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Self-consistent calculations for atomic electron capture
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We present a comprehensive investigation of electron capture ratios spanning a broad range of atomic
numbers. The study employs a self-consistent computational method that incorporates electron screening,
electron correlations, overlap, and exchange corrections, as well as shake-up and shake-off atomic effects.
The electronic wave functions are computed with the Dirac-Hartree-Fock-Slater method, chosen following a
systematic comparison of binding energies, atomic relaxation energies, and Coulomb amplitudes against other
existing methods and experimental data. A key feature in our calculations is the use of an energy balance
employing atomic masses, which avoids approximating the electron total binding energy and allows a more
precise determination of the neutrino energy. This leads to better agreement of our predictions for capture ratios
in comparison with the experimental ones, especially for low-energy transitions. We expand the assessment of
electron capture observable uncertainties by incorporating atomic relaxation energy uncertainties, in contrast to
previous studies focusing only on Q value and nuclear level energies. Detailed results are presented for nuclei of
practical interest in both nuclear medicine and exotic physics searches involving liquid xenon detectors (67Ga,
111In, 123I, 125I, and 125Xe). Our study can be relevant for astrophysical, nuclear, and medical applications.
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I. INTRODUCTION

Electron capture (EC) is a process in which a proton ab-
sorbs an electron from atomic shells and transforms into a
neutron, emitting a neutrino of well-defined energy. It is a low-
energy process that occurs in atoms with neutron-deficient
nuclei, by which the nucleus lowers its atomic number by
one unit and is accompanied by energetic rearrangement pro-
cesses. Thus, if the final nucleus remains in an excited state, it
deexcites to the ground state by either a γ cascade or internal
conversion. Also, as long as the captured electron is not from
the outermost shell, the final atom remains in an excited state,
leading to a rearrangement of the electron shells by emission
of x rays or Auger electrons. These rearrangement processes
are essential in the measurement of the EC rates, which re-
lies on the detection of the γ and x-ray photons and Auger
electrons. It becomes difficult in the absence of γ photons
when the final nucleus remains in the ground state and for light
atoms where the x-ray photons and Auger electrons have very
low energies. The continuous improvement of the experimen-
tal techniques for measuring EC probabilities also stimulates
the improvement of their models and computational methods.
The theoretical support for understanding the EC processes is
much needed, first to explain the experimental data and then
to provide data for many EC transitions not yet measured.

Electron capture processes occur in a wide isotope range of
naturally occurring elements, from beryllium to bismuth, and
it was also observed in heavier artificial elements [1]. Chief
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among practical applications are radionuclide metrology [2]
and nuclear medicine [3–6]. This is because most of the Auger
electrons emitted in EC processes have a few-keV kinetic
energy, thus depositing within a small range. This makes
them a high-accuracy and well-controlled tool for internal
radiotherapy, irradiating the specific site of the tumor. This
application requires precise information on the decay data,
such as radiation energy, emission probabilities, decay modes,
and half-life, with which the optimal dose can be obtained.
Excellent candidates for this purpose are 67Ga, 111In, 123I,
and 125I.

Electron capture also holds a significant position in various
fundamental research studies, including neutrino mass scale
determination [7–9] and nuclear astrophysics [10]. A detailed
description of the EC processes has also become important,
in recent years, for a precise background characterization in
exotic searches. Specifically, in liquid xenon experiments,
the occurrence of EC signals can produce misleading sig-
natures that resemble those of the target events, such as
weakly interacting massive particles [11–15] and coherent
elastic neutrino-nucleus scattering [16–18]. Furthermore, to
accurately measure the two-neutrino double-electron capture
in 124Xe, an essential background contribution arises from
125I EC, whose decay peak closely overlaps with that of the
two-neutrino double-electron capture peak [19]. Because of
their significance, the 125I EC fractions were examined exper-
imentally as recently as 2022 [20].

