Fig. 1(b). For the ultrashort attosecond XUV pulses employed
here with larger spectral width, the one-photon pathway with
releasing one RCP photon of the energy ω can interfere with
the one-photon pathway with absorbing one LCP photon of
the energy 2ω. The spectral width �ω = 1.44ω/np for RCP
and LCP pulses for np = 2 are 14.4 and 7.2 eV, respectively
[50,51]. As shown in Fig. 1(b), the long tail in a broad
bandwidth with a central energy Ei − ω of RCP XUV pulse
overlaps with the frequency spectra of LCP XUV pulse with
a central energy Ek . As can be seen below, even though the
transition amplitudes of the final state (p,−1) contributed
from RCP pulse (path 3) is less than that from LCP (path 1)
by about two orders of magnitude, this tiny overlap has a sig-
nificant influence on the energy-dependent amplitude phases.

The one-photon transition amplitude calculated by the
time-dependent PT in velocity gauge is given by

A1(k) = −
∫ t f

ti

〈�k|A(t ′) · ∇|�i〉ei(E−Ei )t ′
dt ′, (3)

where |�k〉 is the final scattering state with asymptotic
momentum k, E = k2/2, and |�i〉 is the initial ground state
with energy Ei = −13.6 eV. ti = −T1/2, and t f = τ + T2/2.
The contribution to the one-photon amplitude from the RCP
pulse is

AR
1 (k) = −

∫ t f

ti

〈�k|A1(t ′) · ∇|�i〉ei(E−Ei )t ′
dt ′

= [−g−
1 (ω)Y11 + g+

1 (ω)Y1−1]. (4)

Here,

g±
1 (ω) = −

√
2I1

2
√

3
(E − Ei )〈ψk|r|ψi〉

× 1

ω

∫ T1/2

−T1/2
cos2

(
πt

T1

)
exp[i(E − Ei ± ω)t]dt,

(5)

where |ψi〉 and |ψk〉 are the radial wave function of initial and
final states, respectively [34]. The superscript symbols “+”
and “−” in g1(ω) clearly indicate the emission and absorption
of the photon, respectively. Likewise, the contribution to the
one-photon amplitude from the LCP pulse can be expressed as

AL
1 (k) = −

∫ t f

ti

〈�k|A2(t ′) · ∇|�i〉ei(E−Ei )t ′
dt ′

= [−g+
2 (ω)Y11 + g−

2 (ω)Y1−1], (6)

where

g±
2 (ω) = −

√
2I2

2
√

3
(E − Ei )〈ψk|r|ψi〉ei(E−Ei )τ e±iφ

× 1

2ω

∫ T2/2

−T2/2
cos2

(
πt

T2

)
exp[i(E − Ei ± 2ω)t]dt .

(7)

Comparing Eq. (5) with Eq. (7), the main difference
between g2(ω) and g1(ω) is the introduction of phase

factor (E − Ei )τ ± φ, which includes the information of
pulse delay τ and relative CEP φ.

For the two-photon absorption process, the corresponding
transition amplitude is given by

A2(k) =
∑
q 	=i

∫ t f

ti

dt ′〈�k|A(t ′) · ∇|�q〉ei(E−Eq )t ′

×
∫ t ′

ti

dt ′′〈�q|A(t ′′) · ∇|�i〉ei(Eq−Ei )t ′′
, (8)

where |�q〉 with energy Eq is the intermediate state. In our
PT calculations, the wave functions of initial state and each
intermediate eigenstate are obtained by the diagonalization
of a free-field Hamiltonian, which is discretized using the
FE-DVR representation method. In the calculation of two-
photon amplitude, the radial box size of Rmax = 50 a.u., the
first 100 intermediate eigenstates are chosen within the total
300 intermediate eigenstates, which already ensure the con-
vergence of calculation. The numbers of finite element and
basis functions are 50 and 7, respectively. The final scattering
states are obtained analytically as shown in Ref. [52].

