
PHYSICAL REVIEW A 108, 012816 (2023)

Autoionization of high-l core-excited Rydberg states of alkaline-earth-metal atoms
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The autoionization of core-excited Rydberg states is theoretically studied for a broad range of principal and
angular-momentum quantum numbers n and l in alkaline-earth-metal atoms. We combined two theoretical
methods to calculate accurate autoionization rates for n = 10 − 65 and l = 0 − 45 over the 100 orders of
magnitude that they span. The strong interaction between the two valence electrons for low l states is treated from
first principles with configuration interaction with exterior complex scaling, while at large l the weak correlation
is described by a perturbative approach and arbitrary-precision floating-point arithmetics. The results, which
we benchmark against available experimental data, provide autoionization rates for the N p1/2,3/2 and, when
applicable, (N − 1)d3/2,5/2 ion-core states of Mg, Ca, and Sr (N = 3 − 5). Using the extensive set of calculated
data, we analyze the dependence of the rates on l and identify five general laws of the autoionization of high-l
states. An empirical formula describing the scaling of the rates with l is suggested.
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I. INTRODUCTION

When the ion core of a Rydberg atom or molecule is ex-
cited, the system can decay via three different mechanisms:
fluorescence of the ion core, fluorescence of the Rydberg
electron, and, because the energy of the system is above the
first ionization threshold, autoionization. Between these three
mechanisms, autoionization is the fastest by up to several
orders of magnitude for states in which the orbital angular
momentum of the Rydberg electron is low [1]. The dynamics
governing autoionization are a sensitive probe to electron cor-
relations and, as such, have been extensively studied both in
the time and frequency domain [2–4]. Experiments based on
ion-core excitation [5] have unraveled some of the fascinating
electron dynamics that take place in the dense manifolds of
core-excited Rydberg states [1,6–9], and studies are ongoing
to probe the complex correlations that occur for even higher
degrees of core excitation [10,11]. The development of multi-
channel quantum defect theory has led to a clear and powerful
way of understanding autoionization as the inelastic scatter-
ing of the Rydberg electron off the ion core. An alternative
method, the configuration interaction with exterior complex
scaling (CI-ECS), was recently used [11–13] to describe the
dynamics of core-excited Rydberg states, in particular, for
higher-lying core excitation where it provided a spectacular
visualization of electron dynamics [14].

The behavior of autoionization when the Rydberg electron
has a low orbital-angular-momentum quantum number l has
been extensively studied (see, e.g., Refs. [1,15] for reviews).
In the absence of series perturbations, the autoionization rates
of a given series, converging to a given ion-core state, scale
with the principal quantum number of the Rydberg electron
as n−3 [15]. This scaling is no more than the probability to
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find the Rydberg electron near the nucleus, which is where
the Rydberg electron inelastically scatters off the ion core and
autoionizes. Autoionization for states with high l values, on
the other hand, is much less well characterized. The centrifu-
gal barrier

l (l + 1)

2r2
(1)

prevents the penetration of the Rydberg-electron wave func-
tion into the ion core region, thereby suppressing autoioniza-
tion. Pioneering experimental studies in Sr have shown that
the rates indeed drop rapidly with l [5], a result that was later
verified for other series and species [16–19] and confirmed
by theoretical predictions for l � 10 [19–21]. Fluorescence-
decay mechanisms have been observed to dominate the decay
of core-excited Rydberg states for sufficiently high l values
[4]. While values or upper limits of the autoionization rates
have been measured for l as high as 50 [18], theoretical
values for l � 10 are lacking, a fact that can be attributed to
the difficulty of calculating the matrix elements involved in
the rates.

The autoionization rates of high-l core-excited Rydberg
states play an important role in pulsed-field-ionization zero-
kinetic-energy photoelectron spectroscopy [22,23]. Their low
values stabilize core-excited Rydberg states against autoion-
ization [24], which permits the measurement of photoelectron
spectra of atoms, molecules, and ions at high resolution
[22,25,26]. Autoionization also has significant interest in
cold-atom experiments where it has been used to image ul-
tracold Rydberg gases [27], track the formation of ultracold
neutral plasmas [28], or realize high-fidelity state detection
of Rydberg atoms in an atomic array [29]. The possibility to
suppress autoionization offers many interesting properties for
quantum optics and quantum information experiments with
Rydberg atoms [30]. Ion-core fluorescence, which can only
be observed if it is faster than autoionization, has been used
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to image ultracold Rydberg gases [31], and optical control
of the ion core is a promising route to manipulate Rydberg
atoms without perturbing the Rydberg electron [32–34]. In
these perspectives, it appears desirable to better understand
the behavior of autoionization with l , from regions where it
predominates over other decay rates to regions where it is
completely suppressed.

We present a theoretical study of the autoionization of
alkaline-earth-metal atoms (Mg, Ca, Sr) in core-excited Ryd-
berg states. These species were chosen for two reasons. First,
they are widely used in the quantum optics and quantum infor-
mation applications mentioned above. Second, their electronic
structure is both amenable to high accuracy calculations and
simple enough so the different dynamics governing autoion-
ization can be identified and understood.

We developed and used two theoretical methods to calcu-
late autoionization rates from l = 0 all the way to l = 45 for
n = 10 − 65 and for ion-core states comprising the excited
states N p1/2, N p3/2, and, when applicable, (N − 1)3/2 and
(N − 1)d5/2 (N = 3, 4, and 5 for Mg, Ca, and Sr, respec-
tively). The relevant energy-level structures and energy values
of the three species are summarized in Fig. 1. To calculate
the rates over such a broad range of states, we combined the
capability of CI-ECS [12,14,35] to treat the complete two-
electron dynamics from first principles with a perturbative
treatment of electron correlations to calculate the extremely
small autoionization rates of high-l states with arbitrary nu-
merical precision. The two methods are discussed in detail in
Sec. II. The results, presented in Sec. III, provide a complete
picture of the autoionization rates of the core-excited Rydberg
states of Mg, Ca, and Sr. They allow us to identify general
trends and properties of the autoionization of high-l states,
which we rationalize by investigating the underlying electron
dynamics. An empirical formula describing the scaling of the
rates with l is suggested.

II. THEORY

A. CI-ECS calculations

The description of core-excited Rydberg states is a
challenging task for atomic-structure techniques because it
requires treating the electronic motion far from the nucleus
(r ∼ 3000 a0 for n = 45), to calculate electronic correlations
over large regions of configuration space, and to describe
continuum processes and resonances. As in other studies
(see Ref. [1] for a review), we reduce the complexity of the
problem by treating alkaline-earth-metal atoms as quasi-two-
electron systems. The two valence electrons, subject to the
effective field of the closed-shell doubly charged ion core, are
considered explicitly. The effect of the remaining electrons,
on the other hand, is accounted for with a fitted effective core
model potential. The effective Hamiltonian describing the two
valence electrons is given by

Ĥ (r1, r2) = − 1

2
∇2

1 − 1

2
∇2

2 + Vl1 (r1) + Vl2 (r2) + 1

r12

+ V SO
l1 j1 (r1) + V SO

l2 j2 (r2) + V (2)
pol (r1, r2), (2)

where the vectors r1 and r2 represent the positions of the
two electrons and r12 is the distance between them. The

(a)

(1st Ionization
threshold)

Sr+(5s1/2)
+ e-

Sr+(4d3/2)
+ e-

Sr+(4d5/2)
+ e-

Sr+(5p1/2)
+ e-

Sr+(5p3/2) + e-

En
er

gy
 (e

V)

1.8047

1.8395

2.9403

3.0397

0.0

Autoioniza�on

n = 20

n = 12

(b)

(1st Ionization
threshold)

Ca+(4s1/2)
+ e-

Ca+(3d3/2)
+ e-

Ca+(4p1/2)
+ e-

En
er

gy
 (e

V)

1.6924

3.1233

0.0

Ca+(3d5/2)
+ e-

1.7000 n = 43

Ca+(4p3/2)
+ e-

3.1510

n = 23

(c) Mg+(3p1/2)
+ e-

4.4224

Mg+(3p3/2)
+ e-

4.4338 n = 35

(1st Ionization
threshold)

Mg+(3s1/2)
+ e-

En
er

gy
 (e

V)

0.0

FIG. 1. (a) Energy-level scheme of the relevant Rydberg states
of Sr. The vertical scale is discontinuous. The red arrows represent
autoionization processes. The blue double arrows illustrate other
possible channel interactions between adjacent Rydberg series, re-
sponsible for series perturbations. For each ion-core fine-structure
multiplet, we indicate the principal quantum numbers below which
spin-orbit autoionization into the continua above the lowest fine-
structure component is no longer possible. Same energy-level
scheme for Ca (b) and Mg (c).
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TABLE I. Model-potential paramaters used in the calculations
reported in this paper.