Considering the increasing interest in the field and its
broad applicability, we reexamine the EC formalism and
the calculations of capture fractions. For the bound electron
wave functions, we employ the Dirac-Hartree-Fock-Slater
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(DHFS) self-consistent framework, which accounts for elec-
tron screening and correlations in the atomic structure
description. To substantiate the efficacy of the DHFS ap-
proach, we systematically compare the binding energies and
Coulomb amplitudes with prior theoretical models and ex-
perimental data. To calculate the electron capture fractions,
we account for several critical atomic effects, including the
overlap and exchange corrections and shake-up and shake-off
phenomena. Some of these atomic effects have been proven
important in nuclear weak-interaction processes, especially
for low-energy transitions [21–24].

It is beyond the scope here to review the rich history of EC
calculations. For a comprehensive overview, one can check
[25]. In what follows, we highlight just the notable differences
between our model and the most recent calculations [26–28].
First, the electron binding energies entering the EC rate are
obtained from different atomic structure descriptions. While
we use the DHFS self-consistent framework, recent models
force the convergence of these energies to a particular set of
values for each atomic number. Our treatment leads to better
agreement with experimental values for the binding energies,
providing a more accurate description of the atomic structure,
especially for inner shells, from which EC is most probable.
Second, our model calculates the overlap and exchange cor-
rections, as well as the shake-up and shake-off effects exactly,
by considering the final states of the electrons based on the
configuration of the final atom. In contrast, previous mod-
els compute the overlaps by deriving the final-atom orbitals
from the ones of the initial atom using first-order perturbation
theory, which may introduce additional uncertainties in the
results.

A key feature that distinguishes our model from previous
ones is the the use of a more refined energy balance of the
EC process, with atomic masses, which avoids approximating
the total electron binding energies of the atomic systems and
allows a more precise determination of the neutrino energy.
Our model entails extensive computations of the structure of
both the excited and ground states of the final atomic system.
However, the endeavor is justified considering how sensitive
the decay rate for the EC process is to the neutrino energy.
Our findings indicate that the refined energetics yields bet-
ter agreement with the experimental values for the electron
capture fractions. The advancements are most pronounced in
the low-energy transitions, where the limitations of the earlier
models’ approximations on the total binding energy become
noticeable.

Finally, we include in the evaluation of uncertainties the
effects related to the atomic structure calculation. This is
important as it affects the determination of the emitted neu-
trino energy and the resulting decay rate, as discussed above.
To address this aspect, we introduce an associated uncer-
tainty for the atomic relaxation energies, providing a more
comprehensive assessment of overall uncertainty in electron
capture observables. Additionally, our method using pseud-
experiments ensures 68% coverage, in contrast to the ad hoc
assessment of uncertainties in previous models.

The present paper is structured as follows. In Sec. II
we provide the EC formalism, encompassing the key equa-
tions for the EC decay rates, the features of the alternative
energetics of the process, and the essential atomic effects.

Section III outlines the DHFS self-consistent method for de-
termining the electron wave functions and the atomic potential
for solving the Dirac equation. Herein we calculate the bind-
ing energies, Coulomb amplitudes, and total atomic binding
energies, which we compare to prior calculations and experi-
mental data. Section IV is devoted to presenting and analyzing
our outcomes for the EC fractions. A summary is presented in
Sec. V.

II. ELECTRON CAPTURE FORMALISM

We investigate the electron capture process

e− + (A, Z ) → (A, Z ′)∗ + νe (1)

in which the initial nucleus (A, Z ) captures one atomic elec-
tron, changing its atomic number by one unit (Z ′ = Z − 1)
and emitting one neutrino. The transition probability per unit
time that the electron capture process occurs from all atomic
shells is given by [25–30]

λ = G2
β

2π3

∑
x

nxCxFxSx, (2)

where Gβ is the weak-interaction coupling constant. The sum
runs over all partially filled or closed atomic shells x, from
which the electron can be captured, with the relative occupa-
tion number nx. For closed shells nx = 1 and for partially filled
ones nx = Nx/(2 jx + 1), where Nx is the number of electrons,
with total angular momentum jx, partially filling the shell. The
term Cx contains the nuclear matrix elements and Sx is related
to the atomic shake-up and shake-off effects. The latter will
be detailed in Sec. II C. The function Fx is given by

Fx = π

2
q2

xβ
2
x Bx (3)

and it corresponds to the integrated Fermi function for β

decay. Here qx is the energy of the emitted neutrino (see
Sec. II A), Bx includes the overlap and exchange effects (see
Sec. II B), and βx is the so-called Coulomb amplitudes related
to the power expansion of the wave function for the captured
electron (see Sec. III B).