The angle-dependent ionization probability obtained from
PT is

P(E , ϕ) = k|A1(k) + A2(k)|2, (9)

where A1(k) ≡ c�=1eis�=1 and A2(k) ≡ c�=2eis�=2 . Therefore,
the transition amplitudes with � = 1 and � = 2 are written as

c�=1eis�=1 = cp,1eisp,1Y11 + cp,−1eisp,−1Y1−1e−iφ, (10)

c�=2eis�=2 = cd,2eisd,2Y22, (11)

where cp,1, cp,−1, and cd,2 are the real-value partial wave
amplitudes; sp,1, sp,−1, and sd,2 are the corresponding argu-
ments. Note that in two-photon ionization only the partial
wave (d, 2) is considered due to the trivial contribution from
the other partial waves, such as (s, 0) and (d, 0). Therefore,
the energy-resolved asymmetry fa(E ) defined by Eq. (2) can
be rewritten as

fa(E ) = 2
√

5/π

c2
p,1 + c2

p,−1 + 5c2
d,2/4

ρ(φ), (12)

where the φ-dependent term

ρ(φ) = cp,1cd,2 sin(sd,2 − sp,1)

− 1
3 cp,−1cd,2 sin[φ + (sd,2 − sp,−1)]. (13)

C. Retrieving time delay in PT with and without RWA

In the RWA, the photon emission process is ignored; then

cp,1 exp
(
isRWA

p,1

) = −g−
1 (ω), (14)

cp,−1 exp
(
isRWA

p,−1

)
e−iφ = g−

2 (ω). (15)

In the perturbative regime, the one-photon ionization am-
plitude phase for single circularly polarized pulse is equal
to 3π/2 + σ1 [34], where σ1 = arg�(2 − i/k) is the r-
independent Coulomb phase shift [53]. From the lowest-order
perturbation theory respective, the phases sp,1 and sp,−1 origi-
nate from the RCP and LCP pulse, respectively, which can be
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expressed as

sRWA
p,1 =3π

2
+ σ1, (16)

sRWA
p,−1 =3π

2
+ σ1 + (E − Ei )τ. (17)

Thus the φ-dependent term in Eq. (13) only exists in the factor
sin[φ + (sd,2 − sp,−1)], so the asymmetry reaches its maximal
value when φ = φm, where

φm = (sp,−1 − sd,2) − π

2
+ n2π. (18)

n is an integer number. Note that Eq. (18) demonstrates the
fundamental principle about retrieving the photoionization
time delay, i.e., the transition phase difference can be directly
extracted from the ω-2ω relative phase corresponding to the
maximal photoelectron emission asymmetry.

However, for the situation where the breakdown of RWA
occurs, the amplitude of partial wave (p,−1) with taking the
photon emission into account is

cp,−1eisp,−1 e−iφ = g+
1 (ω) + g−

2 (ω)

= MRei�R + MLei�L e−iφ, (19)

where ML, �L and MR, �R are the transition amplitudes and
phases from the ground state to the specific partial wave
(p,−1) by absorbing one LCP photon and releasing one RCP
photon [dashed line in Fig. 1(b)], respectively. By Eqs. (5) and
(7), we obtain �L = 3π

2 + σ1 + (E − Ei )τ and �R = 3π
2 +

σ1. Hence

cp,−1eisp,−1 e−iφ = MLei( 3π
2 +σ1 )e−iφ[ei(E−Ei )τ + χ eiφ]

= DMLei( 3π
2 +σ1 )ei�e−iφ, (20)

where χ = MR/ML; D and � are the module and argument
of ei(E−Ei )τ + χeiφ , respectively. Thus the module and phase
of amplitude of partial wave (p,−1) without RWA can be
rewritten as

cp,−1 = ML

√
1 + χ2 + 2χ cos(β − φ), (21)

sp,−1 = 3π

2
+ σ1 + �, (22)

where tan � = (sin β + χ sin φ)/(cos β + χ cos φ) and
β = (E − Ei )τ .

The Wigner time delay of one-photon ionization, τW , cor-
responds to the energy derivative of the argument of the
amplitude, τW = dsp,−1/dE . To better compare with the RWA
results [Eq. (17)], we introduce s̃p,−1 ≡ sp,−1 − (E − Ei )τ ;
hence

ds̃p,−1

dE
= dσ1

dE
+ d�

dE
− τ, (23)

where the τ -dependent term

d�

dE
− τ ≈ −χτ cos(β − φ) − dχ

dE
sin(β − φ). (24)

In the deduction of Eq. (24), χ2 term is ignored and
1 + 2χ cos(β − φ) ≈ 1 is employed due to the fact that
the order of magnitudes of χ is about 10−2, as is shown
below. Note that Eq. (24) denotes the contribution of