αl
1 αl

2 αl
3 rl

c αcp αl
SO

Mg

l = 0 4.51367 11.81954 2.97141 1.44776 0.49 1
l = 1 4.71475 10.71581 2.59888 1.71333 0.49 0.7875
l � 2 2.99158 7.69976 4.38828 1.73093 0.49 1

Ca

l = 0 4.0616 13.4912 2.1539 1.5736 3.5 1
l = 1 5.3368 26.2477 2.8233 1.0290 3.5 0.984
l = 2 5.5262 29.2059 2.9216 1.1717 3.5 0.68
l � 3 5.0687 24.3421 6.2170 0.4072 3.5 1

Sr

l = 0 3.86849 7.89363 1.82951 1.11292 5.3 1
l = 1 3.43901 2.74445 1.48442 1.22661 5.3 0.982
l = 2 3.39035 4.32782 1.58635 1.55384 5.3 0.844
l � 3 4.81077 4.06763 1.75544 0.94593 5.3 1

Hamiltonian includes l-dependent model potentials Vli (ri )
representing the effect of the doubly charged ion core on the
valence electrons independently (i = 1, 2). It also includes the
electron repulsion 1/r12 and the spin-orbit interaction V SO

li ji
(ri),

with ji the total-angular-momentum quantum number of each
electron. The two-electron term V (2)

pol (r1, r2) represents the po-
larization of the core upon the concerted motion of the two
electrons [12,36,37].

The model potentials Vl (r) are of the form proposed in
Ref. [1],

Vl (r) = − 1

r

[
2 + (Z − 2)e−αl

1r + αl
2e−αl

3r
]

− αcp

2r4
W6

(
r; rl

c

)
, (3)

with the cutoff function W6 defined as

W6
(
r; rl

c

) = 1 − e−(r/rl
c )6

. (4)

The parameters αl
1, α

l
2, α

l
3, and rl

c have been optimized on the
experimental values of the energy levels of the singly-charged
ion in Refs. [1,37,38] for Mg+, Ca+, and Sr+, respectively.
Their values are listed in Table I.

The spin-orbit interaction is given by [1]

V SO
l j (r) = αl

SO
α2

2
l · s

1

r

dVl

dr

[
1 − α2

2
Vl (r)

]−2

, (5)

with α the fine-structure constant. The additional scaling
factor αl

SO was introduced and adjusted to reproduce the spin-
orbit splittings of the low-lying excited states of the ion with
an accuracy of better than 1 cm−1, instead of the 10 cm−1 ac-
curacy obtained without it. Its values are also given in Table I.
The 1-cm−1 accuracy is required to predict perturbations of
the energies and autoionization rates caused by Rydberg states
of adjacent series with sufficient accuracy (see Ref. [35] for
examples with Mg). Without it, the perturbations would occur
at the wrong energies and, therefore, for the wrong Rydberg
states.

TABLE II. FEM-DVR parameters used in the CI-ECS calcula-
tions reported in this paper.

Element [ri, ri+1] Units of (a0) Ni θi(deg)

Mg

i = 1 [0, 100] 100 0
i = 2 [100, 17 600] 550 5

Ca

i = 1 [0, 10] 70 0
i = 2 [10, 250] 70 0
i = 3 [250, 10 250] 300 5

Sr

i = 1 [0, 10] 80 0
i = 2 [10, 150] 80 0
i = 3 [150, 13 150] 350 5

The two-electron Schrödinger equation associated with
the Hamiltonian (2) is solved using the CI-ECS method,
which has been described in detail elsewhere [12,14,35].
Briefly, the two-electron wavefunction is written as a lin-
ear combination of antisymmetrized products of one-electron
spin-orbitals. Angular momenta are coupled in the jj coupling
scheme, which is the most appropriate for core-excited Ryd-
berg states [1]. Autoionization and other continuum processes
are treated using the technique of exterior complex scaling
(ECS) [39,40]. Following ECS, the radial coordinates r1 and
r2 of the electrons are rotated into the complex plane by an
angle θ beyond a radius R0,

r →
{

r if r < R0

R0 + (r − R0) eiθ if r � R0.
(6)

The interest of ECS lies in the behavior of resonance wave
functions. For real r values, the amplitudes of resonance wave
functions are nonnegligible even as r → ∞. Upon complex
scaling, these become exponentially damped at large distances
and can be represented by square-integrable functions. Calcu-
lations can thus be performed in a box of finite radius rmax

even when continua are involved. The size of the box limits
the spatial extent of the largest Rydberg wave function that
can be represented, and therefore gives an upper bound to the
maximal n value that can be reliably calculated. We typically
choose rmax > 10 000 a0 (see Table II) such that nmax � 70.

Complex scaling requires the use of complete square-
integrable basis sets, which would make the size of the
two-electron basis set very large and the calculations com-
putationally demanding (see, e.g., Ref. [41]). This issue is
overcome by choosing the complex-rotation radius R0 to be
larger that the extension of the core-electron wave function.
In that case, the core electron does not reside in the complex-
scaled region and is well described by a small number of
radial functions. Only the outer electron must be described
by a (quasi)complete basis set and the size of the two-electron
basis set is dramatically reduced.

In practice, the one-electron spin-orbitals entering the
two-electron wave function are constructed from radial func-
tions, spherical harmonics and spinors (see Ref. [12] for
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TABLE III. Core-electron orbitals included in the CI-ECS calcu-
lations reported in this paper.

Atom Core-electron orbitals

Mg 3s1/2, 3p1/2,3/2, 3d3/2,5/2, 4s1/2, 4p1/2,3/2

Ca 4s1/2, 3d3/2,5/2, 4p1/2,3/2, 5s1/2, 4d3/2,5/2, 5p1/2,3/2,

4 f5/2,7/2, 5d3/2,5/2, 5 f5/2,7/2

Sr 5s1/2, 4d3/2,5/2, 5p1/2,3/2, 6s1/2, 5d3/2,5/2, 6p1/2,3/2,

4 f5/2,7/2, 7s1/2, 6d3/2,5/2, 7p1/2,3/2

details). The complex-scaled radial functions describing each
of the two electrons are numerical finite-element discrete-
variable-representation (FEM-DVR) functions [35,42]. They
are obtained by solving the one-electron radial Schrödinger
equation for the singly charged ion along the complex ECS
contour (6). In the FEM-DVR method, the radial space is split
into several finite elements [ri, ri+1] and, in each element i,
the Schrödinger equation is solved on a grid of Ni points with
a Legendre-Gauss-Lobatto DVR method [43]. We carefully
chose the size of the finite elements and the number of grid
points to minimize the basis-set size and make the calculations
as fast as possible. The parameters of the FEM-DVR calcula-
tions are listed in Table II for each alkaline-earth-metal atom
considered in this paper.