For an L − 1 unique forbidden electron capture process,
one can write the transition probability from all atomic shells
in a simplified form

λ = M2
L

(2L − 2)!!

(2L − 1)!!

∑
x

nx p2(kx−1)
x q2(L−kx+1)

x β2
x BxSx

(2kx − 1)![2(L − kx ) + 1]!
, (4)

where ML contains the nuclear matrix element, L is the elec-
tron capture transition angular momentum, and the bound
electron linear momentum is given by

px =
√

m2
e − W 2

x , (5)

where me is the electron rest-mass energy. Here
Wx = me − |Ex| is the total energy of the captured electron in
the initial atom, with the binding energy Ex. We are using
the system of units such that h̄ = c = 1. The positive integer
number kx = |κ|, where κ is the relativistic quantum of the
shell x, from where the electron is captured. To keep the nota-
tion simple, we stick with the x-ray notation for the shells, i.e.,
x = K, L1, L2, L3, M1, M2, . . .. In the following sections, it
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will be advantageous to use the spectroscopic notation, in
which the atomic shells can be identified by nκ or n� j . Here
n, �, and j are the principle, the orbital angular momentum,
and the total angular momentum quantum numbers of the
subshell.

For allowed transitions, kx = 1, so K, L1, L2, M1, M2, . . .

atomic shells contribute to the total decay rate

λ = λK + λL1 + λL2 + · · · , (6)

where the sum stops at the last occupied shell with kx = 1 of
the initial atom. Experimentally, one can measure the electron
capture shell or subshell ratios, e.g., the L1/K capture ratio,
which is derived from Eq. (4) as

λL1

λK
= nL1 q2

L1
β2

L1
BL1 SL1

nK q2
Kβ2

K BK SK
. (7)

The identification of other ratios for allowed electron capture
is straightforward.

In the case of the first unique forbidden electron capture,
the total decay rate can be written as a sum of two contribu-
tions

λ = λ(1) + λ(2), (8)

where λ(1) includes a sum over the atomic shells with kx = 1
(the same as in the allowed electron capture case) and
λ(2) includes a sum over the atomic shells with kx = 2
(L3, M3, M4, . . .). In the case of the first unique forbidden
electron capture, the L1/K and L3/K ratios are derived from
Eq. (4) as

λL1

λK
= nL1 q4

L1
β2

L1
BL1 SL1

nK q4
Kβ2

K BK SK
(9)

and

λL3

λK
= nL3 p2

L3
q2

L3
β2

L3
BL3 SL3

nK q4
Kβ2

K BK SK
, (10)

respectively. Other ratios can be derived in an analogous man-
ner.

A. Energetics

We adopt the following energetic balance for the electron
capture process:

Q = qx + M(∗)
x (A, Z ′) − Mgs(A, Z ′). (11)

Here Q = Mgs(A, Z ) − Mgs(A, Z ′) is the atomic mass dif-
ference between the initial and final systems in ground states,
and the mass difference on the right-hand side is the energy
emitted through x rays and γ rays by the final system. The
atomic mass M(∗)

x (A, Z ′) corresponds to an atomic and pos-
sible nuclear excited state of the final system (with a hole in
shell x and the nuclear excited state with energy Rγ ).

Taking into account that the atomic mass of the final ex-
cited system can be written in terms of the mass of the final
nucleus in the ground state M f and the total electron binding
energy B(Z ′) as [31]

M(∗)
x (A, Z ′) = M f + Rγ + Z ′me − Bx(Z ′), (12)

the emitted neutrino energy is given by

qx = Q − Rγ − [Bgs(Z
′) − Bx(Z ′)]

= Q − Rγ − Rx. (13)