FIG. 2. Photoelectron angular asymmetry fa(E ) defined by
Eq. (2) as functions of energy E and relative optical phase φ cal-
culated by (a) TDSE and (b) complete PT (without RWA). The pulse
time delay τ = 1 fs and np = 2. The blue dots in (a) and (b) denote
the specific relative phase φm, where the asymmetry reaches its
maximum for each electron energy. (c) Extracted time delay dφ̃m/dE
as a function of energy E obtained from TDSE and two types of
PT calculations, where φ̃m = φm − (E − Ei )τ . The PT calculation
with RWA denotes that the amplitudes of partial wave (p, −1) are
obtained by ignoring the photon emission process.

the RCP pulse to the amplitude phase of partial wave
(p,−1). Therefore, the photoionization time delay can
be rewritten as dφ̃m/dE = dφm/dE − τ = d[sp,−1 − sd,2 −
(E − Ei )τ ]/dE , where φ̃m = φm − (E − Ei )τ .

III. RESULTS AND DISCUSSION

Figures 2(a) and 2(b) represent the energy-dependent
asymmetries in the angular distribution of photoelectrons
as a function of the relative optical phase φ. Both the
three-dimensional TDSE and complete PT (without RWA)
calculations exhibit three straight stripes with two intersec-
tions at energies E = 6.0 and 10.3 eV in the photoelectron
emission asymmetry. These stripes indicate that, as the energy
increases, the corresponding φm denoting the maximal pho-
toemission asymmetry of each energy, shown by the blue dots,
almost linearly increases. According to Eq. (18), the photoion-
ization time delay between one- and two-photon ionizations,
which can be expressed as the derivative of φ̃m with respect to
energy E , is the slope of stripes minus the pulse delay τ .

However, we find a counterintuitive phenomenon where
the time delay extracted from the maximal asymmetry shows
an obvious oscillation, as shown in Fig. 2(c). This oscillation
implies that the increase of φm is not strictly linear with the
increasing energy. In Fig. 2(c), we display two types of PT
calculations, i.e., without and with RWA. The PT calculation
without RWA quantitatively agrees with TDSE results, while
for the PT calculation with RWA, the time delay dφ̃m/dE
increases smoothly as energy increases.
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FIG. 3. Energy-dependent one-photon amplitude phases (a) sp,1,
(b) s̃p,−1 = sp,−1 − (E − Ei )τ , (c) s̃�=1 = s�=1 − (E − Ei )τ for
ϕ = 0, and (d) two-photon amplitude phase sd,2 when the relative
phase φ varies, which are calculated by PT without RWA.

For the one-photon amplitude in two kinds of PT calcu-
lations, we chose the partial waves of final scattering states
with � = 1 and m = ±1 and, for the two-photon amplitude,
we chose the single partial wave with � = 2 and m = 2. In
the RWA, from Eqs. (17) and (18), dφ̃m/dE = dσ1/dE −
dsd,2/dE . In Figs. 3(a) and 3(d), we show the energy depen-
dence of the amplitude phases sp,1 and sd,2, respectively. It
can be seen that sp,1 is in accordance with 3π/2 + σ1 and sd,2

increases smoothly and is independent of the relative phase
φ. Note that the deviation between sp,1 and 3π/2 + σ1 for
E > 10 eV is due to the fact that this energy range is far
away from the first-order above-threshold ionization (ATI)
peak (E = 6.4 eV), resulting in the lowest-order PT not being
able to describe well the one-photon ionization.

It is natural to believe that the oscillation in the time delay
comes from the transition phase sp,−1. To better understand
the underlying picture of this oscillation, we plot the one-
photon amplitude phases sp,−1 and s�=1 calculated by the
complete PT in Figs. 3(b) and 3(c), respectively. In the RWA,
s̃p,−1 = 3π/2 + σ1 increases smoothly with the increasing
energy. However, in our PT calculation without RWA, even
though s̃p,−1 is almost equal to 3π/2 + σ1, it displays a clear
oscillation and strongly depends on the relative phase φ. In
Fig. 3(c), for the azimuthal angle ϕ = 0 (Y11 = −Y1−1), the
one-photon ionization phase s̃�=1 of each energy gradually
decreases when the relative phase φ changes from 0 to π due
to the factor exp(−iφ) in Eq. (10). Furthermore, the out-of-
phase oscillations of phase s̃�=1 between φ = 0 and π can
be also clearly observed. This out-of-phase oscillation can be
explained well by the relation deduced from Eq. (24), which
states that ds̃p,−1/dE |φ=0 = −ds̃p,−1/dE |φ=π . These afore-
mentioned observations suggest that the oscillation in time
delay is primarily caused by the fluctuation in the one-photon
ionization phase s̃p,−1.