In the CI expansion of the two-electron wave function,
we use the quasicomplete set of 1 + ∑

i(Ni − 1) FEM-DVR
radial functions to describe the Rydberg electron. The set
of FEM-DVR functions representing the core electron is re-
stricted to those describing the low-lying levels of the Mg+,
Ca+, and Sr+ ions listed in Table III. Together, this means
that the two-electron basis set comprises from 5000 to 30 000
basis functions depending on the total angular momentum, the
parity, and the atomic species.

The Hamiltonian matrix (2) is calculated along the
ECS contour with the complex-scaled FEM-DVR basis
and diagonalized. The eigenvalues and eigenstates of the
Hamiltonian are attributed, by inspecting the coefficients
of the CI expansion, to a Rydberg series with given values
of N , l1, j1, l , j, and J . The quantum numbers N, l1, and
j1 correspond to the principal, orbital-angular-momentum,
and total-angular-momentum quantum numbers of the core
electron, respectively. They indicate the ionization threshold
to which the Rydberg series converges. The quantum numbers
l and j are associated to the angular momenta of the Rydberg
electron and J is the quantum number for the total angular mo-
mentum of the entire, two-electron system. We use below the
notation (Nl1 j1 nl j )J to denote the Rydberg states. Because the
quantum defects δl of the high-l states considered in this paper
are very small, the difference between the principal quantum
number n of the Rydberg electron and its effective principal
quantum ν = n − δl number is negligible in most cases. We
thus use n interchangeably to describe either quantity. When
channel interactions are strong, as is often the case for low l
values, the Rydberg series are strongly perturbed and mixed,
such that the assignment to one single series is rather arbitrary.

Because the Hamiltonian matrix is complex-symmetric,
its eigenvalues are complex and given by E − i�/2
[see Figs. 2(a) and 2(b) for the Sr(5p1/2ns1/2)1 and

FIG. 2. Comparison between the energies and autoionization
rates of core-excited Rydberg states calculated with CI-ECS and
measured experimentally for (a) the Sr(5p1/2ns1/2)1 Rydberg series
[44] and (b) the Ca(4p1/2,3/2npj )2 series [45]. The red and blue solid
circles in (b) represent 4p1/2 and 4p3/2 ion core states, respectively.
The effective principal quantum numbers n relative to the N p1/2

thresholds (N = 4, 5) are shown in the top horizontal axes. The
assignment bar in panel (a) shows the effective principal quantum
numbers n′ of Sr(5p3/2ns1/2)1 states. The gray dashed line shows the
overall n−3 scaling of autoionization rates.

Ca(4p1/2,3/2np j )2 series]. When the eigenstates correspond
to bound states and autoionizing resonances (red and blue
solid circles), the eigenvalues are independent of the complex-
rotation angle θ . The real part E gives the energy of the state
while the imaginary part is half the autoionization rate �. The
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eigenvalues of continuum states, on the other hand, are rotated
with respect to the real axis by ∼2θ (gray solid circles).

To assess the accuracy and reliability of our calculations,
we have compared the energies and autoionization rates of
the calculated core-excited Rydberg states against available
experimental data [44–50]. Overall, the agreement is excellent
and the majority of the calculated rate agree with experimental
data within the uncertainties.

Two examples are shown in Fig. 2 for the Sr(5p1/2ns1/2)1

series [Fig. 2(a)] and Ca(4p1/2,3/2np j )2 series [Fig. 2(b)],
confirming the excellent agreement over the entire range of
n values measured in the experiments. In the upper figure,
perturbations caused by the interaction of the Sr(5p1/2ns1/2)1

series with states belonging to series converging to the
Sr+(5p3/2) threshold cause deviations from the smooth n−3

decrease of the autoionization rates with n [dashed line in
Fig. 2(a)]. The positions of the perturber states, shown by
the assignment bar within the figure, match the energies
at which the autoionization rates of (5p1/2ns1/2)1 states are
larger. This increase is caused by the mixing of these states
with the perturber, which has a lower n value and there-
fore a larger autoionization rate. In the lower figure, similar
perturbations occur but the larger number of Rydberg se-
ries involved makes the assignment of perturber states more
complicated.

The CI-ECS approach thus allows the accurate calcula-
tion of the energies and autoionization rates of core-excited
Rydberg states, even in regions where perturbations between

series are important. The extraction of the autoionization
rates from the calculations is straightforward and does not
involve fitting the density of states or the photoionization cross
sections. It is ideally suited for large-scale calculations of
autoionization rates.

B. Perturbation theory for high-l states

Although, in principle, the autoionization rates can be
calculated with CI-ECS for all values of l , this approach
becomes cumbersome at high l where the rates reach values
below the numerical accuracy of the calculations (typically
10−12 Hartree) and the numerical accuracy of double-
precision arithmetics on the computer (10−16). Whereas
abitrary-precision arithmetics could be used to reach higher
accuracies, they make the calculation and diagonalization of
the large complex-rotated Hamiltonian matrix very demand-
ing computationally. For large l values, the centrifugal barrier
experienced by the Rydberg electron is large and prevents its
penetration in the ion-core region. The interelectronic distance
r12 is always large and the electron repulsion is thus always
small, such that a full treatment of two-electron correlations
is no longer necessary. Instead, a perturbative treatment is
possible, which significantly simplifies the calculations and
makes the use of arbitrary-precision arithmetics possible.

In the perturbative limit, a core-excited Rydberg state and
its associated wave function are well described by a single
jj-coupled configuration (Nl1 j1 nl j )J ,

|Nl1 j1nl jJMJ〉 =
∑
ml1 ml
ms1 ms
mj1 mj

〈
l1ml1

1

2
ms1

∣∣∣∣ j1mj1

〉〈
lml

1

2
ms

∣∣∣∣ jm j

〉〈
j1mj1 jm j

∣∣∣∣JMJ

〉∣∣∣∣Nl1ml1
1

2
ms1

〉∣∣∣∣nlml
1

2
ms

〉
, (7)

with |nlml
1
2 ms〉 and |Nl1ml1

1
2 ms1〉 describing the spin orbitals of the Rydberg and core electrons, respectively. We omitted

antisymmetrization in the above because, for high-l states, the effect of exchange is negligible as the core and Rydberg electrons
occupy very different regions of configuration space. The autoionization rate of a high-l core-excited Rydberg state into a given
continuum (N ′l ′

1 j′1
εl ′

j′ )J is given by Fermi’s golden rule,

� = 2π

∣∣∣∣〈N ′l ′
1 j′1εl ′ j′JMJ | 1

r12
|Nl1 j1nl jJMJ〉

∣∣∣∣
2

ρ(ε), (8)

with ρ(ε) representing the continuum density of states at energy ε.
The matrix element in Eq. (8) is calculated by expanding the electron-electron repulsion 1/r12 in multipole terms [51].

Although there is a large number of terms in the expansion, we have observed that only the dipole (q = 1) and quadrupole
(q = 2) terms contribute significantly to the calculated rates, i.e., � � �(1) + �(2). For each multipole term �(q), carrying out the
integration over all coordinates gives

�(q) = 2π
[
R

N ′l ′1 j′1,q
Nl1 j1

Rεl ′,q
nl

]2|B(q)|2, (9)

with the squared norm of the angular integral B(q) given by

|B(q)|2 = [ j1, j′1, j, j′, l1, l ′
1, l, l ′]

(
l ′
1 q l1

0 0 0

)2(
l ′ q l

0 0 0

)2{
j1 q j′1
l ′
1 1/2 l1

}2{
j q j′

l ′ 1/2 l

}2{
j′ j′1 J

j1 j q

}2

. (10)

We used the usual notation [a, b, . . .] = (2a + 1)(2b + 1) . . ..
The radial integral

R
N ′l ′1 j′1,q
Nl1 j1

=
∫

dr1 uN ′l ′1 j′1 (r1)rq
1 uNl1 j1 (r1) (11)

involving the reduced radial wave functions unl j (r) of the
core electron is calculated by considering that the influence of
the distant Rydberg electron on the core electron is minimal,
and that the core-electron radial wave function is identical
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to the one of the bare ion. The integral is then calculated
using the ionic FEM-DVR basis functions obtained, as for the
CI-ECS calculations, by solving the one-electron Schrödinger
equation for the ion (see Sec. II A).

