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Logarithmic terms in atom-surface potentials:
Limited applicability of rational approximations for intermediate distance
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It is usually assumed that interaction potentials, in general, and atom-surface potential, in particular, can be
expressed in terms of an expansion involving integer powers of the distance between the two interacting objects.
Here, we show that, in the short-range expansion of the interaction potential of a neutral atom and a dielectric
surface, logarithms of the atom-wall distance appear. These logarithms are accompanied with logarithmic sums
over virtual excitations of the atom interacting with the surface in analogy to Bethe logarithms in quantum
electrodynamics. We verify the presence of the logarithmic terms in the short-range expansion using a model
problem with realistic parameters. By contrast, in the long-range expansion of the atom-surface potential, no
logarithmic terms appear, and the interaction potential can be described by an expansion in inverse integer
powers of the atom-wall distance. Several subleading terms in the large-distance expansion are obtained as a
byproduct of our investigations. Our findings explain why the use of simple interpolating rational functions for
the description of the atom-wall interaction in the intermediate regions leads to significant deviations from exact
formulas.
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I. INTRODUCTION

A. Motivation

We investigate the Casimir-Polder (CP) interaction poten-
tial [1] between an atom and a dielectric surface, which arises
due to quantum fluctuations of the electromagnetic field. As
well known, (see Refs. [2–4]), the dominant term of the inter-
action mediated by the dipole polarizability in the short-range
limit is of the form

V (z) ≈ −C3

z3
, z � a0

α
, (1)

where z is the atom-wall distance, α is the fine-structure con-
stant, a0 is the Bohr radius, and C3 is a constant coefficient.
In the long-range limit, retardation effects become important,
and the dipole contribution to the atom-wall potential is de-
scribed by the formula,

V (z) ≈ −C4

z4
, z � a0

α
, (2)

where C4 also is a constant coefficient. Atom-surface inter-
actions are particularly interesting with regard to quantum
reflection [5,6]. The functional form of atom-surface in-
teractions has been verified for cavities [7,8], confirming
theoretical predictions [9,10]. It has been an interesting prob-
lem studied in Ref. [11] to find a suitable functional form
for the interpolation between the 1/z3 and the 1/z4 regimes.
The corresponding (dimensionless) interpolating function af-
ter dividing out the leading short-range term has been termed
the shape function [see Eqs. (34) and (35) of Ref. [11]].
One particularly simple functional form, which encompasses
the interpolation, has been discussed in the literature (see

Refs. [5,11,12]),

V (z) ≈ C4

z3(z + �)
, C3 ≈ C4

�
, (3)

where the second approximate relation is a consequence of the
first. Here, � is a parameter, of order a0/α ≈ 137 a0, which
describes the transition point between the short-range and the
long-range asymptotics. The functional form (3) constitutes a
very simple rational interpolation between the short-range and
the long-range asymptotics, regimes of the CP interaction.

For (perfectly) conducting surfaces, in the transition region
z ≈ a0/α, a numerical evaluation of the complete expression
for the atom-wall interaction potential, in general, shows good
agreement with the interpolating form given in Eq. (3) as de-
scribed in Refs. [3,5,11,13]. However, for realistic materials,
the simple interpolating model (3) is less suitable to describe
the transition region z ≈ a0/α. Substantial deviations are ob-
served in the transition region z ≈ a0/α. Here, we argue that
the difficulties in adequately approximating the exact potential
with a rational function are not accidental, and find a natural
explanation in the presence of logarithmic terms in the short-
range limit, which defy an accurate representation or even
approximation by a simple rational function. In particular, we
find that the simple interpolating form given in Eq. (3) is not
able to represent the exact atom-wall potential in the regime
of intermediate atom-wall distances because of the presence
of logarithmic terms in the short-range expansion, which are
hard to approximate by a rational function of the atom-wall
distance (see also Fig. 6).

This paper is organized as follows. The (semi-)analytic
structure of the short-range expansion of the atom-surface po-
tential (which involves logarithms of the atom-wall distance)
is analyzed in Sec. II. Numerical evaluations of the potential
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and the verification of the analytic short-range coefficients
are discussed in Sec. III. The long-range coefficients of the
atom-surface potential are analyzed in Sec. IV, and numerical
calculations are presented in Sec. V. Conclusions are reserved
for Sec. VI. Système International (SI) mksA units will be
adopted in the following except for the numerical calculations
reported in Secs. III and V where we switch to the atomic unit
system.

B. Expansions involving logarithms

We here argue that the correct short-range expansion of the
atom-wall interaction can be written in the following form:

V (z) = −
∑

(3�n�0) j

Cn j

zn

[
ln

(
2αz

a0

)] j

−
∑

(n>0) j

Cn j zn

[
ln

(
2αz

a0

)] j

, (4)

which is a semianalytic expansion in powers of the atom-wall
distance z and in powers of the logarithm ln(2αz/a0). The
expansion (4) is valid for z � a0

α
. The first index n of the short-

range Cn j coefficients corresponds to the inverse power of the
atom-wall distance z (functional form z−n), whereas, the sec-
ond index j gives the power of the logarithm ln(2αz/a0). The
dominant term is obtained for n = 3 and j = 0 and reads as
−C30/z3. It is of note that the presence of a logarithm numer-
ically enhances a term in the limit z → 0, i.e., a contribution
proportional to C11 parametrically dominates a contribution
proportional to C10. The C3 coefficient from Eq. (1) qualifies
itself as the C30 coefficient in the semianalytic expansion given
in Eq. (4). Subleading terms involve powers z−n with 0 � n <

3. Furthermore, the coefficients Cn j multiply terms involving
positive powers of z, and are, thus, proportional to zn. They
also involve the jth power of the logarithm ln(2αz/a0). In
other words, when the power of the atom-wall distance z is
positive, we add a bar over the C coefficient.

The expansion (4) can be written in terms of a sum of terms
Pn j (z) (describing terms proportional to z−n with integer n)
and Pn j (z) (describing terms proportional to zn with integer
n),

V (z) =
∑

(n�0) j

Pn j (z) +
∑

(n�0) j

Pn j (z), (5a)

Pn j (z) = −Cn j

zn

[
ln

(
2αz

a0

)] j

, (5b)

Pn j (z) = −Cn j zn

[
ln

(
2αz

a0

)] j

. (5c)

Specifically, for a nonperfect conductor in the limit z → 0,
the short-range expansion has the functional form

V (z) = − C30

z3
− C11

z
ln

(
2αz

a0

)
− C10

z
− C01 ln

(
2αz

a0

)

−C00 − C12 z ln2

(
2αz

a0

)
+ O[z ln(z)]. (6)

We here list the terms in ascending parametric order in the
regime z � a0/α. The results for the leading and subleading

terms (proportional to C30 and C11) can be found in Eqs. (35)
and (37), respectively. We here suppress, in the notation, a
possible temperature dependence of the coefficients, which
could be caused by the explicit temperature dependence of
the optical response of the medium (see, e.g., Ref. [14]). It
is somewhat surprising that for a realistic dielectric function,
which describes a (necessarily) nonperfect conductor, the term
of order 1/z2 vanishes. By contrast, in the limit ε(ω) → ∞
one obtains a nonvanishing 1/z2 term (see Appendix A).
Expressed differently, the limit ε(ω) → ∞ is approached
nonuniformly (see also Ref. [4]). Some of the nonlogarithmic
coefficients in the short-range expansion (6), notably the co-
efficients C10 and C00, involve logarithmic sums over virtual
excitations of the atom, much in analogy to the well-known
Bethe logarithm correction in atomic systems [15,16].

In the long-range limit, the appropriate expansion involves
inverse powers of the atom-wall distance (no logarithmic
terms) of the functional form z−n. The terms up to subsub-
leading order are

V (z) = −C4

z4
− C5

z5
− C6

z6
+ O

(
1

z7

)
. (7)

The expansion (7) is valid in the regime z � a0
α

. The long-
range expansion is an expansion in inverse powers of n. Both
Secs. III and V include numerical examples, which verify the
accuracy of the (semi-)analytic expansions given in Eqs. (7)
and (6).

