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Calculation of the hyperfine structure of Er and Fm
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A version of the configuration interaction method, which has been recently developed to deal with a large
number of valence electrons, has been used to calculate magnetic dipole and electric quadrupole hyperfine
structure constants for a number of states of erbium and fermium. Calculations for fermium are done for
extracting nuclear moments of Fm isotopes from recent and future measurements. Calculations for erbium,
which has an electronic structure similar to that of fermium, are done to study the accuracy of the method.
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I. INTRODUCTION

Spectroscopic studies of heavy actinides have shown good
progress in recent years [1–8]. A particular focus of this study
was on the hyperfine structure (HFS). Comparing measured
and calculated HFS leads to the extraction of nuclear mo-
ments, advancing our knowledge on the nuclear structure of
heavy elements. This in turn may benefit the search for the
hypothetical stability island, i.e., superheavy nuclei with a
long lifetime. There is a strong correlation between the value
of the electric quadrupole moment Q and nuclear deformation.
A larger deformation usually means a larger value of Q. On
the other hand, the nuclei in the vicinity of the stability island
are expected to be spherical. Therefore, observing elements
with small Q may indicate approaching the stability island.

The hyperfine structures of 255Fm [2], 254Es [4], 253−255Es
[5], and 249−253Cf [7] have been measured, and a compar-
ison with calculations [3,7,8] leads to the determination of
the magnetic dipole (μ) and electric quadrupole (Q) nuclear
moments of the corresponding isotopes of Es and Cf. For
these atoms we calculated HFS in the ground state only [8].
In principle, this is sufficient to determine nuclear moments.
However, the situation is more complicated for the 255Fm
isotope. An experimental paper [2] gives two conflicting in-
terpretations of the HFS splitting in the ground and two
excited states. Calculations of HFS for all these three states
[3] did not resolve the problem. Measurements are currently
in progress [9]. In this paper we present more detailed and
accurate calculations for the HFS of Fm in the hope to assist
in the interpretation of the experimental data. The calculations
include a number of excited states which are connected to the
ground state via electric dipole transitions. The energies of
these states were calculated in our previous paper [3]. Seven
of the energy levels were measured experimentally [1,2]. In
the present paper we calculate HFS for most of these states.
We also calculate HFS of Er, which is the lighter analog of
Fm, to assess the accuracy of the calculations.

II. METHOD OF CALCULATIONS

In this paper we mostly follow our previous work on Dy,
Ho, Cf, and Es [8]. Calculations of the energies and wave

functions are performed with the use of the configuration
interaction with perturbation theory (CIPT) method [10]. This
method was specially developed for open-shell atoms with
a large number of valence electrons. Er and Fm have 14
valence electrons each (the 4 f 126s2 ground state configuration
of external electrons in Er and the 5 f 127s2 ground state config-
uration in Fm). The basis of many-electron single-determinant
wave functions for 14 electrons is divided into two parts: low-
energy states and high-energy states. External electron wave
functions are expressed in terms of coefficients of expansion
over single-determinant basis state functions

�(r1, . . . , rM ) =
N1∑

i=1

xi�i(r1, . . . , rM )

+
N2∑
j=1

y j� j (r1, . . . , rM ). (1)

Here, M is the number of valence electrons. The terms
in (1) are ordered according to the energies of the
single-determinant functions, from low to high energies,
〈�I−1|ĤCI|�i−1〉 < 〈�i|ĤCI|�i〉 < 〈�i+1|ĤCI|�i+1〉. N1 is
the number of low-energy basis states, N2 is the number
of high-energy basis states. It is assumed that N1 � N2 and
that first N1 terms in (1) represent a good approximation for
the wave function while the rest of the sum is just a small
correction. Then the configuration interaction (CI) matrix
equation can be written in a block form,(

A B
C D

)(
X
Y

)
= Ea

(
X
Y

)
. (2)

Here, block A corresponds to low-energy states, block D
corresponds to high-energy states, and blocks B and C cor-
respond to cross terms. Note that since the total CI matrix
is symmetric, we have C = Bt , i.e., ci j = b ji. Vectors X
and Y contain the coefficients of expansion of the valence
wave function over the single-determinant many-electron ba-
sis functions [see Eq. (1)].

The main feature of the CIPT method [10] is neglecting the
off-diagonal matrix elements in block D. This allows one to
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TABLE I. Typical number of the dominating terms in the wave-
function expansion (1) (N1, which is equal to the size of the effective
CI matrix) and the number of terms in the correction (N2), for the
ground and exited odd states of Er and Fm.