According to our analytical formula Eq. (19), the ampli-
tude phase sp,−1 is not solely determined by the LCP pulse,

FIG. 4. (a) One-photon amplitude phase s̃�=1 when ϕ = 0 as
functions of relative phase φ and energy E with sp,−1 is obtained
by Eq. (22); the red line in (e) denotes the s̃�=1 of φ = 0, which is
extracted from (a) for comparing with Fig. 3(c). (b) Comparison of
time delay ds̃p,−1/dE obtained from TDSE, PT without RWA, and
the analytical formula [Eq. (23)], where the “1st-term” line denotes
that the contribution of the first term in Eq. (24). (c) The respective
contribution of the first term (solid line) and second term (dashed
line) in Eq. (24) when φ = 0. (d) Energy dependent amplitude ratio
χ (black solid line) and only τ -dependent term τ cos β (red dashed
line).

but is also influenced by the contribution from the RCP
pulse, which falls beyond the RWA. By comparing TDSE
and PT calculations without RWA, we have confirmed that
cp,1, sp,1, cd,2, and sd,2 remain independent of φ, whereas
cp,−1 and sp,−1 are affected by φ, as evidenced by Eqs. (21)
and (22). By using Eqs. (21) and (22) to calculate the transi-
tion amplitudes cp,−1 and phases sp,−1 in Eq. (10), we obtain
the one-photon amplitude phase s�=1 that agrees excellently
with PT calculations without RWA, as shown by Figs. 4(a)
and 4(e). Note that this agreement holds for other relative
phases (not presented here). In Fig. 4(b), the sensitivity of
sp,−1 to energy is evident from the derivative of s̃p,−1 with
respect to energy E . The amplitude phases sp,−1 of TDSE
can be obtained by projecting calculations that only include
the final partial wave |� = 1, m = −1〉. For PT results, sp,−1

is calculated by first-order PT in the velocity gauge with the
total vector potential A(t ) [Eq. (1)]. The excellent consistency
of ds̃p,−1/dE between TDSE and the analytical formula indi-
cates that the oscillation of one-photon ionization time delay
primarily arises from the interference between ionization am-
plitudes resulting from the emission of RCP photon and the
absorption of LCP photon, respectively.

The dominant role of the first term in Eq. (24) is shown
by the line denoted as “1st-term” in Fig. 4(b). As seen in
Fig. 4(c), for φ = 0, the χ term of d�/dE − τ can reproduce
well the oscillation of ds̃p,−1/dE . This is due to the fact that
the oscillation of dχ/dE term is almost in phase with that of
χ term and the value of dχ/dE term oscillates around zero as
the energy varies. The χ term comprises the amplitude ratio
χ and τ -dependent term cos[(E − Ei )τ ], which are separated
and displayed in Fig. 4(d). It is clear that, in contrast to the
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FIG. 5. Energy-dependent asymmetry fa(E ) as a function of rel-
ative optical phase φ calculated by TDSE for different pulse delays
(a) τ = 2 fs and (b) τ = 4 fs with a longer pulse duration np = 6.
Extracted time delay dφ̃m/dE as a function of energy E from TDSE
and complete PT calculations for (c) τ = 2 fs and (d) τ = 4 fs with
np = 6. Also shown are the results of the strong-field model (SFM)
in which the depletion of ground state is considered. See text for the
details.

periodic oscillation of cos[(E − Ei )τ ], the ratio χ oscillates
much slower with photoelectron energy. Therefore, the oscil-
lation period of dφ̃m/dE largely depends on the τ -dependent
term cos[(E − Ei )τ ] and it can be predicated that this oscilla-
tion period decreases as the pulse delay τ increases.