II. SHORT-RANGE ASYMPTOTICS

A. General considerations

For a material with an angular-frequency-dependent di-
electric function ε(ω), the atom-wall interaction potential
V (z) the can be written as follows (see Refs. [3,13] and Chap.
5 of Ref. [17]):

V (z) =Q
∫ ∞

0
dω α(iω)ω3

∫ ∞

1
d p H[ε(iω), p] e−2ωpz/c,

Q = − h̄

8π2ε0c3
, (8)

where H = H[ε(iω), p] is defined in Eq. (9). The dipole po-
larizability α(ω) of the atom is evaluated at imaginary angular
frequency argument. The atomic reference state is assumed
to be the ground state; for an excited reference state, the
derivation becomes more complex (see Ref. [18]). For com-
pleteness, we note that h̄ is the reduced Planck constant, the
vacuum permittivity is ε0, and the speed of light is c. The H
function is given as follows,

H (ε, p) =
√

ε − 1 + p2 − p√
ε − 1 + p2 + p

+ (1 − 2p2)

√
ε − 1 + p2 − p ε√
ε − 1 + p2 + p ε

. (9)

A remark is in order. In principle, ε(ω) could depend on other
variables, such as the temperature of the material. external
pressure applied to the crystal, or, the concentration of impuri-
ties or dislocations in the crystal structure. If P is the pressure
and η is the concentration of impurities, then our notation
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ε = ε(iω) is taken to describe a functional relation of the form

ε(iω) ≡ ε(T�, P, η, . . . ; iω). (10)

The dimensionless parameter T� = (T − T0)/T0 has been
used in Ref. [14] in order to investigate the temperature de-
pendence of the dielectric function (T0 denotes a reference
temperature, taken as the room temperature in Ref. [14]).

A further practical remark on the two-dimensional nu-
merical integration of Eq. (8) also is in order. Namely, the
numerical integration of Eq. (8) can prove to be a little
more difficult than one would initially assume. For the con-
venience of the reader, we may point out that numerically
accurate results were obtained when we used Gaussian nu-
merical quadrature methods adapted to the problem at hand.
Specifically, we used Gauss-Legendre quadrature [19] for the
regime of low p variable in Eq. (8), and Gauss-Laguerre
quadrature [19] for the exponential tail in the p variable in
Eq. (8), followed by a substitution in the ω variable, which
maps the interval ω ∈ (0,∞) to the interval t ∈ (0, 1) where,
for example, ω = ω0t/(1 − t ), and ω0 is a suitably chosen
parameter of order unity in atomic units. The t variable could
then be integrated over using Gauss-Legendre quadrature.

We are interested in the short-range asymptotics of the
interaction potential V (z) for the range of z � a0/α =
h̄/(α2mc), where m is the electron mass. In this range,
the exponential damping due to exp(−2ωpz/c) is not very
pronounced. Typical atomic angular frequencies are in the
range of ω ∼ α2mc2/h̄. In this range of frequencies, one has
ωz/c � 1 for z � a0/α. Contributions from large ω are, thus,
not significantly suppressed, and the region of large p and ω

contributes significantly to the integral.
The expansion for z � a0/α has to be approached with

extreme care. We first consider the integral over p where the
integration region is the interval p ∈ (1,∞). The presence of
the exponential factor exp(−2ωpz/c) and the fact that we are
integrating from p = 1 to p = ∞ (as opposed to starting the
integration at p = 0) ensures that the exponential damping is
still prevalent for small z, even if the exponential damping
is not very pronounced. We will need the exponential sup-
pression due to the factor exp(−2ωz/c), which is still present
after p integration, in order to ensure the convergence of the
ω integral. Thus, we cannot simply expand the exponential
exp(−2ωpz/c) in powers of its argument.

However, we can expand the function H (ε(iω), p) for large
p, and integrate over p, while keeping the exponential factor
exp(−2ωpz/c). We then apply the method of the overlapping
parameter (see Chap. 4 of Ref. [17]) to the resulting integral
over ω. (The only caveat connected with the expansion of the
function H (ε(iω), p) for large p is that it is invalid in the
integration interval around p ∼ 1. This fact will give rise to
an extra term to be discussed in Sec. II D; but let us not worry
about this aspect at the current stage of the derivation.) For the
ω integration, we introduce a scale-separation parameter ω =
	/h̄, where 	 has dimension of energy. We then consider the
low-energy part (LEP) and the high-energy part (HEP) of the
virtual photon energy integrals,

LEP: ω ∈ (0,	/h̄), HEP: ω ∈ (	/h̄,∞), (11)

where 	 acts as an ultraviolet regulator for the low-energy
part and as an infrared regulator for the high-energy part. In

the low-energy part, one can expand the exponential,

exp

(
−2ωz

c

)
= 1 − 2ωz

c
+ O

(ωz

c

)2
, (12)

in powers of its argument. The atom-wall distance is on the
order of z ∼ a0 � a0/α for the short-range expansion. At the
overlapping (transition) parameter ω ∼ 	/h̄, the expansion
breaks down, and we have

	z

h̄c
∼ 	a0

h̄c
∼ 1, 	 ∼ h̄c

a0
= αmc2 = 1

α
Eh, (13)

where Eh = α2mc2 is the Hartree energy, which is unity when
measured in atomic units.

The atomic polarizability varies appreciably over the an-
gular frequency range 0 < ω < Eh/h̄. In the high-energy part,
where ω ∈ (	/h̄,∞), we can, thus, expand the atomic polar-
izability for large argument ω.

Finally, we expand both the high- as well as the low-energy
parts, first in z for small z, then in 	 for large 	, keeping
only terms that are divergent in the limit of large 	. The
dependence on 	 cancels out because 	 only constitutes an
artificial scale-separation parameter (for an illustration of the
method, see Chap. 4 of Ref. [17] and Appendix B).

In order to consider the high-energy contributions to the
short-range expansion of the atom-surface potential, the di-
electric function and the dynamic polarizability are expanded
in the following form:

α(iω) = α2

ω2
+ α4

ω4
+ O(ω−4). (14)

This equation implicitly defines the coefficients α2 and α4.
For the dielectric function, we write the following asymptotic
expansion for large ω:

ε(iω) = 1 + 
1

ω
+

(

2

ω

)2

+
(


3

ω

)3

+ O

(
1

ω4

)
. (15)

Some remarks are in order. The coefficients 
1–3 are defined
so that they have the same physical dimension, namely, that
of an angular frequency. The coefficient 
3 is defined to be
real rather than complex, which means that if the coefficient
of order ω−3 in the expansion of ε(iω) is negative, then 
3

is negative too. One might ask if the coefficient 
1 could
be nonvanishing for typical functional forms of the dielectric
function. For example, if one assumes, at least, in the regime
of large ω, a Sellmeier functional form [20]

ε(ω) ≈
∑

k

ak ω2
k

ω2
k − ω2 − iωγk

, (16)

with fixed parameters ak , ωk , and γk , then 
1 = 0, and

(
2)2 =
∑

k

ak ω2
k . (17)

However, when we use a Lorentz-Dirac form [14,21–23]

ε(ω) =
∑

k

ak
(
ω2

k − iγ ′
kω

)
ω2

k − ω2 − iωγk
, (18)

then the oscillator strength in the numerator becomes a com-
plex frequency-dependent quantity. In this case, the parameter
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1 is nonvanishing,


1 =
∑

k

akγ
′
k, (
2)2 =

∑
k

ak
(
ω2

k − γkγ
′
k

)
, (19)

where if the width of the resonances is small, one can assume
that γk γ ′

k � ω2
k .