One can see that writing Q in the explicit form Q = 	Mi f +
me + [Bgs(Z ′) − Bgs(Z )], where 	Mi f is the difference be-
tween the ground-state energies of the initial and final nuclei,
and making the approximation Bx(Z ′) − Bgs(Z ) ≈ −|Ex| in
Eq. (13), we recover the neutrino energy as it was approxi-
mated in the previous approaches [25–28,30]

qx = 	Mi f − Rγ + me − |Ex|
= W0 + Wx, (14)

where W0 = 	Mi f − Rγ is usually called the electron capture
transition energy. The neutrino energy in Eq. (14) neglects the
total change in electron binding energy between initial and
final atoms and the rearrangement energy of the captured elec-
tron. In our approach, we consider these quantities through
the atomic relaxation energy Rx. We expect the difference
between Eqs. (14) and (13) to play a significant role in low
Q − Rγ transitions. In both determinations of the neutrino
energy, the nuclear recoil energy is neglected, as its largest
value is only 57 eV in the EC of 7Be [25].

Working with atomic masses offers a clear advantage over
nuclear masses. Nuclear masses are typically difficult to mea-
sure, while Q values with small uncertainties can be obtained
from the mass excesses provided in [31]. Furthermore, nuclear
excitation energies Rγ for low-lying states that are usually
populated in the final nucleus by electron capture are avail-
able with high precision [32]. A precise determination of the
neutrino energy depends on the accuracy of the atomic deexci-
tation energy Rx calculation. We use the DHFS self-consistent
framework for this purpose, and the results and associated
uncertainties are discussed in Sec. III C.

B. Overlap and exchange corrections

When the nucleus captures an electron, the other electrons
do not participate such that they could be considered specta-
tors and, in the first approximation, their contribution could be
neglected. However, due to the change of the nuclear charge
by one unit, the wave functions of the spectator electrons
change such that the overlap between their initial state |(m, κ )〉
and final state |(m, κ )′〉 is imperfect 〈(m, κ )′|(m, κ )〉 �= 1. All
those imperfections have a non-negligible effect which re-
quires an overlap correction.

After the capture of the electron from a specific shell, a hole
can be observed in that respective shell. This is called a direct
capture. However, due to the indistinguishability of the elec-
tron, the process can have different behavior. First, an electron
from a shell other than the one where the hole is observed is
captured. At the same time, an electron from the shell where
the hole is observed is promoted in the place of the initial one.
Then, from an experimental point of view, the hole is observed
in the same shell, making those two processes impossible to
distinguish. This is the so-called exchange effect.

These two effects were taken into account first by Bah-
call [33–36], who included in the EC transition probability
a term considering these exchange and overlap corrections,
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defined as

Bnκ =
∣∣∣∣ bnκ

βnκ

∣∣∣∣
2

. (15)

Here the capture amplitude bnκ includes contributions due to
these effects from only the first three orbitals with κ = −1,
namely, 1s1/2, 2s1/2, and 3s1/2; assumes a complete set of
states for the other orbitals; and uses the closer property for
the summation over the continuous states.

Later an extension was made by Vatai [37], who extended
the formalism by considering in addition the 4s1/2 orbital
and the overlap correction for every subshell. The explicit
expressions of the bnk capture amplitudes used by Bahcall
and Vatai can be found in the above-mentioned references of
their works. We note that Vatai did not include the shake-off
and shake-up corrections in his calculations, while Bahcall did
consider them indirectly by using the closure approximation.

Recently, there was a generalization of both Bahcall’s and
Vatai’s exchange and overlap corrections in [26]. We employ
the generalization for Vatai’s approach as follows [26]:

bnκ =
⎛
⎝∏

m,μ

〈(m, μ)′|(m, μ)〉nmμ

⎞
⎠〈(n, κ )′|(n, κ )〉−1/2|κ|

×
⎛
⎝βnκ −

∑
m �=n

βmκ

〈(m, κ )′|(n, κ )〉
〈(m, κ )′|(m, κ )〉

⎞
⎠. (16)

We consider the shake-up and shake-off effects in the next
section.