The radial integral for the Rydberg electron,

Rεl ′,q
nl =

∫
dr2 uεl ′ (r2)r−q−1

2 unl (r2), (12)

is calculated using the fact that the Rydberg electron in a
high-l state experiences, to a very good approximation, the
Coulomb potential of the singly charged ion core and noth-
ing else. Because of the large centrifugal barrier, it does not
penetrate into the core region where the electrostatic poten-
tial would depart from the Coulomb case. In other words,
the quantum defect is vanishingly small (see Refs. [1,15]
for details) and the Rydberg-electron radial wave function is
hydrogenic. The integral is then known analytically in terms
of the Appell hypergeometric function F2 [52],

Rεl ′,q
nl =Nn,lCε,l ′�(l + l ′ − q + 2)

(
1

n
+ ik

)−(l+l ′−q+2)

× F2

(
l + l ′ − q + 2,− 1

ik
+ l ′ + 1, 2l + 2, 2l ′

+ 2;
2

1 + ikn
,

2ikn

1 + ikn

)
, (13)

with k = √
2ε. The normalization constant Nn,l of the initial

state is given by

Nn,l = 1

(2l + 1)!

√
(n + l )!

(n − l − 1)!2n

(
2

n

)l+3/2

(14)

and the one of the final state by

Cε,l = 1

(2l + 1)!

2(2k)l√
1 − exp(−2π/k)

l∏
s=1

√
s2 + 1

k2
. (15)

The Appell F2 function, along with all other functions
in Eq. (13), can be calculated to within arbitrary numerical
precision with the MPMATH library [53]. For the calculations
presented below, a numerical accuracy of 10−60 was chosen
for the calculation of the radial integrals (13), which have val-
ues ranging from about 1 atomic unit at low l to 10−50 atomic
units at high l . The other quantities entering Eq. (9) have
values well above the numerical precision of the computer
and can be calculated using double-precision arithmetics. The
final result is obtained, using a numerical accuracy of 10−120,
by multiplying and squaring all quantities together to obtain
�(q), by summing over the dipole and quadrupole contribu-
tions, and by summing over all continua accessible from the
core-excited Rydberg state under consideration. Because the
squares of the angular integrals have values of typically 10−2

or larger, the relative numerical accuracy of the final results is
guaranteed to be at least 10−10 for values up to 10−110 atomic
units. This means that all the rates shown below, whose values
reach as low as 10−100, are calculated with sufficient nu-
merical accuracy. Determining such minuscule autoionization
rates is possible only with theoretical methods and not with
experimental measurements because the lifetimes involved
are far too long and other decay mechanisms will dominate.

FIG. 3. Autoionization rates of the (4d5/245l j )J core-excited Ry-
dberg states of Sr as a function of the orbital quantum number of the
Rydberg electron ( j = l − 1/2 and J = j + 1/2). Solid blue circles
represent the total rates calculated for low l values with the CI-ECS
method (Sec. II A) and red ones show the total rates calculated for
large l values with the perturbative approach of Sec. II B. The empty
gray symbols show the partial decay rates to continua above the 5s1/2

(circles) and 4d3/2 (squares) ionization thresholds calculated with the
perturbative approach.

Anticipating on the results presented below, the rates cal-
culated with the perturbative approach closely match the ones
obtained by solving the full two-electron Schrödinger equa-
tion with CI-ECS for l values in the range from 6 to 10
(see, for example, the blue and red circles in Fig. 3). Above
l ∼ 10, the rates are in general lower than the numerical
accuracy of the CI-ECS calculations and only the perturbative
approach provides reliable results. Below l ∼ 6, perturba-
tions are frequent. Because they cannot be represented within
the single-configuration framework of the perturbative ap-
proach, only the CI-ECS method provides reliable results in
this range. The agreement between the two methods in the
l ∼ 6 − 10 range validates the perturbative treatment for large
l values and shows that it is possible, when combining the
two approaches, to accurately calculate the autoionization
rates of core-excited Rydberg states over the entire range of
possible l values. The results provide benchmark data for fu-
ture studies and, because they permit a systematic analysis of
the role played by the Rydberg-electron angular momentum,
they allow us to gain deep physical insight on the electronic
dynamics responsible for autoionization.

III. RESULTS

We calculated the autoionization rates of all states of Mg,
Ca, and Sr with 10 � n � 65 and 0 � l � 45 with the meth-
ods described above. The numerical results are provided in
the Supplemental Material [54]. In the following, we analyze
the l dependence of the rates and extract general behaviors
from the large body of calculated data. In most cases, the
rates decrease rapidly with l , as expected from previous works
[5,16–21], but do not always follow a single decay trend.
For l � 10, the autoionization rates differ by several orders
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of magnitude depending on the values of j and J . For a
given ion-core state and fixed values of j − l and J − l , the
evolution of the rates with l is smooth and, anticipating on the
results of Sec. III D, follows simple scaling laws. We will see
that this behavior is in fact governed by the value of K − l ,
with K the quantum number associated with the total angular
momentum without Rydberg-electron spin. This allows us to
define branches as ensembles of Rydberg states converging to
a given ionization threshold and with fixed values of K − l ,
whose autoionization rates behave in a similar manner. Such
branches can exhibit a fine structure due to the spin-orbit inter-
action of the Rydberg electron. We first analyze the behavior
of single branches, before considering all branches and later
all thresholds of all species.

A. Behavior for a single branch

Figure 3 shows the autoionization rates of the (4d5/245l j )J

core-excited Rydberg states of Sr with j = l − 1/2 and J =
j + 1/2 (K − l = + 1

2 ). The calculated rates decrease by more
than 20 orders of magnitude between l = 1 and l = 44. For
l � 25, they are far smaller (� � 1 s−1) than those of other
decay mechanisms such as the fluorescence of the Rydberg
electron, which takes place in the milliseconds range.

The decay of the rates in Fig. 3 does not follow a single
trend and a shoulder (shown by the arrow) is observed around
l = 7. Its origin is, predominantly, the vastly different behav-
ior of autoionization into the continua above the Sr+(5s1/2)
and Sr+(4d3/2) ionization thresholds, both accessible from the
(4d5/245l j )J states (see Fig. 1). For the former threshold, the
partial rates (empty gray circles) are large for small l and fall
very rapidly as l increases. For the latter threshold, the partial
rates (empty gray squares) are significantly smaller for small
l but decrease more slowly with l and thus dominate the total
autoionization rates for l � 10.

Autoionization into the continua above both the Sr+(5s1/2)
and Sr+(4d3/2) thresholds is predominantly caused by the
quadrupolar part of the electron-electron repulsion. The ki-
netic energy of the emitted electron is however much larger
for the 5s1/2 continua (1.84 eV) than for the 4d3/2 ones
(0.035 eV). For large kinetic energies, the radial integral (13)
for the Rydberg electron decreases much faster with l than
for smaller kinetic energies, a fact we verified in a systematic
manner for electron kinetic energies from 0.3 eV to 8 eV and
all possible values of l . The other quantities entering the au-
toionization rates given by Eq. (9) vary only little or not at all
with l . Therefore, because of the Rydberg-electron radial inte-
gral, the rates decrease faster with l for larger electron kinetic
energies. We verified this property for the other series and
thresholds of Sr, Ca, and Mg. In conclusion, the shoulder in
the rates of Fig. 3 comes from the fact that two continua with
very different energies are accessible upon autoionization.