States J N1 N2

Ground state 6 2 ∼8.1 × 106

Odd states 5 74 ∼3.4 × 108

6 58 ∼1.0 × 108

7 38 ∼2.7 × 108

greatly simplify the CI equations (2) reducing the size of the
CI matrix to the size of block A (see Ref. [10] for details).

Finding Y from the second equation of (2) leads to

Y = (EaI − D)−1CX . (3)

Substituting Y to the first equation of (2) leads to

[A + B(EaI − D)−1C]X = EaX , (4)

where I is the unit matrix. Then, following Ref. [10], we
neglect off-diagonal matrix elements in block D. This leads
to a very simple structure of the (EaI − D)−1 matrix, (EaI −
D)−1

ik = δik/(Ea − Ek ), where Ek = 〈k|HCI|k〉. Note that un-
known energy of the state of interest Ea can be found in both
right- and left-hand sides of (4). This means that iterations
over Ea are needed to solve (4). An initial approximation for
Ea can be found from solving AX = EaX .

Typical values of N1 and N2 for Er and Fm are presented in
Table I. The values of N1 correspond to the minimal option, in
which dominating terms for the ground state are represented
only by the states of the 4 f 126s2 configuration for Er and the
5 f 127s2 configuration for Fm, while for excited odd states
dominating terms include states of two odd configurations,
the 4 f 126s6p and 4 f 116s25d configurations for Er and the
5 f 127s7p and 5 f 117s26d configurations for Fm. For the mini-
mal option the calculations can be done on a laptop or similar
computer. In principle, one can try to improve the accuracy of
the calculations by including more terms into the low-energy
part of the expansion (1). However, this is a computationally
expensive path. The computational time is roughly propor-
tional to N1 × N2 since most of the time goes to calculation of
the second-order correction to the effective CI matrix [second
term on the left-hand side of Eq. (4), which is a rectangular
matrix of the N1 × N2 size]. On the other hand, there is usually
a significant energy gap between the states of the lowest and
excited configurations of an atom. This means that moving
just a few terms from the second to the first part of expansion
(1) would not much change the result. One has to increase the
value of N1 significantly to see any real change. This may lead
to a significant increase of the computational time.

To calculate HFS, we use the time-dependent Hartree-Fock
(TDHF) method [11,12], which is equivalent to the
well-known random-phase approximation (RPA). The TDHF
method deals with oscillating external fields. The case of HFS
corresponds to zero frequency of oscillations, so no real time
dependence is introduced. The RPA equations can be written
as

(ĤRHF − εc)δψc = −(
f̂ + δV f

core

)
ψc, (5)

where ĤRHF is the relativistic Hartree-Fock Hamiltonian, and
f̂ is an operator of an external field (nuclear magnetic dipole
or electric quadrupole fields). This operator takes into account
a finite nuclear size for both magnetic dipole [12] and electric
quadrupole [13] operators.

Index c in (5) numerates states in the core, ψc is a single-
electron wave function of the state c in the core, εc is its
Hartree-Fock energy, δψc is the correction to this wave func-
tion caused by an external field, and δV f

core is the correction
to the self-consistent RHF potential caused by changing of
all core states. Equation (5) are solved self-consistently for
all states in the core. As a result, the effective operator of
the interaction of valence electrons with an external field is
constructed as f̂ + δV f

core. The energy shift of a many-electron
state a is given by

δεa = 〈a|
M∑

i=1

(
f̂ + δV f

core

)
i|a〉. (6)

Here, M is the number of valence electrons.
When the wave function for the valence electrons comes as

a solution of Eq. (4), Eq. (6) is reduced to

δεa =
∑

i j

xix j〈�i|ĤHFS|� j〉, (7)

where ĤHFS = ∑M
i=1( f̂ + δV f

core )i. For better accuracy of the
results, the full expansion (1) might be used. Then it is con-
venient to introduce a new vector Z , which contains both X
and Y , Z ≡ {X ,Y}. Note that the solution of (4) is normal-
ized by the condition

∑
i x2

i = 1. The normalization condition
for the total wave function (1) is different,

∑
i x2

i + ∑
j y2

j ≡∑
i z2

i = 1. Therefore, when X is found from (4), and Y is
found from (3), both vectors should be renormalized. Then
the HFS matrix element is given by an expression which is
similar to (7) but has many more terms,

δεa =
∑

i j

ziz j〈�i|ĤHFS|� j〉. (8)

Energy shift (6) is used to calculate HFS constants A and B
using textbook formulas

Aa = gIδε
(A)
a√

Ja(Ja + 1)(2Ja + 1)
, (9)

and

Ba = −2Qδε (B)
a

√
Ja(2Ja − 1)

(2Ja + 3)(2Ja + 1)(Ja + 1)
. (10)

Here, δε (A)
a is the energy shift (6) caused by the interaction

of atomic electrons with the nuclear magnetic moment μ,
gI = μ/I , and I is the nuclear spin; δε (B)

a is the energy shift
(6) caused by the interaction of atomic electrons with the
nuclear electric quadrupole moment Q [Q in (10) is measured
in barns].