C. Shake-up and shake-off effects

The shake-up effect considers the probability that a spec-
tator electron will be promoted to a vacant upper shell during
the decay. At the same time, the shake-off considers the possi-
bility of such a spectator electron being ejected in continuum
states. Those effects generate another hole in the atomic shell
beside the one the electron capture produces. The Sx term
factorizes the case with no second hole and the probability
of having a second hole in each shell. Thus it is defined
as [26]

Sx = 1 +
∑
m,μ

Pmμ. (17)

A spectator electron has three possible behaviors during
the decay: Shake-up, shake-off, or remaining in the initial
electronic cloud. One could calculate the total shaking prob-
ability by subtracting the probability of staying in the atomic
shell from unity. Thus, the probability of an electron from the
(m, κ ) shell to undergo the shake-up or the shake-off process
is represented as [26]

Pmμ = 1 − |〈(m, μ)′|(m, μ)〉|2nmμ

−
∑
l �=m

n′
lμnmμ|〈(l, μ)′|(m, μ)〉|2. (18)

We emphasize that in our computation of the overlap and
exchange corrections and shake-up and shake-off effects as
presented in Secs. II B and II C, the final states of the electrons
are calculated taking into account the configuration of the final

atom, i.e., with a hole in place of the captured electron. Thus
each set of states is specific to an electron capture from a
particular shell. For example, the Sx term has different values
for capture from different shells. In contrast, the model pro-
posed in [26,27] employs an approximation for the overlaps
of the form 〈(m, κ )′|(n, κ )〉, where the final-atom orbitals
are computed from the initial-atom orbitals using first-order
perturbation theory.

III. ATOMIC BOUND STATES

A precise description of the orbital electron capture process
requires good knowledge of the bound-state wave functions
for electrons in the initial atom’s ground-state configuration
and the final atom’s excited-state configurations. If we assume
a central field V (r) for the atomic system, the electron bound-
state relativistic wave functions can be separated as [38]

ψnκm(r) =
(

gnκ (r)�κ,m(r̂)

i fnκ (r)�−κ,m(r̂)

)
, (19)

where �κ,m are the spherical spinors [39,40] and r stands for
the position vector of the electron r = |r| and r̂ = r/r.

The functions gnκ (r) and fnκ (r) are the large- and small-
component radial wave functions, respectively, and they obey
the system of coupled differential equations(

d

dr
+ κ + 1

r

)
gnκ − [Wnκ − V (r) + me] fnκ = 0,

(
d

dr
− κ − 1

r

)
fnκ + [Wnκ − V (r) − me]gnκ = 0. (20)

Here the relativistic quantum number κ takes positive and
negative integer values and identifies both the total angular
momentum j and the orbital angular momentum � by

j = |κ| − 1

2
, � =

{
κ if κ > 0

|κ| − 1 if κ < 0.
(21)

Hence a (2 j + 1)-degenerate atomic bound state can be iden-
tified by either nκ or n� j notation. In the spectroscopic
notation, the latter is given by n� j = 1s1/2, 2p1/2, 2p3/2, . . ..

For the calculation of the atomic structure, we employ the
RADIAL subroutine package [41], which includes the program
DHFS.F. The latter solves the DHFS equations for the ground
state or excited states of neutral atoms and positive ions with
Ne bound electrons and Zp protons in the nucleus. The EC
calculations involve only neutral atoms, i.e., Ne = Zp. Here
Zp can be either the atomic number of the initial atom Z in the
ground state or the atomic number of the final atom Z ′ in an
excited state (with a hole from where the electron is captured).
The atomic potential is composed as [41]

VDHFS(r) = Vnuc(r) + Vel(r) + Vex(r), (22)

where Vnuc(r), Vel, and Vex(r) are the nuclear, electronic, and
exchange potentials, respectively. The nuclear potential is
generated by a realistic Fermi proton charge distribution ρp(r)
[42] and the electronic potential by the atomic electron cloud
distribution ρ(r). The exchange term in the DHFS potential is
simplified due to Slater’s approximation [43], which takes the
exchange potential proportional to the atomic electron cloud
distribution to the power 1/3. The Slater exchange potential
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FIG. 1. The DHFS potential (black solid line) for neutral atom
55Fe in the ground-state electronic configuration multiplied by the
radius, along with its components: Nuclear potential (blue dashed
line), electronic potential (orange dot-dashed line), and exchange
potential (green dotted line).

is inadequate for large distances from the atom, where the
electron density is very small, and hence the obtained DHFS
potential does not respect the correct asymptotic condition
when r → ∞. The drawback is solved by Latter’s tail cor-
rection [44], and the local exchange potential with the correct

asymptotic behavior is given by

Vex(r) =
⎧⎨
⎩− 3

2α
(

3
π

)1/3
[ρ(r)]1/3, r < rLatter

−α(Zp−Ne+1)
r − Vnuc(r) − Vel(r), r � rLatter,

(23)

where α is the fine-structure constant and rLatter is the radius
where the total DHFS potential starts to deviate from the
correct asymptotic value.