Another shoulder can be observed for the partial rates
into the continua above the Sr+(4d3/2) threshold (empty gray
squares). In this case, it cannot be attributed to different
photoelectron kinetic energies. Instead, it is explained by a
change of the values of the angular integrals in Eq. (9), which
finds its origin in the evolution of the angular-momentum
coupling between the core and Rydberg electrons discussed
in the following section.

I II III

FIG. 4. Autoionization rates of the (5p3/245l j )J states of Sr as a
function of l for all possible j and J values. The different branches
are labeled and their color is chosen according to the value of K − l
(see text). Each branch has a fine structure corresponding to the
fine structure of the Rydberg electron. The two fine-structure com-
ponents are associated with the two possible values of the coupling
between K and the spin of the Rydberg electron (solid circles for J =
K − 1

2 and crosses for K + 1
2 ). The horizontal dashed lines labeled

A–E represent the decay rates of the radiative deexcitation chan-
nels 5p3/2 → 5s1/2, 5p3/2 → 4d5/2, 5p3/2 → 4d3/2, 5s45p → 5s2,
and 45 c → 44 c, respectively, with c representing circular Rydberg
states.

B. Behavior for all branches

We now consider the behavior of autoionization rates with
l for all possible values of j (l ± 1

2 ) and J ( j + j1 � J �
| j − j1|). The value of n is fixed and we consider a single
ionization threshold (N, l1, j1 fixed). Figure 4 shows the rates
of the (5p3/245l j )J states of Sr. At low l values, the Rydberg
electron penetrates into the ion core region. Its wave function
significantly overlaps with the one of the core electron and
the quantum defects are large. Perturbations between adjacent
Rydberg series are frequent [see Fig. 2(b) for example] and
the autoionization rates do not exhibit a regular behavior for
l � 4 (region I in Fig. 4). In an intermediate region between
l ∼ 4 and l ∼ 8 (region II), the rates decrease monotonically
and their magnitudes are similar for all values of j and J .
In the last region (region III), they split into what appears to
be three branches with very different magnitudes but similar
evolution with l . The apparent branches are further split by the
spin-orbit interaction of the Rydberg electron, leading to two
fine-structure components with slightly different rates (solid
circles and crosses in Fig 4).

The branches can be associated to different values of
K − l , K being the quantum number of the total angu-
lar momentum excluding Rydberg-electron spin. This is not
surprising because when the spin-orbit interaction of the
Rydberg electron is negligible, intermediate ( jK) coupling
is the most appropriate coupling scheme for core-excited
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Rydberg states [1]. The total angular momentum j1 of the
core electron strongly couples to the orbital angular momen-
tum l of the Rydberg electron to give K. The jj-coupled
states that we calculate with the methods of Sec. II are re-
lated to intermediate-coupling states by the transformation
coefficients [51]:

|Nl1 j1nl jJ〉 =
∑

K

(−1) j1+l+ 1
2 +J

√
(2K + 1)(2 j + 1)

×
{

j1 l K
1
2 J j

}
|Nl1 j1nlKJ〉. (16)

For large l values, there is an almost one-to-one cor-
respondence between a given jK-coupled state, which
we denote as (Nl1 j1 nl )K below, and the two jj-coupled
(Nl1 j1 nl j=l±1/2)J=K±1/2 states, thus making the assignment
straightforward.

For the rates shown in Fig. 4, there are four possible val-
ues of K for each value of l (K − l = ± 1

2 ,± 3
2 ). The four

corresponding branches are distinguished by their color and
labeled by their K − l value. The spin-orbit interaction of the
Rydberg electron further splits the K − l branches into two
subbranches with J = K + 1/2 and J = K − 1/2 (crosses and
solid circles in Fig. 4, respectively). This effect is very small,
as expected because the spin-orbit interaction of the Rydberg
electron is small, and it is in fact only visible for the K − l =
−3/2 branch (orange crosses and circles).

The very different magnitudes of the autoionization rates
of the branches trace back to the interplay between the ra-
dial and angular parts of the electron-electron repulsion in
Eq. (9). For l � 10, autoionization into the continua above
the 5p1/2 threshold dominates over autoionization into those
above the 4d3/2,5/2 and 5s1/2 thresholds because the photo-
electron kinetic energy is much smaller in the former case
(see Fig. 1). The (5p3/245l j )J states couple to the 5p1/2 con-
tinua through the quadrupolar (tensor order of 2) part of the
electron-electron repulsion (q = 2). Upon autoionization, l
is thus unchanged or changes by 2 (
l = l ′ − l = 0, ±2).
Importantly, the radial integrals 〈εl ′|1/r3

2 |nl〉 differ by sev-
eral orders of magnitude depending on the value of 
l , with

l = + 2 being the largest [see Fig. 6(a)]. The same observa-
tion applies for the dipole (tensor order of 1) part of the elec-
tron repulsion (q = 1), in which case the radial integrals are
much larger for 
l = +1 than for 
l = −1. A similar situa-
tion is encountered for the dipole matrix elements describing
photoabsorption and photoionization in hydrogenic systems,
for which 
l = +1 transitions dominate over 
l = −1
transitions [55].

Because K (or J for jj coupling) must be conserved upon
autoionization, angular-momentum coupling constrains the
possible changes of l for a given branch. Considering the
quadrupolar interaction, the initial state (5p3/2nl )K=l−3/2 can
only autoionize into continua above the 5p1/2 threshold with
l ′ = l − 2. Continua with l ′ = l + 0, 2 are inaccessible be-
cause, in these cases, angular-momentum coupling between
the 5p1/2 core electron and the l ′ ionized electron cannot yield
K = l − 3/2 and K cannot be conserved. The autoionization
of the states of the −3/2 branch thus involves a 
l = −2
transition only, with a small radial integral translating into

FIG. 5. Autoionization rates of the (4d5/245l j )J states of Sr as
a function of l for all possible j and J values. The symbols and
colors are defined as in Fig. 4. The horizontal dashed lines labeled
A–C represent the decay rates of the radiative deexcitation channels
5s45p → 5s2, 45 c → 44 c, and 4d5/2 → 5s1/2, respectively, with c
representing circular Rydberg states.

small values for the rates (orange crosses and circles in Fig. 4).
The opposite observation holds for the K − l = +3/2 branch.
Only the 
l = +2 transition is possible and, because the
corresponding radial integral is large, the autoionization rate
is large (blue crosses and circles in Fig. 4). For the K − l =
±1/2 branches (red and green circles and crosses in Fig. 4),
the only possible transition is 
l = 0, which explains why the
rates of both branches are very similar and lie between those
of the +3/2 (
l = +2) and −3/2 (
l = −2) branches.

The above analysis revealed that the gross structure of the
branches is related to which 
l value contributes predom-
inantly to autoionization. Let us consider another example,
the 4d5/2nl states of Sr, which for large l values autoionize
predominantly into continuum above the Sr+(4d3/2) thresh-
old through quadrupole interactions. As illustrated in Fig. 5,
six branches (K − l = ± 1

2 ,± 3
2 and ± 5

2 ) can be observed
which are grouped into three main components. The low-
est branch and component, which is further split by the
spin-orbit interaction of the Rydberg electron, is K − l =
−5/2 and autoionizes through 
l = −2 transitions only. The
intermediate branches K − l = −3/2 and −1/2 autoionize
through predominantly 
l = 0 transitions, and the branches
with the largest rates, K − l = 1/2, 3/2, and 5/2 autoionize
through strong 
l = +2 transitions. The substructure within
the three main 
l components is due to differences in angular-
momentum coupling which translate into different values of
the angular integrals in Eq. (9).