The uncertainty of the HFS calculations comes from two
sources. One is the uncertainty in the wave function and
another one is the contribution of omitted terms in the corre-
lation corrections to the HFS operator. The uncertainty in the
wave function is mostly due to limitations of the basis and the
fact that most of the mixing states are treated perturbatively.
The corresponding effect on the HFS constants ranges from a
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TABLE II. Energy levels and hyperfine structure constants A and B for low states of 167Er. Nuclear spin I = 7/2, nuclear magnetic moment
μ(167Er) = −0.563 85(12)μN [19]; nuclear electric quadrupole moment Q(167Er) = 3.57(3) barns [19]; gI = μ/I . The last column gives
references to experimental data.

Energy (cm−1) A (MHz) B (MHz)

Configuration Term NIST [15] CIPT Expt. Present Ref. [3] Expt. Present Ref. [3] Ref.

4 f 126s2 3H6 0 0 −120.487 −122 −117 −4552.984 −4880 −5037 [16]
3F4 5035 5370 −121.9 −125 −122 516 124 1050 [16]
3H5 6958 7244 −159.4 −159 −158 −4120 −4566 −4539 [16]
3H4 10750 10838 −173.4 −173 −174 −2429 −2470 −2600 [16]
3F3 12377 13322 −143.4 −142 −139 1236 1685 1767 [16]
3F2 13097 14599 −167.2 −166 −172 1688 1828 1874 [16]

4 f 115d6s2 (15/2, 3/2)o
6 7176 5449 −139.957 −142 −135 −709.396 −1092 −1655 [17]

(15/2, 3/2)o
7 7696 6024 −125.851 −123 −114 −3046.052 −2285 −2230 [17]

(15/2, 3/2)o
8 9350 6746 −119.870 −115 −104 −3062.704 −2355 −2372 [17]

(15/2, 3/2)o
9 8620 6152 −113.582 −110 −99 −782.987 −1121 −1733 [17]

(15/2, 3/2)o
7 11888 8810 −126.56 −130 −2969 −2121 [18]

4 f 126s6p (6, 1)o
7 17157 17399 −172.5 −173 −173 −4440 −4377 −4391 [16]

few percent for large constants to ∼50% for small constants.
The latter is because a small value of the HFS constant comes
as a result of a strong cancellation between different contribu-
tions. Such a cancellation leads to a loss in accuracy. In the
present calculations we neglect some minor contributions to
the correlation corrections to the HFS operator, such as the
structure radiation, self-energy correction, renormalization of
the wave function, and a two-particle correction (see, e.g.,
Ref. [14]). The combined effect of such corrections does not
exceed 10% [14]. In the end we conclude that the expected
accuracy of the HFS calculations is about 10% for large HFS
constants and ∼50% for small HFS constants.

III. HYPERFINE STRUCTURE OF ERBIUM

The results of calculations of the energy levels and the
magnetic dipole HFS constant A and electric quadrupole HFS
constant B for 167Er are presented in Table II and compared
with experiment [15–18] and with our previous calculations
[3]. Note that the accuracy for the HFS is generally better
than for the energies. This is because experimental energies
are given as excitation energies form the ground state. In
calculations they are given by the difference 〈�i|HCI|�i〉 −
〈�0|HCI|�0〉, where each wave function �i for the excited
state and �0 for the ground state has 14 electrons and the
difference is just a small fraction of a percent of each energy.
A strong cancellation between two energies leads to some loss
of accuracy. On the other hand, the HFS is given just by the
expectation value of the HFS operator 〈�i|HHFS|�i〉.