B. Derivation of the leading coefficients

We concentrate on the derivation of the short-range expan-
sion of the atom-surface potential with a particular emphasis
on the three leading terms from Eq. (6) in the short-range
limit,

VSR(z) ≈ − C30

z3
− C11

z
ln

(
2αz

a0

)
− C10

z
+ O[z ln(z)]. (20)

Our goal is to discuss, in some detail, the derivation of the
coefficients C30, C11, and C10, which constitute the leading
coefficients in Eq. (6). These terms will need to be extracted
from Eqs. (8) and (9). This constitutes a nontrivial exercise.
The short-range asymptotics of the atom-wall potential are
obtained from the contribution of high-energy virtual photons
(high ω) and large integration variables p. The exponential
suppression factor exp(−2ωpz/c) cuts off the ultraviolet di-
vergences of the integrals over ω and p, and it is, thus,
necessary to keep this term in unexpanded form; a Taylor
expansion of the exponential exp(−2ωpz/c) in powers of z
leads to problems in the ultraviolet integration region of large
ω. Hence, one proceeds as follows.

First, one expands the function H (ε(iω), p) for large p,
leading to

H (ε, p) = S(ε, p) + O(p−6), (21)

where

S(ε, p) = 2p2 ε − 1

ε + 1
− (ε − 1) (3ε + 1)

(ε + 1)2

+ (ε − 1) (3ε3 + 11ε2 + ε + 1)

4p2(ε + 1)3

+ (ε − 1)2 (3ε4 + 12ε3 + 16ε2 + 1)

8p4(ε + 1)4
. (22)

For the calculation of the leading analytic terms, one uses the
result,∫ ∞

1
d p e− 2ωzp

c S(ε, p) = f1(ε, ω) + f2(ε, ω) + f3(ε, ω).

(23)

The functions fi(ε, ω) with i = 1–3 are given as follows:

f1(ε, ω) = e−2ωz/c

{[
1

2

(
c

ωz

)3

+
(

c

ωz

)2
]

ε − 1

ε + 1

− c

ωz

(
ε − 1

ε + 1

)2

+ g(ε) +
[
ωz

c
−

(ωz

c

)2
]

h(ε)

}
,

(24)

f2(ε, ω) = ωz

c

(ε − 1) (3ε3 + 11ε2 + ε + 1)

2(ε + 1)3
Ei

(
−2ωz

c

)
,

(25)

f3(ε, ω) = −
(ωz

c

)3
h(ε) Ei

(
−2ωz

c

)
, (26)

g(ε) = − (ε − 1)(3ε5 − 9ε4 − 80ε3 − 88ε2 − 11ε − 7)

24(ε + 1)4
,

(27)

h(ε) = (ε − 1)2 (3ε4 + 12ε3 + 16ε2 + 1)

24(ε + 1)4
. (28)

One defines the potential,

VS (z) = Q
∫ ∞

0
dω ω3α(iω)

∫ ∞

1
d p S[ε(iω), p]e−2ωzp/c

= V1(z) + V2(z) + V3(z), (29)

where

V1(z) = Q
∫ ∞

0
dω ω3α(iω) f1[ε(iω), p], (30a)

V2(z) = Q
∫ ∞

0
dω ω3α(iω) f2[ε(iω), p], (30b)

V3(z) = Q
∫ ∞

0
dω ω3α(iω) f3[ε(iω), p]. (30c)

For each term, one then splits the integral into two domains,
	 < h̄ω < ∞, and 0 < h̄ω < 	, where 	 ∼ Eh is a cutoff
parameter. In the high-energy part 	 < h̄ω < ∞, one keeps
the exponential suppression factor exp(−2ωz/c), but other-
wise expands the polarizability and the dielectric function for
a large-frequency argument with the help of Eqs. (14) and
(15). One then performs the integral over ω in the integration
domain 	/h̄ < ω < ∞, and expands the result in powers and
logarithms of z. Specifically, the logarithmic terms obtained
from the high-energy part are proportional to ln[2	z/(h̄c)].
In the low-energy part 0 < ω < 	/h̄, one can expand the
entire integrand [including the exponential suppression factor
exp(−2ωz/c)] in powers of z. The condition ω < 	/h̄, valid
for the low-energy part together with the observation that

ω
z

c
� 	

h̄

z

c
� 1, z � a0

α
, 	 ∼ Eh (31)

ensures the applicability of the expansion in z of the in-
tegrand for the low-energy part. One then integrates every
term obtained from the expansion of the low-energy integrand
in powers of z, over the integration interval 0 < ω < 	/h̄.
This leads to the logarithmic terms proportional to ln(	/Eh).
Because 	 constitutes a scale-separation parameter, all depen-
dence on 	 necessarily cancels at the end of the calculation
when the high- and low-energy parts are added. The same
mechanism lies behind the calculation of self-energy effects
in hydrogenlike systems [24,25]. In view of the identity,

ln

(
2	z

h̄c

)
− ln

(
	

Eh

)
= ln

(
2Ehz

h̄c

)
= ln

(
2αz

a0

)
, (32)

the functional form of the logarithmic terms in Eq. (20) finds
a natural explanation.

Applying this procedure to V1(z) as defined in Eq. (30a),
one obtains the following high-energy part:

V HEP
1 (	, z) = − h̄

16π2ε0c2

1

z
α2 
1

[
ln

(
2	z

h̄c

)
+ γE

]
, (33)
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where we keep terms up to order 1/z and ln(z)/z. The low-energy part can be written as

V LEP
1 (	, z) = −C30

z3
+ h̄

16π2ε0c2 z

{
α2 
1 ln

(
	

Eh

)
+

∫ ∞

0
dω

[
α(iω)ω2 [ε(iω) − 1][3ε(iω) + 1]

[ε(iω) + 1]2
− α2 
1

ω + Eh
h̄

]}
, (34)

where the leading-order coefficient is

C30 = h̄

16π2ε0

∫ ∞

0
dω α(iω)

ε(iω) − 1

ε(iω) + 1
. (35)

The addition of the high- and low-energy parts leads to

V1(z) = −C30

z3
− h̄

16π2ε0c2z

{
α2
1

[
ln

(
2Ehz

h̄c

)
+ γE

]
−

∫ ∞

0
dω

[
α(iω)ω2 [ε(iω) − 1] [3ε(iω) + 1]

[ε(iω) + 1]2
− α2 
1

ω + Eh
h̄

]}
, (36)

where, again, we keep terms of orders 1/z and ln(z)/z. We can
read off the result for the logarithmic coefficient C11, which
multiplies the term z−1 ln( 2Ehz

h̄c ),

C11 = h̄ α2 
1

16π2ε0 c2
. (37)

The contribution from V1(z) to the C10 coefficient is

C(1)
10 = h̄γEα2
1

16π2ε0c2
− h̄

16π2ε0c2

∫ ∞

0
dω

×
[
α(iω)ω2 [ε(iω) − 1][3ε(iω) + 1]

[ε(iω) + 1]2
− α2
1

ω + Eh/h̄

]
.

(38)

From V2(z) as defined in Eq. (30b), one obtains an additional
term,

C(2)
10 = − h̄α2
1

64π2ε0c3
. (39)

There are no contributions from V3 to C11 and C10. The com-
plete result for C10 reads as follows:

C10 = C(1)
10 + C(2)

10

= h̄
(
γE − 1

4

)
α2 
1

16π2ε0c2
− h̄

16π2ε0c2

∫ ∞

0
dω

×
[
α(iω)ω2 [ε(iω) − 1][3ε(iω) + 1]

[ε(iω) + 1]2
− α2
1

ω + Eh/h̄

]
.

(40)

Quite surprisingly (see, for comparison, the case of an ideal
conductor discussed in Ref. [4]), there is no coefficient on the
order of 1/z2, and one has C20 = 0, an observation which will
be discussed in the following.

The same mechanism, which leads to the emergence of
the logarithmic terms in z, leads to the Bethe logarithms in
Lamb shift calculations [16]. At this stage, we have derived
all coefficients for short range, up to the orders of 1/z and
ln(z)/z. The next step is the evaluation of the constant terms
in z.

C. Higher-order coefficients

In Sec. II B, we have considered all terms in the expansion
(6) up to the orders of 1/z and ln(z)/z. We remember that

the expansion (6) is valid for z → 0, and, thus, an expansion
in ascending powers (and logarithms) of z. In terms of the
C coefficients given in Eqs. (4) and (6), we have determined
the contributions to C11 and C10, but no contributions to Cn j

coefficients with n = 0. Here, we list the contributions to the
logarithmic coefficient C01 and the nonlogarithmic coefficient
C00, obtained from the potentials V1, V2, and V3, given in
Eqs. (30a), (30b), and (30c).