The conclusions drawn above implicitly rely on the as-
sumption that the angular integrals entering the autoionization
rates have similar magnitudes for any 
l . As shown in Fig. 6,
this is verified for large l (l � 10) and thus K values. The
underlying reason can be made explicit by considering the
large-l behavior of the angular integrals. We use jK coupling
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(a)

(b)

FIG. 6. l dependence of the norm squared of (a) the radial in-
tegrals for the Rydberg electron (13) and (b) the angular integrals
(10) for Sr(5p3/245l j )J states with all possible j and J values. Or-
ange, red, green, and blue lines correspond to K − l = −3/2, −1/2,
+1/2, and +3/2 branches, respectively. The solid and dashed lines
for the angular integrals represent the two possible couplings of
the Rydberg-electron spin with K (J = K − 1/2 and +1/2, respec-
tively). The gray lines are angular integrals for which J is conserved
but not K . For the colored lines, both J and K are conserved.

to make the behavior more apparent, however, similar conclu-
sion can be drawn with jj coupling as well. As shown in the
Appendix, the asymptotic formulas for the Wigner symbols
[56] allow us to reduce the norm squared of the angular
integral B(q) in jK coupling to

|B(q)|2 ∼ [l1, l ′
1, j1]

(
l ′
1 q l1
0 0 0

)2{
j1 q j′1
l ′
1 1/2 l1

}2

×
[

Dq
0
l

(
0,

π

2
, 0

)]2

× 〈 j1(K−l )q(−
l )| j′1(K−l − 
l )〉2
, (17)

where D is the Wigner rotation matrix. Importantly, the in-
tegral no longer depends on the values of l and K but only
on their difference K − l , i.e., on the branch under considera-
tion. They also depend on 
l which, for a given branch, can
be taken as the largest value allowed by angular-momentum
coupling because it corresponds to the largest radial integral.

Equation (17) describes the change of angular momentum
of the core electron ( j1 → j′1) through its q-pole coupling
with the Rydberg electron. It is particularly instructive be-
cause, when multiplied by the radial integrals [see Eq. (A5)],
it describes an electric dipole (q = 1) or electric quadrupole
(q = 2) optical transition of the core electron,

�(q) ∼ 2π

[
Rεl ′,q

nl Dq
0
l

(
0,

π

2
, 0

)]2

× ∣∣〈Nl1 j1(K − l )|rq
1Cq,−
l |N ′l ′

1 j′1(K − l − 
l )〉∣∣2
,

(18)

with an effective “light” intensity given by the two
terms between the square brackets on the right-hand side.
Cq,−
l (θ1, φ1) is an unnormalized spherical harmonic.

The transition dipole or quadrupole moment of the core
electron in Eq. (18) involves the projection of the core-
electron angular momentum j1 onto an axis that is no longer
the quantization axis but, rather, another axis defined by the
electron repulsion. The same coefficient also shows that the
projection of j1 onto the new axis is K − l . We have shown
earlier that the different branches correspond to different
K − l values. We can therefore relate the branches to the
orientation of the core-electron angular momentum relative
to the axis defined by its coupling to the Rydberg electron.
Like the branch, this orientation has a crucial influence on the
autoionization of high-l core-excited Rydberg states.

For lower values of l , the angular integrals rapidly change
with l (see Fig. 6), and their magnitudes differ significantly.
Transitions that change K become nonnegligible (gray lines in
Fig. 6). The relative magnitude of the autoionization rates in
different branches can no longer be simply estimated, and we
have observed in all our calculations that the rates become in
fact similar regardless of the branch for values below l � 10.

C. General behavior for alkaline-earth species

In addition to Sr, we also calculated the autoionization rates
of core-excited Rydberg states of Mg and Ca. The ionization
thresholds N p1/2, N p3/2 and, when applicable, (N − 1)d3/2

and (N − 1)d5/2, were considered (N = 3 − 5, see Fig. 1).
The rates of the three species evolve in a similar way with l ,
as illustrated by the examples shown in Fig. 7. The similarity
is not surprising as all alkaline-earth-metal ions possess the
same electronic structure, with the exception of the (N −
1)d3/2,5/2 states only present for Ca and the heavier species.
For high l values, the Rydberg electron is essentially hydro-
genic, regardless of the atomic species. Differences in the
values of the rates are thus due to the different properties of the
ion cores, in particular, the energies of the states, which affect
the photoelectron kinetic energies, and the transition dipole
moment 〈N ′l ′

1 j′1|r1|Nl1 j1〉 and transition quadrupole moment
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(a)

(b)

FIG. 7. (a) Autoionization rates of the (N p1/245l j )J states of Mg
(solid green circles), Ca (solid blue circles), and Sr (solid red circles)
as a function of l for the K − l = 1/2 branch ( j = l + 1/2 and
J = j + 1/2). (b) Same as panel (a) for the N p3/2 thresholds.

〈N ′l ′
1 j′1|r2

1 |Nl1 j1〉, which directly enter the calculation of the
autoionization rates.

For the series converging to the N p1/2 thresholds
[Fig. 7(a)], the continua above the Ns1/2 threshold and, except
for Mg, the (N − 1)d3/2 threshold are accessible. The latter
dominate at high l values, a fact we verified by calculating
the partial rates. The influence of the photoelectron kinetic
energy on the speed at which the rates decrease is conspic-
uous. Indeed, the energy difference between the 3s1/2 and
3p1/2 thresholds in Mg (4.422 eV) is much larger than the one
between the 3d3/2 and 4p1/2 thresholds in Ca (1.431 eV) or
the 4d3/2 and 5p1/2 thresholds in Sr (1.136 eV), and the rates
for Mg decay much faster than for the other two species. We
observe that, as before, the faster the photoelectron the faster
the rates decrease with l .

The rates of series converging to the N p3/2 thresholds
of Mg, Ca, Sr, and belonging to the branch with K − l =
+ 1

2 , are shown in Fig. 7(b). Autoionization proceeds in
the continua above the Ns1/2, N p1/2 and, for Ca and Sr,
the (N − 1)d3/2,5/2 ionization thresholds. At low l values, the
dipole-type coupling to the Ns1/2 and (N − 1)d5/2 continua

FIG. 8. Autoionization rates of the (5p1/216l ) states of Sr ob-
tained experimentally (black crosses, [5]) and theoretically (red solid
circles, present results). The values shown here are the combined
rates for all the sublevels with same l but different j and J values
(see text).

and the quadrupole-type coupling to the (N − 1)d3/2 continua
are all important. We observe, as in Figs. 3 and 4, a change
in the decay trend around l ∼ 10 after which autoionization
to continua above the N p1/2 threshold is the major decay
channel. The same observations as for Fig. 7(a) can be made
regarding the relationship between the photoelectron kinetic
energy and the speed at which the rates decrease with l . The
spin-orbit splitting of the Mg+(3p1/2,3/2) levels (11.4 meV) is
the smallest of the three species and the rates are the largest
for large l . The rates for Mg decrease by only 5 orders of
magnitude in the range from l = 10 to l = 30, whereas those
of Ca and Sr decrease by 9 and 16 orders of magnitude,
respectively. The reasoning holds for all other branches and
all other thresholds of the three species we investigated.