The electron density ρ(r) is calculated self-consistently
[45,46]. The procedure starts with an approximate elec-
tron density obtained as the Molière parametrization of the
Thomas-Fermi potential [47]. Then the electron density is
renewed iteratively from the obtained bound wave functions
until the DHFS potential converges within a specified tol-
erance. We depict in Fig. 1 the stabilized DHFS potential
along with its components for the neutral atom 55Fe. One
can see that for large radii, the potential respects the correct
asymptotic condition, i.e., rVDHFS(r) → −α. In this case, the
cutoff radius rLatter is around 1.7 × 105 fm.

A. Electron binding energies and wave functions

The choice of the atomic potential generated by the nu-
clear charge and the atomic electron cloud V (r) is crucial
when solving for electron bound states. One can derive
an approximation of V (r) by solving the Thomas-Fermi or

FIG. 2. The ratios between predicted and experimental binding energies within the relativistic local density approximation framework
(orange triangles), the KLI model (red diamonds), and the DHFS self-consistent framework (blue circles). The experimental values are taken
from Ref. [59], the RLDA predictions can be found online [60], and the KLI predictions are taken from [28]. The results are presented for
1s1/2, 2s1/2, 3s1/2, and 3p1/2 orbitals of neutral atoms in the ground state with atomic number Z between 1 and 92.
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TABLE I. Experimental binding energies (Expt.) in comparison with DHFS, KLI, and RLDA models described in the text. All binding
energies are presented in eV for the inner shells of one light and a few medium and heavy neutral atoms in the ground state.

E1s1/2 (eV) E2s1/2 (eV) E2p1/2 (eV)

Isotope RLDA KLI DHFS Expt. RLDA KLI DHFS Expt. RLDA KLI DHFS Expt.

7Be −104.9 −131.0 −118.4 −115 −5.599 −10.259 −8.181 −9.322 – – – –
41Ca −3929.4 −4052.6 −4015.1 −4041 −412.4 −439.2 −434.1 −441 −336.7 −364.4 −359.0 −353
54Mn −6397.0 −6552.8 −6510.9 −6544 −740.6 −772.3 −766.4 −775 −635.9 −669.6 −662.9 −656
55Fe −6963.3 −7126.1 −7083.4 −7117 −816.1 −849.0 −842.9 −851 −705.3 −740.4 −733.5 −726
125I −32765.9 −33162.8 −33165.0 −33176 −5067.8 −5151.9 −5162.2 −5195 −4761.3 −4852.3 −4857.7 −4858
138La −38483.4 −38922.4 −38944.2 −38928 −6132.4 −6225.7 −6242.2 −6269 −5790.8 −5891.5 −5902.8 −5894

Thomas-Fermi-Dirac equations [44,48,49]. However, if one
aims for higher precision the self-consistent Hartree-Fock
or Dirac-Hartree-Fock (DHF) method should be employed
[50,51]. In what follows, we will provide the motiva-
tion for our choice of using the DHFS self-consistent
framework in the context of the atomic electron capture
process.

The DHFS method is a version of the DHF method in
which Vex is modified as mentioned in the previous section.
The self-consistent DHF method is considered one of the
most reliable methods for atomic structure calculations, pro-
viding an exact treatment of the exchange potential [52]. Other
approaches that offer excellent agreement with experimental
values for the spin-orbit splitting ionization potential and total
atomic energy are the local density approximation methods
[53], e.g., relativistic local density approximation (RLDA).
However, for inner shells, from where electron capture is most
probable, the DHFS self-consistent method provides better
agreement with experimental values regarding the binding en-
ergies. Interestingly, increasing the sophistication involved in
the DHF method does not necessarily lead to better agreement
with experimental binding energies [54].