These higher-order coefficients, obtained from V1, are

C01 = − h̄α2
(

2

1 + 14
2
2

)
96π2ε0c3

, (41)

C(1)
00 = − h̄α2

(
7
2

1 − 32
2
2

)
288π2ε0c3

− γE h̄α2
(

2

1 + 14
2
2

)
96π2ε0c3

− h̄

8π2ε0c3

∫ ∞

0
dω

[
α(iω)ω3[ε(iω) − 1] f00(ε(iω))

24[ε(iω) + 1]4

+ 7

6
α2
1 + α2

(

2

1 + 14
2
2

)
12(ω + Eh/h̄)

]
, (42)

f00(ε) = 3ε5 − 9ε4 − 136ε3 − 208ε2 − 83ε − 15. (43)

For a dielectric function with 
1 = 0, the coefficient C11

vanishes. In this case, the term proportional to C01 is the first
nonvanishing logarithmic term in the short-range expansion
of the atom-surface potential. From the potential V2, one gets
the contribution C(2)

10 , which had been indicated in Eq. (39), as
well as the following higher-order coefficient:

C(2)
00 = − h̄α2

(

2

1 + 2
2
2

)
32π2ε0c3

. (44)

Furthermore, it is interesting to note that the potential V2(z)
yields the only contribution to the double-logarithmic C12

coefficient, which multiplies the term proportional to z [ln(z)]2

in Eq. (6),

C12 = − h̄
(
4α4
1 − α2


3
1 + 4α2
1


2
2 + 4α2


3
3

)
64π2ε0c4

. (45)

Finally, from V3, we get the following contribution to the
nonlogarithmic C00 coefficient,

C(3)
00 = h̄α2


2
1

288π2ε0c3
. (46)

012815-5



U. D. JENTSCHURA AND C. MOORE PHYSICAL REVIEW A 108, 012815 (2023)

This concludes the discussion of the contributions to the
expansion (6), from the potentials V1, V2, and V3 given in
Eq. (30). The potentials are obtained by expanding the func-
tion H (ε, p), defined in Eq. (9) for large p [see Eq. (21)].

D. Extra term

In Sec. II B, we had considered all contributions to the
short-range expansion of the atom-surface potential generated
by expanding the function H (ε, p) in powers of p for large p.
After the ω integration, this expansion captures the leading
terms in the (semi-)analytic expansion of V (z) for z → 0.
However, let us remember that the expansion (21) is valid only
for p � 1. The difference H (ε, p) − S(ε, p) is nonvanishing.
This difference will lead to a (parametrically suppressed)
contribution to the atom-surface interaction energy from the
integration interval ω ∈ (0,∞) and p ∼ 1. The only question
is at which order in the expansion in ascending powers of z
this additional, parametrically suppressed, contribution will
become visible. This question will be answered in the current
section.

In the difference term,

V4(z) = Q
∫ ∞

0
dω ω3α(iω)

∫ ∞

1
d p e−2ωzp/c

×{H[ε(iω), p] − S[ε(iω), p]}, (47)

one can approximate exp(−2ωzp/c) ≈ 1 in the limit of small
z because the divergent terms in the limit of large p have
already been subtracted. One can, thus, approximate V4(z) ≈
C(4)

00 , where

C(4)
00 = h̄

8π2ε0c3

∫ ∞

0
dω ω3α(iω)

∫ ∞

1
d p

×{H[ε(iω), p] − S[ε(iω), p]}. (48)

This completes the contributions to the nonlogarithmic coeffi-
cient C00.

E. Sum of terms

Because the intricate nature of the expansion (6) and the
manifold contributions to the logarithmic and nonlogarithmic
coefficients, a brief summary is in order. One obtains C30, C11,
and C01 exclusively from V1 [see Eqs. (35), (37), and (41),
respectively]. The coefficient C10 is obtained from the sum
of the terms C(1)

10 and C(2)
10 listed in Eqs. (38) and (39). The

coefficient C00 is obtained from the sum of the terms C(1)
00 ,

C(2)
00 , C(3)

00 , and C(3)
00 , listed in Eqs. (42), (44), (46), and (48).

We summarize

C10 = C(1)
10 + C(2)

10 , (49a)

C00 = C(1)
00 + C(2)

00 + C(3)
00 + C(4)

00 . (49b)

Finally, the double logarithmic coefficient C12 is obtained
from V2 [see Eq. (45)].

III. NUMERICS FOR SHORT RANGE

A. Coefficients

From now on for the numerical investigations, we tem-
porarily switch to atomic units with h̄ = 1, ε0 = 1/(4π ), and

c = 1/α, where α is the fine-structure constant. All energies
are measured in terms of the Hartree energy Eh = α2mc2, and
distances are measured in terms of the Bohr radius a0.

It is instructive to recall all formulas for the coefficients
relevant to Eq. (6), this time in atomic units. For C30, one has
from Eq. (35),

C30 = 1

4π

∫ ∞

0
dω α(iω)

ε(iω) − 1

ε(iω) + 1
. (50)

For C11, we scale out a factor α2, and obtain from Eq. (37) the
result,

C11

α2
= α2
1

4π
, (51)

where we recall that α2 is related to the high-frequency
asymptotics of the atomic polarizability according to Eq. (14).
According to the Thomas-Reiche-Kuhn sum rule [26,27], one
has α2 = N , where N is the number of electrons in the atom.
The result for the nonlogarithmic coefficient C10 in atomic
units is relatively compact,

C10

α2
=

(
γE − 1

4

)
α2
1

4π
−

∫ ∞

0

dω

4π

×
[
α(iω)ω2 [ε(iω) − 1][3ε(iω) + 1]

[ε(iω) + 1]2
− α2
1

ω + 1

]
.

(52)

For the logarithmic coefficient C01, one has the following
result from Eq. (41), upon conversion to atomic units,

C01

α3
= −α2

(

2

1 + 14
2
2

)
24π

, (53)

whereas the result for C00 in atomic units can be simplified to

C00

α3
= −α2

(
15
2

1 − 14
2
2

)
72π

− γEα2
(

2

1 + 14
2
2

)
24π

−
∫ ∞

0

dω

2π

[
α(iω)ω3[ε(iω) − 1] f00[ε(iω)]

24[ε(iω) + 1]4

+ 7

6
α2
1 + α2

(

2

1 + 14
2
2

)
12(ω + 1)

]

+
∫ ∞

0

dω

2π
ω3α(iω)

∫ ∞

1
d p [H[ε(iω), p]

− S[ε(iω), p]], (54)

where f00 has been defined in Eq. (43). Finally, according
to Eq. (45), the double-logarithmic coefficient C12 involves
a scaling factor α4 and reads as follows:

C12

α4
= −4 α4
1 − α2


3
1 + 4α2
1


2
2 + 4α2


3
3

16π
, (55)

where atomic units have been employed

B. Model problem

We consider a model problem with the intent of demon-
strating the power of the method described in the previous
section. For definiteness and reproducibility, the coefficients
of the model problem are chosen in a rather realistic manner,
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FIG. 1. The plot shows the real part of the dielectric function
of the model problem defined in Eq. (56) with parameters given in
Eq. (57).

leading to C3 and C4 coefficients, which are numerically com-
mensurate with realistic applications, such as helium atoms
interacting with silicon [14].

The model problem involves the following functional form
of the dielectric function, which is inspired by the so-called
Lorentz-Dirac functional form used in Ref. [14] for the de-
scription of the dielectric function of intrinsic silicon, but with
only one resonance included

ε(ω) = 1 + ω2
p − iγ ′ω

ω2
0 − ω2 − iγω

. (56)

We choose the parameters (in atomic units),

ω0 = 1.0, ωp = 0.9, (57a)

γ = 0.5, γ ′ = 0.2. (57b)

The real and imaginary parts of the dielectric function of the
model problem are displayed in Figs. 1 and 2, respectively.
For definiteness, we calculate with the exact numerical value
α = 1/137.036 for the fine-structure constant.