D. Comparison against available high-l experimental data

Quantitative experimental data on the autoionization rates
of high-l core-excited Rydberg states are scarce even for the
alkaline-earth-metal atoms which, in comparison, have been
extensively studied for low l values (see Ref. [1] for a re-
view). Cooke et al. [5] measured the autoionization rates of
(5p j1 nl j )J states of Sr for n = 16 and l = 3 − 5. Their data,
shown in Fig. 8, fall in good agreement with our CI-ECS
results (black crosses and red solid circles, respectively). In
the experiment, the autoionization rates were determined from
the overall linewidths of 5pj1 nl states, their j and J substruc-
ture being unresolved. For a given l value, the experimental
linewidth is therefore the result of both the combined au-
toionization linewidths of all j and J sublevels, and the small
energy differences between these sublevels. We modeled this
with our CI-ECS data by generating Lorentzian line profiles
for each sublevel, with center frequencies and linewidths
given by the results of the calculations. These profiles were
then summed and the overall linewidths determined in a least-
squares fit to a Lorentzian function. It is these values that are
shown in Fig. 8 (red solid circles).
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TABLE IV. Comparison between the experimental and theoret-
ical scaled autoionization rates �0 from Ref. [13] and the present
theoretical values for the (5p1/2nl j )J Rydberg series of Sr (l =
3 − 5). In the experiment [13], the rates of Rydberg series with the
same l values but different j and J values could not be individually
determined.

Series �
exp
0 [13] �th

0 [13] �th
0 (Present)

(5p1/2n f5/2 )J=2 0.199 0.234
(5p1/2n f5/2 )J=3 0.181 0.164 0.165
(5p1/2n f7/2 )J=3 0.201 0.207
(5p1/2n f7/2 )J=4 0.230 0.194

(5p1/2ng7/2)J=3 0.081 0.069
(5p1/2ng7/2)J=4 0.056 0.046 0.042
(5p1/2ng9/2)J=4 0.081 0.069
(5p1/2ng9/2)J=5 0.046 0.042

(5p1/2nh9/2)J=4 0.015 0.018
(5p1/2nh9/2)J=5 0.027 0.006 0.009
(5p1/2nh11/2 )J=5 0.015 0.018
(5p1/2nh11/2 )J=6 0.006 0.010

The (4d3/2,5/251c j )J circular core-excited Rydberg states
of Sr, i.e., those of maximal orbital and magnetic quantum
numbers of the Rydberg electron |m| = l = n − 1, have been
shown to be stable against autoionization by Teixeira et al.
[18]. They could experimentally determine lower bounds for
the autoionization lifetimes of Sr(4d3/251c) and Sr(4d5/251c)
circular states of 5 ms and 2 ms, respectively. Our calculations
agree with these lower bounds and in fact predict lifetimes
that are longer by many orders of magnitude (77 and 21,
respectively). We can thus confirm that circular core-excited
Rydberg states are completely immune to autoionizaton. Our
results reveal that, in fact, most states with l � 22 are also
immune to autoionization, in the sense that autoionization
lifetimes are longer than even the fluorescence lifetime of the
Rydberg electron (millisecond range).

In a recent work, Yoshida et al. [13] thoroughly inves-
tigated the autoionization of the 5p1/2nl states of Sr with
l = 0−5. To compare our CI-ECS results with the data pre-
sented in Ref. [13], we determined the scaled autoionization
rates �0 of the (5p1/2nl j )J series (l = 3 − 5) by fitting the
calculated rates to the usual formula

�(n) = �0

n3
, (19)

in the range n = 51 − 75. The scaled rates are com-
pared in Table IV and show good agreement with the
results of Ref. [13]. For lower l values, the rates do
not closely follow the scaling law (19) because of series
perturbations.

E. l and n scaling

Beyond l ∼ 4, Rydberg-series perturbations are rare and
the behavior of the autoionization rates with l is smooth. We
found that the decrease of the rates with l is well described by
the empirical exponential law

�(l ) = �0eal2+bl , (20)

FIG. 9. Calculated autoionization rates (red crosses) of the
(3p1/245l j )J states of Mg for the K − l = − 1

2 branch ( j = l − 1
2

and J = j − 1
2 ). Formula (20) is shown by the black solid line, with

parameters obtained in a least-squares fit of the calculated data in the
range l = 5 − 30. The gray dashed line corresponds to the polyno-
mial scaling discussed in text. The inset shows the same values on a
log-log scale, highlighting the absence of polynomial scaling of the
rates with l . The bottom part of the graph shows the fit residuals on
a relative scale.

where �0, a, and b are parameters that depend on n and on
the branch under consideration. They can be determined in a
least-squares fit of the calculated rates (l = 5 − 30) yielding,
for example, �0 = 3.5(15) × 10−4 Hartree, a = −0.064(2)
and b = −2.69(6) for the (3p1/245ll−1/2) j−1/2 series of Mg.
The law is shown by the solid black line in Fig. 9 and com-
pared against the calculated data (red crosses). It reproduces
the rates to within 30% or better over the 60 orders of mag-
nitude that their values span. Increasing the degree of the
polynomial in the exponential leads to a more accurate fit, at
the expense of an increased number of parameters. We find
that a second-order polynomial represents a good compromise
between accuracy and simplicity.

Equation (20) describes the rates well when a single decay
trend is observable. When the rates show several decay trends,
typically associated with autoionization into the continua of
different ion-core states, the behavior is well described by the
sum of exponential laws:

�(l ) =
k∑

i=1

�
(i)
0 ea(i)l2+b(i)l . (21)

k is typically the number of ion-core thresholds with signif-
icantly different energies. The rate values obtained by fitting
the above equation, choosing k = 2, to the theoretical results
for the "Ca(4p3/245ll+1/2)l+2 series (l = 5 − 30) are shown in
Fig. 10. As for the single-trend case, the agreement between
the fit results and the calculated values is excellent and better
than 20% over the entire range (l = 5 − 30).
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FIG. 10. Calculated autoionization rates of the Ca(4p3/245l j )J

series with j = l + 0.5 and J = j + 1.5 (red crosses). The solid
line shows formula (21) with k = 2 and parameters obtained in
a least-squares fit of the calculated data in the range l = 5 − 30.
The bottom part of the graph shows the fit residuals on a relative
scale.

An approximate formula for the l dependence of autoion-
ization rates, derived in Ref. [57], predicts a polynomial
dependence � ∝ 1/n3l4q−3 where q is the order of the
multipole expansion giving the dominant contribution to
autoionization. The prediction has been verified for the low
l states of the Sr(5p1/2nl) series [13] (l � 5) but, as l in-
creases, it rapidly deviates from our results. The same is true
for other series and species and, in the case of Mg shown
in Fig. 9 (dashed gray line), the deviation occurs at even
smaller l values. The deviation can be attributed to the as-
sumptions made in Ref. [57] to analytically estimate the radial
integral (13) and the rate (8), leading to the polynomial scal-
ing, whereas the integral is calculated exactly in the present
paper.

The n−3 scaling of autoionization rates is well established
for low l values but deserves a closer inspection as l in-
creases. When n � l , the cubic scaling is verified [15] as
illustrated in Fig. 11(a) for the (4p3/2n(l = 7)15/2)7 series
of Ca. Clear deviations appear when n becomes compara-
ble to l , as shown in Fig. 11(b) for the same branch but
a higher l = 18 value. In this situation, the rates initially
increase with n before passing through a maximum and
eventually following the expected n−3 asymptotic form (blue
dashed line) as n � l . The same observation holds for all
other branches, ion-core states, and atomic species that we
studied.