For the multicycle pulse (e.g., np = 6), this oscillation
can also be observed provided that the pulse time delay τ

is large enough. It can be seen from Figs. 5(a) and 5(b)
that the number of the straight stripes increases significantly
with the increasing τ and the larger asymmetries are mostly
concentrated at higher energies. The time delay extracted
from these separated stripes shows clear oscillation as the
electron energy varies for two larger pulse delays (2 fs and
4 fs) as shown in Figs. 5(c) and 5(d), respectively. Similarly,
PT without RWA still can reproduce well the peaks and
rising tendency of oscillation as shown by TDSE. Both
TDSE and PT without RWA calculations demonstrate that the
photoionization time delay of the multicycle pulse increases
much faster than the few-cycle pulse and the oscillation period
becomes much smaller with increasing τ for the same pulse
duration, as predicated by Eq. (24). However, the time delay
obtained by PT differs quantitatively from that calculated by
TDSE, which can be attributed to the depletion of the ground
state. In our TDSE calculation, the population of the ground
state drops by about 70% at the end of the pulse. To overcome
this, we use the nonperturbative strong-field model (SFM)
proposed in our previous works [34,41,54,55], in which the
wave function of the ground state |�i(t ′)〉 is replaced by
h(t ′)|�i(t ′)〉 in Eqs. (3) and (8), where h(t ′) is the modulus
of the amplitude of the ground state at time t ′. The SFM
calculation with considering the depletion of the ground state
can quantitatively reproduce the corresponding TDSE results,
as shown in Figs. 5(c) and 5(d).

FIG. 6. (a) Energy-dependent time delay dφ̃m/dE extracted
from the angular asymmetry calculated by TDSE for different pulse
durations np = 2, 4, 6, 8 with τ = 4 fs. The vertical line denotes
the final-state energy of photoelectron in TPI, which is 2ω − Ip =
6.4 eV. (b) Time delay extracted from (a) for the TPI signal as a func-
tion of the XUV pulse duration when photon energies ω = 10 eV
(E = 6.4 eV) and ω = 20 eV (E = 26.4 eV), respectively.

We also investigate the XUV pulse duration dependence
of time delays retrieved from maximal asymmetry, as shown
in Fig. 6(a). The obtained results show that the oscillation
weakens as the XUV pulse duration increases and even be-
comes smooth until the spectral widths of two XUV pulse
no longer overlap with each other due to the spectral width
�ω = 1.44ω/np for the cosine-squared pulse envelope. We
find that the time delay increases significantly for longer pulse
durations. Note that in Fig. 5, the ionization delay of np = 6
just shifts up about 25 attoseconds due to depletion as com-
pared to that of np = 2. However, in Fig. 6(a), the ionization
delay of np = 6 decreases about 73 attoseconds in the com-
bined influence from depletion and resonance contribution
from 2p. It can be known that the influence of resonance on
ionization delay dominates as compared to the influence of
depletion, which may be due to the depletion influence being
the time-averaged effect according to Eqs. (3) and (8). In
Fig. 6(b), we plot the time delay extracted from Fig. 6(a) at
energy E = 6.4 eV for TPI (here we change the sign of time
delay to better observe time delay of TPI). For photon energy
ω = 10 eV the time delay has a significant change that scales
nearly linearly with the XUV pulse duration once the pulse is
long enough (T1 > 2.48 fs, as shown by red dashed line). The
photon energy of ω = 10 eV is close to the energy difference
between the ground state and the first excited state 2p of the H
atom, which is 10.2 eV. However, for the photon energy ω =
20 eV, in which the resonant effect is ruled out, the retrieved
time delays are nearly independent of the XUV pulse duration.
The XUV pulse duration dependence of time delays in TPI
was also studied previously in Ref. [56], in which the time de-
lays in a resonant and nonresonant TPI of the helium atom are
simulated numerically by using the attosecond streaking tech-
nique. Therefore, our methods can reproduce well the XUV
pulse duration dependence of time delays in the resonant and
nonresonant TPI.

IV. CONCLUSIONS

In summary, we have theoretically investigated the ω-2ω

interferometric protocol for retrieving the photoionization
time delay, which utilizes a pair of oppositely circularly
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polarized attosecond XUV pulses. In this interferometric
protocol, the photoionization time delay can be retrieved
from the relative optical ω-2ω phase when the photoelectron
emission asymmetry reaches its maximum. The oscillatory
structure of the retrieved energy-resolved time delay is ob-
served through the numerical solutions of the TDSE. Based
on PT calculation with and without RWA, we find that this
oscillation can be attributed to the breakdown of the RWA,
which manifests as the interference between two one-photon
ionization paths named the absorption of LCP photon and
the emission of RCP photon. Furthermore, our analysis also
reveals that this oscillation depends strongly on the delay

between the two pulses and the XUV pulse duration. The
obtained results provide insights into the retrieval of pho-
toionization time delay in attosecond science when the RWA
is invalid.
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