FIG. 2. The figure is the same as Fig. 1 but for the imaginary part
of the dielectric function.

The dielectric function at the imaginary frequency argu-
ment reads as

ε(iω) = 1 + ω2
p + γ ′ω

ω2
0 + ω2 + γω

. (58)

For the atomic polarizability, we choose the following
functional form:

α(ω) = 1

1 − ω2
, α(iω) = 1

1 + ω2
, (59)

which, for an imaginary frequency argument, approximates
the trend in the data indicated in Fig. 7 of Ref. [14] for
the atomic polarizability of atomic hydrogen, simultaneously
providing a simple functional form.

For the model problem, one obtains the following high-
frequency coefficients:

α2 = 1, α4 = −1, (60a)


1 = γ ′ = 0.2, (60b)


2 = (
ω2

p − γ γ ′)1/2 = 0.842 615, (60c)


3 = −(
γω2

p + γ ′ω2
0 − γ 2γ ′2)1/3 = −0.821 797. (60d)

All results are given in atomic units.

C. Expansion coefficients

One obtains the following results, where we denote the
coefficients relevant to the model problem by the calligraphic
symbol C as opposed to C, for absolute clarity:

C30 = 1.977 912 968 × 10−2, (61a)

C11 = α2 × 1.591 549 430 × 10−2, (61b)

C10 = −α2 × 2.340 951 522 × 10−2, (61c)

C01 = −α3 × 1.323 638 610 × 10−1, (61d)

C00 = −α3 × 2.175 921 908 × 10−1, (61e)

C12 = α4 × 4.894 014 500 × 10−2. (61f)

All results are indicated to ninr significant figures for defi-
niteness and numerical verifiability. They use the parameters
given in Sec. III B. They are given in atomic units with the
appropriate power of the fine-structure constant being factored
out. The calculations for the coefficient C00 can be some-
what involved, which is why give the contributions listed in
Eqs. (42), (44), (46), and (48) separately,

C (1)
00 = −α3 × 1.599 635 302 × 10−1, (62a)

C (2)
00 = −α3 × 5.809 155 423 × 10−2, (62b)

C (3)
00 = α3 × 1.768 388 257 × 10−4, (62c)

C (4)
00 = α3 × 2.860 547 387 × 10−4. (62d)

The scaling of the higher-order coefficients with the powers of
α means that the expansion is rapidly converging for not too
large z, where z is expressed in atomic units, i.e., in units of
the Bohr radius (see also Sec. III A).
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TABLE I. For the case z = 0.1, the validity of the approximation (64) for the model problem discussed in Sec. III B is being verified by,
subsequently, adding the P terms. The relative difference � of the partial sum of P terms and the exact result for V (z = 0.1) is indicated in
the last column. Digits displaying apparent numerical convergence are being underlined. All quantities are indicated in atomic units.

Partial sum of P terms Numerical partial sum �

P30 −19.779 129 681 × 10−2 3.4 × 10−6

P30 + P11 −19.779 074 340 × 10−2 6.2 × 10−7

P30 + P11 + P10 −19.779 061 874 × 10−2 1.3 × 10−8

P30 + P11 + P10 + P10 −19.779 062 210 × 10−2 4.2 × 10−9

P30 + P11 + P10 + P10 + P00 −19.779 062 126 × 10−2 6.5 × 10−11

P30 + P11 + P10 + P10 + P00 + P12 −19.779 062 126 × 10−2 3.5 × 10−11

V (z = 0.1) (Exact) −19.779 062 126 × 10−2

D. Comparison to numerical data

If our expansion (4) is the correct representation of the
atom-wall interaction for z � a0/α, then the leading terms
of the expansion, given in Eq. (6), should show apparent
numerical convergence to the full potential, given in Eq. (8)
for small values of z.

One can also write the potential V (z) for the model prob-
lem in terms of individual contributions, each proportional to
a particular C coefficient. We denote the individual terms by
the symbol P in order to differentiate the notation from the
general case, given in Eq. (5),

V (z) =
∑

(n�0) j

Pn j (z) +
∑

(n�0) j

Pn j (z), (63a)

Pn j (z) = −Cn j

zn

[
ln

(
2αz

a0

)] j

, (63b)

Pn j (z) = −Cn jz
n

[
ln

(
2αz

a0

)] j

. (63c)

According to Eq. (6), the leading terms P30, P11, P10,P10

and P00,P12 should exhibit numerical convergence to V (z),
leading to the approximation,

V (z) ≈ P30(z) + P11(z) + P10(z)

+P10(z) + P00(z) + P12(z) (64)

for small z. We demonstrate the convergence for the case
z = 0.1, in Table I, to about 11 decimal figures. For the case
z = 1.0, the convergence is slower and is being demonstrated
in Table II, to about seven decimal digits.

A remark is in order. Of course, the values z = 0.1 as well
as z = 1.0 represent situations in which the atom is too close
to the surface for the atom-surface potential to be physically

applicable. For z = 0.1, one would have a situation with the
atomic wave functions overlapping with the wall; the case of
z = 0.1 is presented for numerical completion. The signifi-
cance of the numerical data given in Tables I and II is that they
indicate the consistency of our (semi-)analytic expansion of
the atom-surface potential for short range with high numerical
precision, including the existence of the logarithmic terms.
This offers an excellent way to illustrate the convergence of
the short-range expansion (6).

The terms in Eq. (6) display a definitive hierarchy: For
short range (z → 0), the logarithms are enhanced, and terms
are suppressed in ascending powers of z, i.e., terms propor-
tional to 1/z3 dominate terms of order 1/z, and so on. We
define the following two remainder functions rn j (z) in terms
of the remainder term left over after adding the all terms of
lower order than Pn j (z). In atomic units, one has the following
relations:

r10(z) = z

α2

[
V (z) + C30

z3
+ C11

z
ln(2αz)

]
, (65)

r00(z) = 1

α3

[
V (z) + C30

z3
+ C11

z
ln(2αz) + C10

z

+ C01 ln(2αz) + C12z ln2(2αz)

]
(66)

If our expansion (6) is correct, then we should obtain the
results that

lim
z→0

r10(z) = C10

α2
= −0.023 409. (67)

lim
z→0

r00(z) = C00

α3
= −0.021 759. (68)

TABLE II. We present the analog of Table I for the case z = 1.0.

Partial sum of P terms Numerical partial sum �

P30 −1.977 912 97 × 10−2 2.3 × 10−3

P30 + P11 −1.977 554 71 × 10−2 5.6 × 10−3

P30 + P11 + P10 −1.977 430 05 × 10−2 7.1 × 10−6

P30 + P11 + P10 + P10 −1.977 451 79 × 10−2 3.9 × 10−6

P30 + P11 + P10 + P10 + P00 −1.977 443 34 × 10−2 3.7 × 10−7

P30 + P11 + P10 + P10 + P00 + P12 −1.977 443 58 × 10−2 2.5 × 10−7

V (z = 0.1) (Exact) −1.977 444 07 × 10−2
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FIG. 3. Numerical data for the function r10(z) defined in Eq. (67)
(diamonds) are plotted for short-range z values and compared to the
limit limz→0 r10(z) = C10/α

2 = −0.023 409 (circle).

The numerical data presented in Figs. 3 and 4 are consistent
with Eqs. (67) and (68).