There are calculations of the HFS of Er using the multicon-
figuration Dirac-Fock method (MCDF) [17,20]. Our results
for the magnetic dipole HFS constant A are significantly closer
to the experiment in all cases except one. For an odd state
at E = 7176 cm−1 our result is 1.4% above the experiment
while MCDF calculations give a result which is within 1% of
the experiment [17]. Four electric quadrupole HFS constants
B were considered for even states of Er in Ref. [20]. For two
of them the results of the MCDF calculations are closer to
experiment, while for the other two our results are closer to

experiment. Among these four states the most important one
in the content of the present paper is obviously the ground
state. For the ground state our result for B is 7% larger than the
experimental value while the MCDF calculations [20] give a
value which is 2.2% larger than experiment. In the end we can
conclude that in terms of accuracy of the results our method
is similar or better than the MCDF method.

Our previous calculations used only dominating terms
in the wave-function expansion [formula (7)], while in the
present calculations we use a complete expansion [formula
(8)]. Comparing the results (see Table II) shows a systematic
but not always significant improvement in accuracy. Accuracy
is good for the ground state; it is ∼1% for the magnetic dipole
constant A and ∼7% for the electric quadrupole constant Q.
This is mostly due to the simple electronic structure of the
ground state and a significant separation of it from the states
of the same parity and J . This is a general trend for many
atoms. For this reason we have calculated in Ref. [8] the HFS
of Cf and Es in the ground state only. However, in the present
work we calculate HFS for excited states as well. As one can
see from Table II, the accuracy is good for A constant. It is
1%–2% for states of the 4 f 126s2 and 4 f 126s6p configurations
and 2%–4% for states of the 4 f 115d6s2 configuration.

The situation is more complicated for the electric
quadrupole HFS constant Q. For most of the states of the
4 f 126s2 configuration the relative difference between theory
and experiment is <10%. For two states, 3F4 and 3F3, the ac-
curacy is poor. This can be probably explained by the fact that
the values of B for these states are relatively small, which are
the results of the cancellation between different contributions.
Such a cancellation usually leads to poor accuracy. Overall,
the accuracy for B is lower than for A. This is partly due to the
sensitivity of B constants to the s-d mixing [13].

The accuracy for B is significantly lower for the states of
the 4 f 115d6s2 configuration (see Table II). It ranges from
−25% to +50%. This is probably due to the sensitivity of
the B constant to the mixing of the states of two different con-
figurations, the 4 f 126s6p and 4 f 115d6s2 configurations. The
mixing is roughly proportional to 〈4 f 6p|r</r2

>|5d6s〉/�E
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TABLE III. Energy levels, magnetic dipole (A) and electric
quadrupole (B) hyperfine structure constants of the ground state of
Fm, and odd excited states connected to the ground state by electric
dipole transitions. Calculated and experimental energies (in cm−1),
and calculated g factors are included. Letters S, P, D in the first
column indicate dominating configurations, 5 f 127s2, 5 f 127s7p, and
5 f 117s26d , respectively.

CIPT Experimental A/gI B/Q

Energy g factor energy [1,2] (MHz) (MHz)

Ground state, J = 6
S 0 1.1619 759 −1844

Odd states with J = 5
P 20844 1.1507 −1317 −1438
D 23663 1.1793 2094 −542
P 24490 1.1967 2285 −543
P 25542 1.1211 25111.8(0.2)a 399 −1850
P 28497 1.1778 27389(1.5) 1446 −1311
P 28779 1.2342 28185(1.5) 2792 94
D 30356 1.1219 649 632

Odd states with J = 6
P 19023 1.2565 2319 −1423
D 19349 1.2853 908 −601
P 20229 1.0876 −454 −1103
D 24408 1.1644 835 −1100
P 25468 1.1856 25099.8(0.2)b 1788 −2008
P 28427 1.2459 27466(1.5) 2588 342
P 29072 1.1761 28377(1.5) 637 −1567

Odd states with J = 7
D 19901 1.2373 786 −1262
P 20409 1.1922 2733 −1949
D 24025 1.1528 764 −1144
P 25220 1.2350 2231 −1817
P 29367 1.1456 28391(1.5) −232 −1284
D 32668 1.1244 549 346
D 33273 1.0677 626 484

aState R2 in Ref. [2].
bState R1 in Ref. [2].

[r< = min(r1, r2), r> = max(r1, r2)]. The dipole Coulomb in-
tegral is large and the energy interval is often small, which
means large mixing. On the other hand, the matrix elements
of the Q̂ operator are two to three times smaller for the
states of the 4 f 115d6s2 configuration than for the states of
the 4 f 126s6p configuration. This means that wrong mixing
coefficients (e.g., due to an inaccurate value of �E ) leads to
the wrong value of B. Note that the values of A are much less
sensitive to this mixing due to significantly smaller difference
in the values of the matrix elements for the states of these two
configurations.