Recent EC calculations have been performed using an-
other framework, included in the program BETASHAPE, derived
from the DHFS method [26,27], using an atomic potential
explained in [23]. There are two differences compared to
our framework, namely, the nuclear potential is considered
for a uniformly charged sphere and an adjustable parameter
controls the exchange potential’s strength. The latter is used
to force convergence of the binding energies to the RLDA
predictions for Z = 1–92 and to relativistic Dirac-Fock pre-
dictions [52] for higher atomic numbers. Even more recently
[28], another framework for computing EC observables has
been developed, using a self-interaction-corrected model the
Krieger-Li-Iafrate (KLI) model [55,56] with the exchange-
correlation potential from [57,58].

To compare the DHFS framework with the RLDA and
KLI models, we plot the ratios between their predictions and
experimental binding energies for ground-state neutral atoms
in the range Z = 1–92 in Fig. 2. The DHFS method provides
ratios closer to unity for the 1s1/2, 2s1/2, 2p1/2, and 2p3/2

shells. Discrepancies in binding energies for light atoms are
due to the mean-field approach used to describe the atomic po-
tential. Experimental values are taken from Ref. [59], RLDA
predictions are available online [60], and KLI predictions are

taken from [28]. Our results suggest that the DHFS self-
consistent method is a reliable and efficient framework for
electron capture calculations. Figure 2 also suggests that the
forced convergence in BETASHAPE to the RLDA binding en-
ergies is suitable for medium and heavy atoms, but for some
light atoms, a more appropriate convergence may be to the
experimental binding energies.

Table I presents a comparison between experimental bind-
ing energies and the predictions of three different models:
RLDA, KLI, and DHFS. The table shows that for medium
and heavy atoms, KLI and DHFS models offer comparable
precision, while the RLDA model has the worst predictions
for the inner shells, from where electron capture is most
probable. Regarding the light atom (actually 7Be is the light-
est that undergoes electron capture), it seems that the best
approach is the DHFS framework. We mention that this
comparison is valid in the case when the neutrino energy
is approximated as in Eq. (14), but even with the improved
energetics developed in Eq. (13), we need the electron bind-
ing energy Ex to determine the momentum of the captured
electron.

The accuracy of the bound wave functions also affects
the capture probabilities, but the decay rate, which is highly
dependent on the transition energetics and the neutrino energy,
is more crucial [27]. Thus, even if the DHFS wave functions
are less precise than those of the RLDA or KLI models, the ac-
curacy of the atomic energies compensates for this drawback.
To provide a comprehensive view, we include the large- and
small-component radial wave functions for the 1s1/2, 2s1/2,
3s1/2, and 3p1/2 orbitals of the ground-state neutral atom 55Fe
in Figs. 3 and 4, respectively. It should be noted that the bound
states are orthonormal, i.e.,∫ ∞

0
[gnκ (r)gmμ(r) + fnκ (r) fmμ(r)]r2dr = δnmδκμ. (24)

B. Coulomb amplitudes

The Coulomb amplitude βnκ is needed in calculating the
decay rate. It originates as a constant in the power series of
the radial wave function. In Ref. [29] the expansion series was
introduced as{

gnκ (r)

fnκ (r)

}
= βnκ

(pnκr)|κ|−1

(2|κ| − 1)!!

∞∑
j=0

{
b j

a j

}
r j . (25)
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FIG. 3. Large-component radial wave functions for the 1s1/2,
2s1/2, 3s1/2, and 3p1/2 orbitals of the ground-state neutral atom 55Fe.

The a j and b j expansion coefficients are defined with a recur-
rence series

( j + |κ| − κ )a j = −(Wnκ − me)b j−1 +
j−1∑

m=0

vmbj−1−m,

( j + |κ| + κ )b j = (Wnκ + me)a j−1 −
j−1∑

m=0

vmaj−1−m, (26)

with

a0 = 1, b0 = 0 if κ > 0,

a0 = 0, b0 = 1 if κ < 0. (27)

The vm coefficients describe the atomic potential as a power
series

VDHFS(r) =
∞∑

m=0

vmrm. (28)

FIG. 4. Same as Fig. 3 but for small-component radial wave
functions.