IV. LONG-RANGE ASYMPTOTICS

A. General considerations

Now, we switch back to SI mksA units and look at the long-
range limit z � a0 for the atom-surface interaction potential
V (z). For convenience, we recall Eq. (8) in the form

V (z) = − h̄

8π2ε0c3

∫ ∞

0
dω ω3α(iω)

×
∫ ∞

1
d p H (ε(iω), p)e−2pωz/c, (69)

aiming to expand for large z where the exponential suppres-
sion due to the term e−2pωz/c is very pronounced. The relevant
integration interval for the virtual photon energy, therefore,
encompasses low frequencies on the atomic scale ω � Eh/h̄.
For the p integration, we can concentrate on the integration
region near p = 1 due to exponential suppression. One can,
thus, expand both the atomic polarizability as well as the
dielectric function for small frequency arguments. For the

FIG. 4. Numerical data for the function r00(z) defined in Eq. (68)
(diamonds) are plotted for short-range z values and compared to the
limit limz→0 r00(z) = C00/α

2 = −0.021 759 (circle).

atomic polarizability, this implies that

α(iω) = α(iω) + iωα′(0) − ω2

2
α′′(0) + O(ω3), (70)

and

H (ε(iω), p) = H (ε(0), p) + ω

⎛
⎝∂H (ε, p)

∂ε

∣∣∣∣∣
ε=ε(0)

⎞
⎠

×
(

i
∂ε(ω)

∂ω

∣∣∣∣∣
ω=0

)
+ O(ω2). (71)

The quantities,

T1 = iωα′(0), T2 =
(

i
∂ε(ω)

∂ω

∣∣∣∣∣
ω=0

)
(72)

are, surprisingly, real rather than complex. In order to see this,
we consider the fact that the first derivatives of the polariz-
ability and the dielectric function are generated by the small
“width terms” in the propagator denominators. We recall the
H function from Eq. (9),

H (ε, p) = s − p

s + p
+ (1 − 2p2)

s − pε

s + pε
, s =

√
ε − 1 + p2.

(73)

Some properties of the H function and of its derivatives are of
interest. We have

H (ε, p = 1) = 2(
√

ε − 1)√
ε + 1

, H (ε, p → ∞) = 2(ε − 1)

ε + 1
p2.

(74)

In view of the expansion (71), it is necessary to consider the
derivative of the H function with respect to the first argument
ε, and to make sure that its derivatives do not diverge stronger
than p2 because of possible infrared problems in the ω integral
generated by divergences (high negative powers of ω after the
p integration). Or, expressed differently, if we carry out the ω

integral first, then we observe that∫ ∞

0
dω ω3α(iω)e−2pωz/c ≈ 3c4α(0)

8 p4 z4
. (75)

Any divergence of H or of its derivatives stronger than p2

would make the p integral divergent at the upper limit because
it would multiply a term proportional to 1/p4. We will evalu-
ate both at the lower limit p = 1 of the integration range over
p as well as the upper limit p = ∞. For the first and second
derivatives, we have

∂H (ε, p)

∂ε

∣∣∣∣∣
p=1

= 2√
ε(

√
ε + 1)2

, (76)

∂H (ε, p)

∂ε

∣∣∣∣∣
p→∞

= 4

(ε + 1)2
p2, (77)

∂2H (ε, p)

∂ε2

∣∣∣∣∣
p=1

= − 3
√

ε + 1

ε3/2(
√

ε + 1)3
, (78)

∂2H (ε, p)

∂ε2

∣∣∣∣∣
p→∞

= − 8

(ε + 1)3
p2. (79)
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At p = ∞, the second derivative of the H function does not
diverge stronger than p2.

B. Expansion for long range

In view of the considerations reported in Sec. IV A, we
can ascertain that the long-range expansion of the atom-wall
potential is

V (z) = −C4

z4
− C5

z5
− C6

z6
+ O(z−7), (80)

without the presence of any logarithmic terms. The leading
coefficient C4 is obtained as follows:

C4 = 3ch̄α(0)

32π2ε0z4

(ε(0)). (81)

Here, 
(ε) is a function which is normalized to unity in the
limit ε(0) → ∞ (limit of a perfect conductor) and which can
otherwise be expressed as follows:


(ε) = A(ε) + B(ε) ln

(√
ε − 1 − √

ε + 1√
ε − 1 + √

ε − 1

)

+C(ε) ln

(√
ε + 1 − √

ε + 1√
ε + 1 + √

ε − 1

)
. (82)

An alternative representation of the 
 function (with
a different normalization factor) has been given in
Eq. (23) of Ref. [13]. We here aim to express 
 in a
slightly more concise form as compared to Eq. (23) of
Ref. [13], namely, with the help of only two logarithmic
terms. The coefficients involve both fractional and integer
powers of ε,

A(ε) = 6ε2 − 3ε3/2 − 4ε − 3
√

ε + 10

6(ε − 1)
, (83a)

B(ε) = 2ε3 − 4ε2 + 3ε + 1

2(ε − 1)3/2
, (83b)

C(ε) = − ε2

√
ε + 1

. (83c)

The first two correction terms about the perfect-conductor
limit lead to the following expansion for the C4 coefficient:

C4 = 3h̄cα(0)

32π2ε0

[
1 − 5

4
√

ε(0)
+ 22

15ε(0)
+ O

(
1

ε(0)3/2

)]
.

(84)

By expanding the integrand as in Eq. (70), one obtains the
C5 coefficient as follows:

C5 = 3h̄c2

32π2ε0
[−iα′(0)]
 (5)(α, ε), (85)

where we take note of the fact that α′(0) is imaginary. Here,


 (5)(α, ε) = − iα(0)

α′(0)

∫ ∞

1

d p

p5

[
H (ε(0), p)

iα′(0)

α′(0)

+
⎛
⎝∂H (ε, p)

∂ε

∣∣∣∣∣
ε=ε(0)

⎞
⎠(

i
∂ε(ω)

∂ω

∣∣∣∣∣
ω=0

)]
. (86)

This integral converges both at the lower as well as the upper
limit. The perfect conductor limit is


 (5)(α, ε) = 1 + O

(
1√
ε(0)

)
. (87)

For the term C6, one finds

C6 = 15h̄c3

64π2ε0
α′′(0)
 (6)(α, ε), (88)

where the coefficient φ6 is given as


 (6)(α, ε) = − α(0)

2α′′(0)

∫ ∞

1

d p

p6

[
H[ε(0), p]

α′′(0)

α(0)

+
⎛
⎝∂2H (ε, p)

∂ε2

∣∣∣∣∣
ε=ε(0)

⎞
⎠(

∂ε(ω)

∂ω

∣∣∣∣∣
ω=0

)2

+
{

2
α′(0)

α(0)

(
∂ε(ω)

∂ω

∣∣∣∣∣
ω=0

)
+

(
∂2ε(ω)

∂ω2

∣∣∣∣∣
ω=0

)}

×
⎛
⎝∂H (ε, p)

∂ε

∣∣∣∣∣
ε=ε(0)

⎞
⎠]

. (89)

Again, all integrals converge, and the perfect-conductor limit
is


 (6)(α, ε) = 1 + O

(
1√
ε(0)

)
. (90)

Now, we turn our attention to a numerical example.

V. NUMERICS FOR LONG RANGE

A. Expansion coefficients

For the numerical calculations, just as in Sec. III A, let us
write the relevant coefficients given in Eqs. (81), (85), and (88)
in atomic units. They read as follows:

C4 = 3

8πα
α(0)
(ε(0)), (91a)

C5 = 3

8πα2
[−iα′(0)]
 (5)(α, ε), (91b)

C6 = 15

16πα3
α′′(0)
 (6)(α, ε). (91c)

For the model problem discussed in Sec. III B, the results
are as follows:

C4 = α−1 × 2.617 284 022 × 10−2, (92a)

C5 = −α−2 × 4.126 588 852 × 10−3, (92b)

C6 = −α−3 × 5.762 148 081 × 10−2. (92c)

Parametrically, in atomic units, the higher-order terms acquire
another power of α with each order in the expansion in 1/z.
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TABLE III. For the case of z = 100 00.0, the approximation (93)
is investigated for the model problem discussed in Sec. III B, by,
subsequently, adding the P terms. The relative difference � of the
partial sum of P terms and the exact result for V (z = 100 00.0) is
indicated in the last column. Digits displaying apparent numerical
convergence are being underlined. All quantities are indicated in
atomic units.