In the end we can conclude that the best accuracy is for
the ground state (see also Ref. [8]). It is ∼2% for A and ∼7%
for B. Among the excited states the best accuracy should be
expected for those states of the 4 f 126s6p configuration which
are well separated on the energy scale from the states of the
4 f 115d6s2 configuration and give large values of A and B.

IV. HYPERFINE STRUCTURE OF FERMIUM

The results of calculations for Fm are shown in Table III.
The accuracy of the results, in terms of the expected deviation
from experiment, is expected to be very similar to those of Er
(see the previous section for a detailed discussion). The best
accuracy is for the ground state. Among the excited states,
the best accuracy for the HFS constants A and B should be
expected for the states of the 5 f 127s7p configuration, where
the value of these constants is relatively large. In an experi-
mental work [2] the HFS was measured for the ground and
two excited states. The first of these two states, called R1, has
an energy E = 250 99.8(2) cm−1, and the second, called R2,
has an energy E = 251 11.8(2) cm−1. As one can see from
Table III, the state R2 has an anomalously small value of
A. This means that the theoretical uncertainty for this state
is large and the state is not very good for the extraction of
nuclear parameters. In contrast, state R1 has relatively large
values of A and B and therefore present a better alternative for
the analysis.

There is some difference in the results of the present work
presented in Table III and the results of our previous calcu-
lations [3]. This difference is due to some variation in the
basis. It illustrates the accuracy of the method. This may lead
to problems in identification of the states with close energies.
For example, the first two odd states with J = 6 go in opposite
order in the present and earlier calculations of Ref. [3]. There-
fore, it is important to know the g factors of the states as an
additional means of their identification. The good aspect about
g factors is that they are more stable in the calculations. This is
because they are proportional to the diagonal matrix element
of the magnetic dipole transition (M1) operator which has no
radial part. Therefore, the g factors are not sensitive to the
radial part of the wave function. On the other hand, they are
sensitive to configuration mixing. Currently, no experimental
data on g factors are available. If measurements of the HFS are
going to be used for the extraction of nuclear parameters, then
measuring the g factors becomes almost as important as mea-
suring the HFS itself. This is because a wrong identification
of the states may lead to wrong results for nuclear parameters.

V. CONCLUSION

We present calculations for energies, g factors, and HFS
constants A and B for 22 states of Fm. Similar calculations for
Er illustrate the accuracy of the applied method. The results
are to be used for the extraction of the nuclear magnetic dipole
moments μ and nuclear electric quadrupole moments Q from
current and future measurements of the HFS in some Fm
isotopes.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Coun-
cil Grants No. DP230101058 and No. DP200100150.

[1] M. Sewtz, H. Backe, A. Dretzke, G. Kube, W. Lauth, P.
Schwamb, K. Eberhardt, C. Grüning, P. Thörle, N. Trautmann,
P. Kunz, J. Lassen, G. Passler, C. Z. Dong, S. Fritzsche,

and R. G. Haire, First Observation of Atomic Levels
for the Element Fermium (Z = 100), Phys. Rev. Lett. 90,
163002 (2003).

012823-4

https://doi.org/10.1103/PhysRevLett.90.163002


CALCULATION OF THE HYPERFINE STRUCTURE OF ER … PHYSICAL REVIEW A 108, 012823 (2023)

[2] H. Backe, A. Dretzke, S. Fritzsche, R. G. Haire, P. Kunz, W.
Lauth, M. Sewtz, and N. Trautmann, Laser spectroscopic inves-
tigation of the element fermium (Z = 100), Hyperfine Interact.
162, 3 (2006).

[3] S. O. Allehabi, J. Li, V. A. Dzuba, and V. V. Flambaum, The-
oretical study of electronic structure of erbium and fermium,
J. Quant. Spectrosc. Radiat. Transfer 253, 107137 (2020).

[4] N. Severijns, A. A. Belyaev, A. L. Erzinkyan, P.-D. Eversheim,
V. T. Filimonov, V. V. Golovko, G. M. Gurevich, P. Herzog, I. S.
Kraev, A. A. Lukhanin et al., Hyperfine field of einsteinium in
iron and nuclear magnetic moment of 254Es, Phys. Rev. C 79,
064322 (2009).