A departure from the n−3 scaling law is well-known for
the fluorescence lifetimes of high-l Rydberg states. In this
case, because the fluorescence only occurs to nearby states
of similar n values, a scaling of n−5 can be derived [15].
Autoionization proceeds, instead, to continua with the same
energy regardless of the value of l and, therefore, an argument
similar to the one for fluorescence cannot be made. The n

(a)

(b)

FIG. 11. Dependence of the calculated autoionization rates on n
for the (4p3/2nl j )J Rydberg series of Ca with (a) l = 7, and (b) l =
18. In both cases, we chose j = l + 1/2 and J = j − 1/2. The blue
dashed line represents the n−3 scaling law reached when n � l .
For n < 23, autoionization into the continua above the Ca+(4p1/2)
threshold is no longer energetically allowed and the rates are much
smaller.

dependence of the autoionization rates, encoded in the com-
plicated functions shown in Eq. (13), depends on the kinetic
energy of the ionized electron and does not follow a simple
polynomial scaling law.

IV. CONCLUSION

The autoionization rates of core-excited states of Mg,
Ca, and Sr were calculated for n = 10 − 65 and l = 0 −
45. For low l values, we obtained the rates by treating
the full extent of correlations between the two valence
electrons with CI-ECS. Both the values of the rates and
the perturbations caused by states belonging to other, ad-
jacent Rydberg series fall in excellent agreement with the
available experimental data. Beyond l ∼ 5, the rates drop
rapidly and perturbations become much scarcer, two facts
indicating the rapid decrease of the electron-electron re-
pulsion. We show that a perturbative treatment of dipole-
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and quadrupole-type electron correlations, which compares
well to the results of the full nonperturbative CI-ECS
calculations, is sufficient at this point. The hydrogenic inte-
grals involved in the perturbative calculations are computed
without approximation and with a numerical precision of
10−60, a fact imposed by the rapid decrease of the rates
with l .

The complete picture provided by the results has allowed
us to analyze the autoionization of high-l core-excited Ry-
dberg states in detail and derive both the quantum number
dependencies of their autoionization dynamics and the phys-
ical mechanisms responsible for these dependencies. Five
general laws have been identified:

First, the decay of the autoionization rates with l is very
rapid. Above l ∼ 25, they become negligible compared to
all other decay processes, even those as slow as the fluores-
cence of the Rydberg electron taking place on the millisecond
timescale.

Second, the values of the rates separate into branches
belonging to different K − l values, i.e., different couplings
between the total angular momentum of the ion core and
the orbital angular momentum of the Rydberg electron. Each
branch can be associated to predominantly one change of
l upon autoionization (
l = ±1 for q = 1 and 
l = 0,±2
for q = 2), a property resembling selection rules in radiative
transitions. Depending on the predominant 
l , the values of
the rates differ by up to several orders of magnitude which
gives rise to well-separated branches.

Third, for each branch the decrease of the rates with l
presents a single decay trend if autoionization proceeds pre-
dominantly into the continua above a single ion-core state.
Otherwise, several decay trends can be observed. The speed
at which the rates decrease is determined by the energy of the
autoionized electron, therefore the different trends are partic-
ularly pronounced when autoionization occurs into continua
above ion-core states that have very different energies. In that
case, a shoulder is observed around l ∼ 8 where the rapid
decrease of the rates suddenly turns into a much slower one.
A similar trend has been observed in other species such as the
Yb atom [17].

Fourth, autoionization rates are typically larger when the
kinetic energy of the electron is small, and smaller when this
energy is large. This means, for example, that the rates for the
Mg(3p1/2nl) series are smaller than those of the Ca(4p1/2nl)
and Sr(5p1/2nl) series because the Mg+(3p1/2) ion-core state
lies the highest in energy.

Fifth, the autoionization rates decrease with l following,
to a good approximation, an exponential law in which the
argument is a second-order polynomial in l . Using this law,
the rates can be described within a good relative accuracy over
the many orders of magnitude that they span. This scaling law
can be used, in the future, to extrapolate the rates from a small
set of measured high-l autoionization rates to other l values.
The dependence of the rates on n follows the usual n−3 scaling
law when n � l . This is no longer the case when n and l are
similar, in which case no simple scaling law has been found.

The general laws presented above were derived from the
extensive data calculated for the alkaline-earth-metal atoms.
For high-l states, the exact shape of the ion core has lit-
tle influence on the Rydberg electron as, because of the

centrifugal barrier, it does not penetrate in the ion core region.
The conclusions drawn above are therefore not limited to
alkaline-earth-metal species and are expected to apply to high-
l Rydberg states of other atoms, molecules, and ions. Gen-
eralization to the case of molecules requires the vibrational
and rotational structure of the ion core to be taken into ac-
count, leading to several differences compared to the atomic
case. More branches are expected to form because the elec-
tronic angular momenta also couple to the rotational angular
momentum of the ion core following, typically, Hund’s
angular-momentum-coupling cases (d) or (e) [58]. Rotational
and vibrational autoionization can occur and typically involve
small energies for the ionized electron. If these decay channels
dominate, we expect that the decay of the autoionization rates
with l be significantly slower. A comprehensive study of the
autoionization of the high-l Rydberg states of molecules is an
interesting perspective for future work.
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APPENDIX: ASYMPTOTIC FORMULA FOR THE
ANGULAR INTEGRALS IN jK COUPLING

In the perturbative limit and neglecting exchange, each
multipole contribution �(q) to the total autoionization rate
can be written in the jK coupling scheme as (see, e.g.,
Refs. [20,21] for details)

�(q) = 2π
[
R

N ′l ′1 j′1,q
Nl1 j1

Rεl ′,q
nl

]2
[l1, l ′

1, l, l ′, j1, j′1]

(
l ′
1 q l1
0 0 0

)2

×
(

l ′ q l
0 0 0

)2{
j1 q j′1
l ′
1 1/2 l1

}2

×
{

l ′ j′1 K
j1 l q

}2

. (A1)

The symbols are defined as in Eq. (9). The limit of large l
values implies that K is large because j1 is small. Because q
is small, l ′ is large and j′1 is small. Using the symmetry of the
6 j symbols and the asymptotic formula given in Ref. [56], the
last squared Wigner 6 j symbol in the above equation simpli-
fies to {

l ′ j′1 K
j1 l q

}2

� 〈 j1b j′1(
l − b)|q
l〉2

2l (2q + 1)
. (A2)

We defined b = K − l , which labels, in fact, the autoion-
ization branch (see Sec. III B). The quantity 
l = l ′ − l
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represents the change in orbital angular momentum of the
Rydberg electron upon autoionization. Using the symmetry
properties of Clebsch-Gordan coefficients, one can rewrite the
above equation as

{
l ′ j′1 K
j1 l q

}2

� 〈 j1bq(−
l )| j′1(b − 
l )〉2

2l (2 j′1 + 1)
. (A3)

The square of the 3 j symbol involving l and l ′ in Eq. (A1) can
also be simplified in the limit l, l ′ � q. Using the asymptotic
expression for Clebsch-Gordan coefficients of Ref. [59], we
have

(
l ′ q l
0 0 0

)2

�
[
Dq

0
l

(
0, π

2 , 0
)]2

2l ′ + 1
, (A4)

where Dq
0
l (0, π

2 , 0) is the Wigner D matrix. Replacing
Eqs. (A3) and (A4) in Eq. (A1), one obtains

�(q) = 2π
[
R

N ′l ′1 j′1,q
Nl1 j1

Rεl ′,q
nl

]2
[l1, l ′

1, j1]

(
l ′
1 q l1
0 0 0

)2

×
{

j1 q j′1
l ′
1 1/2 l1

}2

× 〈 j1bq(−
l )| j′1(b − 
l )〉2
[
Dq

0
l

(
0,

π

2
, 0

)]2
,

(A5)

where we used 2l + 1 � 2l . The angular part of this equa-
tion, i.e., the terms on the right-hand side that depend on
the angular-momentum quantum numbers, is the one given in
Eq. (17).
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