Partial sum of P terms Numerical value �

P4 −3.586 621 × 10−10 2.6 × 10−3

P4 + P5 −3.578 872 × 10−10 4.1 × 10−4

P4 + P5 + P6 −3.577 389 × 10−10 5.0 × 10−6

V (z = 10000.0) (Exact) −3.577 407 × 10−10

This means that the expansion parameter, effectively, is αz,
For the case of z = 10 000 (which implies αz = 72.9735), the
validity of the approximation,

V (z) ≈ P4(z) + P5(z) + P6(z)

≈ −C4

z4
− C5

z5
− C6

z6
, (93)

with an obvious definition of P4(z), P5(z), and P6(z), is being
demonstrated in Table III.

B. Comparison to numerical data

Some general remarks on applicable approximations to the
atom-surface potential are in order. Namely, our considera-
tions for the short-range regime clearly indicate the presence
of logarithmic terms, which are not captured in the simple
interpolating formula given in Eq. (3). In fact, one particular
deficiency of Eq. (3) is that upon expansion for small z, a term
on the order of 1/z2 is being generated, which is not present
in Eq. (6).

For the model problem defined in Sec. III B, the leading
terms in the short-range expansions are

V (z) ≈ −C30

z3
, z � a0

α
, (94)

In the long-range regime, one has

V (z) ≈ −C4

z4
, z � a0

α
. (95)

We investigate the interpolating regime z ∼ a0/α in Fig. 5
and confirm the transition between the short-range (∝ 1/z3)
and long-range (∝ 1/z4) asymptotics of the atom-surface
potential.

The rational approximation for V (z) given in Eq. (3) can
be adapted to the model problem discussed in Sec. III B,

Vr (z) ≈ C4

z3(z + L)
, L = C4

C30
, (96)

In Fig. 6, we present data for the function,

χ (z) =
∣∣∣∣Vr (z) − V (z)

V (z)

∣∣∣∣, (97)

which is the relative difference of the full potential and the
rational approximation. We find a 20% deviation in the inter-
mediate region z ∼ a0/α, consistent with the inadequacy of
the rational interpolation (3).

FIG. 5. The transition from the short-range 1/z3 to the long-
range 1/z4 regime [see Eqs. (94) and (95)] (green curves) is being
demonstrated by comparison to the full potential (red curve) given
in Eq. (8). The change in the slope of the red curve in the transition
region is clearly visible in the double-logarithmic plot.

Of course, it is possible to designate other methods for the
fitting of the full potential V (z) in the intermediate region
z ∼ a0/α, for example, by using the short-range expansion
for z � 30, the long-range expansion for z � 1000, and fitting
the logarithm of the interaction potential in the intermedi-
ate region using convenient functional forms. Corresponding
results will be presented elsewhere. However, our findings
indicate that the presence of logarithms in the short-range ex-
pansion cannot be ignored, a fact, which fundamentally alters
our understanding of the functional form of the atom-surface
potential for close approach.

VI. CONCLUSIONS

Let us briefly summarize the findings of the current in-
vestigation. In Sec. I, we have discussed possible functional
forms for the interpolation between the known short-range
and long-range asymptotics limits of the atom-surface po-
tential [see Eqs. (1)–(3)]. The derivation of the leading
short-range logarithmic and nonlogarithmic coefficients C30,
C11, and C10 for a realistic dielectric function has been
discussed in Sec. II. In Sec. III, the existence of the log-
arithmic terms, involving logarithms of the functional form
ln(2αz) (in atomic units) has been demonstrated on the ba-
sis of numerical calculations. In Sec. IV, the derivation of
the long-range expansion has proceeded accordingly with
only nonlogarithmic terms found. In Sec. V, a comparison
to numerical data for long range has been indicated, and
the failure of the simple interpolating form (96) has been
demonstrated in Fig. 6. We can confirm that the same phe-
nomenon (failure of simple rational approximations in the
interpolating region) is being observed for nonmodel prob-
lems, such as helium interacting with a silicon surface [14];
detailed results will be presented elsewhere. The model prob-
lem discussed in Sec. III B has all characteristics expected for
atoms interacting with a dielectric surface, while simultane-
ously, providing a sufficiently simple functional form to make
independent verifications of the findings reported in this paper
easily possible.
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FIG. 6. We show the relative difference of the rational approxi-
mation and the exact potential, as parametrized by the function χ (z)
defined in Eq. (97). In the intermediate region, one has a difference
of about 20%.

Atom-wall potentials are needed as input for other calcu-
lations, such as quantum reflection off surfaces [5,6], and it
is advantageous to have a compact analytic form of the atom-
wall potential available without having to resort to numerical
integration for each and every given z [see Eq. (8)]. In this con-
text, it is especially useful to know why interpolating rational
approximations are not adequate in intermediate regions of the
atom-wall distance, and why, in particular, no term of order
1/z2 is present in the short-range expansion for a realistic
dielectric function. The emergence of the logarithmic terms
is especially important for cases where the dielectric function
is described by complex oscillator strengths, which result in
a nonvanishing coefficient 
1 in Eq. (19) and a nonvanishing
C11 coefficient as given in Eq. (37).

Indeed, for interactions with a realistic dielectric surface,
we have shown that no term of order 1/z2 exists in the short-
range expansion [see Eq. (6)]. However, in order to put this
finding into proper context, we show, in Appendix A, that
the limit of a perfect conductor is approached nonuniformly
in terms of the functional form of the short-range expansion:
Namely, for an absolutely perfect conductor, there actually is
a term proportional to 1/z2 present (see Appendix A). How-
ever, for any realistic dielectric, the approximation ε(iω) ≈ ∞
breaks down at a sufficiently high angular frequency ω, and
the coefficient of order 1/z2 vanishes, via the mechanism
described in Appendix A.

One might wonder about the naturalness of the emergence
of the logarithmic terms from the integral representation of
the atom-surface potential. Hence, some remarks are in order.
In Appendix B, we aim to illustrate the emergence of the
logarithmic terms on the basis of a model integral, which
can otherwise be expressed in terms of exponential integrals.
Still, the logarithmic terms emerge from the addition of the
high-energy and low-energy parts.

Finally, we include some remarks on an interesting phe-
nomenon of “confluence” in the transition range of z ∼ a0/α.
Namely, all terms in the short-range expansion (6), and all
terms in the long-range expansion (7), assume the same order
of magnitude,

V (z) ∼ α5mc2, z ∼ a0

α
, (98)

which is the same order of magnitude that is obtained for the
Lamb-shift corrections in hydrogenlike systems [17], which
is the same order of magnitude as the Bethe-logarithm correc-
tion for hydrogen energy levels [16]. Indeed, we observe the
confluence of the short-range expansion (6), and long-range
expansion (7) at the scale z ∼ 137 a0, and its correspondence
with the scale of the Bethe logarithm. Furthermore, we ob-
serve the analogy of the short-range expansion (6) with the
semianalytic expansion of the Lamb shift (see Refs. [28] and
Chap. 15 of [17]) where, in the latter case, one encounters
logarithmic terms of the form ln[(Zα)−2], where Z is the
nuclear charge number. The Bethe logarithm can be written as
an integral over a matrix element of the reference state [17],
which resembles the polarizability α(ω) but is restricted to
virtual photon creation processes. The integral defining the
Bethe logarithm can be written as a logarithmic sum over
dipole transition elements to virtual states and sums over
logarithms of excitation energies [16]. The same is true for
the short-range coefficients C10 and C00 from Eq. (6). Hence,
it is a natural identification to refer to the coefficients C10 and
C00 as “interactive Bethe logarithms.”
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APPENDIX A: NONUNIFORM LIMIT OF PERFECT
CONDUCTOR

The limit of a perfect conductor (ε → ∞) of Eq. (8) has
been derived in Ref. [4] as follows:

V (z) = −
∫ ∞

0

dω h̄α(iω)

(4π )2ε0z3

[
1 + 2ωz

c
+ 2

(ωz

c

)2
]

e−2ωz/c.