[5] S. Nothhelfer, T. E. Albrecht-Schonzart, M. Block, P. Chhetri,
C. E. Dullmann, J. G. Ezold, V. Gadelshin, A. Gaiser, F.
Giacoppo, R. Heinke et al., Nuclear structure investigations of
253−255Es by laser spectroscopy, Phys. Rev. C 105, L021302
(2022).

[6] M. Laatiaoui and S. Raeder, New developments in the produc-
tion and research of actinide elements, Atoms 10, 61 (2022).

[7] F. Weber, T. E. Albrecht-Schönzart, S. O. Allehabi, S. Berndt,
M. Block, H. Dorrer, C. E. Düllmann, V. A. Dzuba, J. G. Ezold,
V. V. Flambaum et al., Nuclear moments and isotope shifts of
the actinide isotopes 249−253Cf probed by laser spectroscopy,
Phys. Rev. C 107, 034313 (2023).

[8] S. O. Allehabi, V. A. Dzuba, and V. V. Flambaum, Calculation
of the hyperfine structure of Dy, Ho, Cf, and Es, Phys. Rev. A
107, 032805 (2023).

[9] S. Raeder (private communication).
[10] V. A. Dzuba, J. C. Berengut, C. Harabati, and V. V. Flambaum,

Combining configuration interaction with perturbation theory
for atoms with a large number of valence electrons, Phys. Rev.
A 95, 012503 (2017).

[11] V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P.
Sushkov, Correlation potential method for the calculation of

energy levels, hyperfine structure and E1 transition amplitudes
in atoms with one unpaired electron, J. Phys. B: At. Mol. Phys.
20, 1399 (1987).

[12] V. A. Dzuba, V. V. Flambaum, and O. P. Sushkov, Relativistic
many-body calculation of the hyperfine structure intervals of
the caesium and francium atoms, J. Phys. B: At. Mol. Phys. 17,
1953 (1984).

[13] V. A. Dzuba and V. V. Flambaum, Effect of finite nuclear size on
the electric quadrupole hyperfine operator, arXiv:2305.01208.

[14] V. A. Dzuba, V. V. Flambaum, M. G. Kozlov, and S. G. Porsev,
Using effective operators in calculating the hyperfine structure
of atoms, J. Exp. Theor. Phys. 87, 885 (1998).

[15] A. Kramida, Y. Ralchenko, and J. Reader, and NIST ASD team,
NIST Atomic Spectra Database (ver. 5.7.1), https://physics.nist.
gov/asd (accessed 11 November 2019), National Institute of
Standards and Technology, Gaithersburg, MD.

[16] W. J. Childs, L. S. Goodman, and V. Pfeufer, Hyperfine
structure of the 4 f 126s2 3H and 3F terms of 167ErI by atomic-
beam, laser-rf double resonance, Phys. Rev. A 28, 3402
(1983).

[17] W. J. Childs, L. S. Goodman, and K. T. Cheng, Hyperfine
structure of excited 4 f 115d6s2 levels in 167Er I: Measurements
and multiconfiguration Dirac-Fock calculations, Phys. Rev. A
33, 1469 (1986).

[18] R. J. Lipert and S. C. Lee, Isotope shifts and hyper-
fine structure of erbium, dysprosium, and gadolinium by
atomic-beam diode-laser spectroscopy, Appl. Phys. B 57, 373
(1993).

[19] N. J. Stone, Table of nuclear magnetic dipole and electric
quadrupole moments, At. Data Nucl. Data Tables 90, 75
(2005).

[20] K. T. Cheng and W. J. Childs, Ab initio calculation of 4 f N 6s2

hyperfine structure in neutral rare-earth atoms, Phys. Rev. A 31,
2775 (1985).

012823-5

https://doi.org/10.1007/s10751-005-9209-x
https://doi.org/10.1016/j.jqsrt.2020.107137
https://doi.org/10.1103/PhysRevC.79.064322
https://doi.org/10.1103/PhysRevC.105.L021302
https://doi.org/10.3390/atoms10020061
https://doi.org/10.1103/PhysRevC.107.034313
https://doi.org/10.1103/PhysRevA.107.032805
https://doi.org/10.1103/PhysRevA.95.012503
https://doi.org/10.1088/0022-3700/20/7/009
https://doi.org/10.1088/0022-3700/17/10/005
http://arxiv.org/abs/arXiv:2305.01208
https://doi.org/10.1134/1.558736
https://physics.nist.gov/asd
https://doi.org/10.1103/PhysRevA.28.3402
https://doi.org/10.1103/PhysRevA.33.1469
https://doi.org/10.1007/BF00357378
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1103/PhysRevA.31.2775