(A1)

The following expansion has been derived in Ref. [4] for a
perfect conductor,

V (z) = − h̄

(4π )2ε0z3

∫ ∞

0
dω α(iω)

+ 3α

4π
Nα2mc2

(
a0

z

)2

+ O(z−1). (A2)

Here, N is the number of electrons.
One might now ask why the expansion (6) has a vanish-

ing coefficient on the order of 1/z2 (nonlogarithmic term),
whereas, the coefficient on the order of 1/z2 in Eq. (A2)
is manifestly nonvanishing. In order to understand the phe-
nomenon, let us consider the f1 function from Eq. (24),

f1(ε, ω) ≈ e−2ωz/c

[
1

2

(
c

ωz

)3

+
(

c

ωz

)2
]

ε − 1

ε + 1
(A3)

If we can expand the term proportional to z−3e−2ωz/c in powers
of z, the term on the orde of 1/z2 vanishes for any possible
ε. The crucial observation is that this expansion is forbidden
for a perfect conductor because it leads to a divergent integral
over ω. Namely, for a realistic material and large ω, one has
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the following relation according to Eq. (15):

ε(iω) − 1

ε(iω) + 1
= 
1

2ω
+ O

(
1

ω2

)
, (A4)

whereas, for a perfect conductor, one has

ε(iω) − 1

ε(iω) + 1
→ 1, ε(iω) → ∞. (A5)

The polarizability at the imaginary frequency argument has
the asymptotics given in Eq. (14). Considering the expression,

X (ω) = ωα(iω)
ε(iω) − 1

ε(iω) + 1
= α2
1

2ω2
+ O(ω−3), (A6)

we see that its integral over ω converges at the upper limit
of integration for a realistic material in the limit ω → ∞.
However, for a perfect conductor, one has

X (ω) = ωα(iω)
ε(iω) − 1

ε(iω) + 1
= α2

ω
+ O(ω−2), (A7)

and, therefore, the integral of X (ω) over ω diverges for large
ω. So, we cannot approach the limit of a perfect conductor uni-
formly. Conversely, for a perfect conductor, we cannot expand
the exponential in the integrand in Eq. (8) to first subleading
order in z, and we also cannot expand the exponential in
Eq. (A3) to first order in z without giving rise to a divergent
integral over ω. We conclude that the term on thr order of 1/z2

in Eq. (A2), being proportional to the number of electrons
of the atom, is spurious and a consequence of the physically
nonsensical assumption of an infinite dielectric function of the
perfect conductor over all frequency ranges; this assumption
breaks down in the limit of large ω, and this region is decisive
for the presence or lack of the 1/z2 coefficient.

APPENDIX B: OVERLAPPING PARAMETER

The method of the overlapping parameter is the decisive
ingredient in the derivation of the logarithmic terms in Eq. (6).
Here, we consider a model problem to illustrate the method.
The model problem consists of the integral,

F (z) =
∫ ∞

0
dω exp

(
− zω

c

) ω

ω2 + (2Eh/h̄)2
(B1)

for which we aim to find a short-range (small z) expan-
sion. After a partial fraction decomposition of the expression
ω/[ω2 + (2Eh/h̄)2], one can express the integral F (z) in terms
of exponential integral functions. Applicable expansions in
powers and logarithms of z can be found in reference works
[29].

However, that calculation is not our goal, here, since we are
aiming at illustrating the method of the overlapping parameter.
We, thus, separate the integral into a low-energy part, and a
high-energy part where the high-energy part comprises the
interval 	/h̄ < ω < 0, and the low-energy part comprises the
interval 0 < ω < 	/h̄. We have

F (z) = FHEP(	, z) + FLEP(	, z), (B2)

FHEP(	, z) =
∫ ∞

	/h̄
dω exp

(
− zω

c

) ω

ω2 + (2Eh/h̄)2
, (B3)

FLEP(	, z) =
∫ 	/h̄

0
dω exp

(
− zω

c

) ω

ω2 + (2Eh/h̄)2
. (B4)

The idea is to expand both parts in z for small z. Subsequently,
every term obtained in the expansion for small z is separately
expanded for large 	. The divergent terms (in 	) should
cancel in the sum F (z). Finally, F (z) can be expressed as a
semianalytic expansion in powers of z and ln(z).

The expansion in z is accomplished as follows:

FHEP(	, z) =
∫ ∞

	/h̄
dω e−zω/c ω

ω2 + (2Eh/h̄)2︸ ︷︷ ︸
expand for large ω

, (B5)

FLEP(	, z) =
∫ 	/h̄

0

dω ω

ω2 + (2Eh/h̄)2
exp

(
− zω

c

)
︸ ︷︷ ︸

expand in z

. (B6)

For the high-energy part, one expands the expression ω/[ω2 +
(2Eh/h̄)2] in ω for large ω, integrates over ω, then expands in
powers of z, and then, one expands in 	 for large 	 (in that
sequence). For the low-energy part, one expands the integrand
in powers of z, then integrates over ω, and then, one expands
in 	 for large 	 (in that sequence). The results of these
procedures are as follows:

FHEP(	, z) = − ln

(
	z

h̄c

)
+ 	z

h̄c
− γE + z2

[
− 	2

4h̄2c2

+ E2
h

2h̄2c2
ln

(
	z

h̄c

)
+ γE

E2
h

2h̄2c2
− 3E2

h

4h̄2c2

]
, (B7)

FLEP(	, z) = ln

(
	

2Eh

)
+ z

(
− 	

h̄c
+ πEh

h̄c

)

+ z2

[
	2

4h̄2c2
− 2E2

h

h̄2c2
ln

(
	

2Eh

)]
, (B8)

where higher-order terms of orders z3 and z3 ln(z) are ignored.
The sum of the high- and low-energy parts is

F (z) = − ln

(
2Ehz

h̄c

)
− γE + π

Eh z

h̄c

+
(

Ehz

h̄c

)2[
2 ln

(
2Ehz

h̄c

)
+ 2γE − 3

]
. (B9)

We see that 	 has canceled as promised, and logarithmic
terms have appeared.

Let us now discuss the physically reasonable range for 	.
One assumes that z is on the same order as the Bohr radius,
and that the cutoff parameter 	 is on the order of Eh/α,

z ∼ a0. (B10)

In the low-energy part, one must still be allowed to expand the
exponential exp(−zω/c) in the argument zω/c. So, we must
have

zω

c
� 1, ω � 	

h̄
, (B11)

where the latter condition is due to the upper integration limit
of the low-energy part. If we use the assumption z ∼ a0 and
the value of ω = 	/h̄ in the first inequality, then we obtain
the condition,

a0	

h̄c
� 1. (B12)
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The resulting condition on 	 is that

	 � h̄c

a0
= Eh

α
. (B13)

This result confirms that an appropriate order of magni-
tude for the cutoff parameter 	 is Eh/α. Conversely, the
expansion of the quantity [ω/(ω2 + (2Eh/h̄)2)] for large ω

is possible when we have h̄ω � Eh. That this condition is
fulfilled, follows from the fact that 	 ∼ Eh/α and, thus,
h̄ω � 	 ∼ Eh/α � Eh.

Let us also discuss the extraction of the finite part of the
low-energy part. For the lowest-order term in the expansion in
z, one replaces exp(− zω

c ) → 1 in the integrand and writes

FLEP(	, z) ≈ L ≡
∫ 	/h̄

0
dω

ω

ω2 + (2Eh/h̄)2
. (B14)

The finite part of the integral can be found as follows. One
first expands the integrand ω/[ω2 + (2Eh/h̄)2] for large ω, to

find the divergent terms for large 	, and then, one replaces
1/ω → 1/(ω + Eh/h̄), in order to avoid infrared divergences.
The result is

L =
∫ 	/h̄

0
dω

ω

ω2 + (2Eh/h̄)2
=

∫ 	/h̄

0
dω

1

ω + Eh/h̄
+ J,

J =
∫ ∞

0
dω

[
ω

ω2 + (2Eh/h̄)2
− 1

ω + Eh/h̄

]
= − ln(2).

(B15)

In the second ultraviolet convergent term, one can let 	 →
∞. So, one finds the result,

L = ln

(
	 + Eh

Eh

)
+ J = ln

(
	

Eh

)
− ln(2) + O(	−1).

(B16)

Analogous procedures are employed in the calculations of
the logarithmic and nonlogarithmic terms for the atom-wall
interaction.
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