The Coulomb amplitude carries a significant quantity of
information about the electron state. Thus we compare its
behavior depending on the used model, as seen in Fig. 5 for
neutral atoms in the ground state with the atomic number in
the interval Z = 1–92. We use as reference the values from
[25], which provides a comprehensive systematic analysis
of the Coulomb amplitudes across a wide range of atomic
numbers. Moreover, the DHF method used in [25] treats the
exchange potential exactly. Consequently, one can evaluate
the impact of the local exchange potential as a function of
the atomic number.

The dominant contributions to the decay rate arise from
electron captures in the 1s1/2 and 2s1/2 orbitals. As can be
seen from Fig. 5, our model is expected to achieve precision
below 1% for atomic numbers Z > 20. In contrast, the BE-
TASHAPE and RLDA models exhibit larger fluctuations across
the entire range of atomic numbers. Although there are slight
differences (less than 2%) in our model’s predictions for other
orbitals in medium and heavy elements, the overall agree-
ment is still maintained. The discrepancies observed for lower
atomic numbers can be attributed to the use of the Slater
approximation in our model’s exchange potential. However,
when comparing our DHFS self-consistent calculations with
the KLI calculations, which provide a more complete descrip-
tion of the exchange-correlation potential, the results exhibit
similar trends. This indicates that there is no significant loss
in the description of the bound wave functions. It should be
noted that a few data points deviate from the general trend
for Z = 18 and 85 for the 1s1/2 orbital, as well as for Z = 18
for the 2s1/2 orbital. These discrepancies may be attributed to
potential misprints in Ref. [25].

C. Total electron binding energy

We turn our attention to the refinements in the energetics
done in Sec. II A. The neutrino energy depends on the atomic
relaxation energy

Rx = Bgs(Z
′) − Bx(Z ′), (29)

which in our sign convention is the difference in the total elec-
tron binding energy of the ground-state and excited-state final
atoms. The total electron binding energy is calculated within
the program DHFS.F, as the expectation value of the Hamilto-
nian with the atomic wave function, constructed as a Slater
determinant of individual electron wave functions (see the
Supplemental Material of [41]). Despite not including Breit
interaction energy, QED corrections, Auger shift, and other
factors (see [61]), the DHFS self-consistent framework pro-
vides an appropriate level of precision for atomic relaxation
energy, given the experimental precision of electron capture.
Figure 6 shows the relative difference between experimental
and computed values of relaxation energy as a function of
atomic number, demonstrating that the DHFS self-consistent
framework is not well suited for light nuclei due to large
fluctuations in the Z < 20 region. It is worth noting that our
estimations tend to overestimate true values of Rx and the
discrepancy increases with Z , yet the deviations are typically
less than 1% for most nuclei of interest. We used this estimate
when computing the uncertainties.
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FIG. 5. Ratios between the more recently computed Coulomb amplitudes and the reference considering the BETASHAPE (green diamonds),
RLDA (orange triangles), KLI (red squares), and DHFS self-consistent (blue circles) models. The reference values are given in Ref. [25]
and the BETASHAPE, RLDA, and KLI results are taken from Ref. [28]. The ratios are presented for 1s1/2, 2s1/2, 3s1/2, and 3p1/2 orbitals for
ground-state atoms having the atomic number Z between 1 and 92.

IV. RESULTS AND DISCUSSION

In the following, we present extensive comparisons be-
tween our results and the experimental values for various
relative electron capture ratios, such as λK/λ and λL/λK . If not
specified otherwise, the experimental values are taken from
the tables of recommended data (RD) from Refs. [62–70].
When experimental values are available, we denote all upper

FIG. 6. Relative difference between experimental and theoretical
values of the atomic relaxation energy as defined in Eq. (29), as a
function of the atomic number. Experimental values are taken from
[61].

shells using the plus notation, e.g., L+ denotes all the upper
shells starting with the L shell. The Q values for each electron
capture process is taken from the AME2020 database [31]
and the excitation energy of the level populated in the final
nucleus, denoted in this paper by Rγ , is taken from [32]. When
a comparison is done with the previous theoretical models, the
energy Q − Rγ is taken as in the reference(s) presenting the
models. We mention that if not specified otherwise, the more
precise energetics [see Eq. (13)] is implied in the calculation
of the electron capture fractions.

The assessment of uncertainties for the capture ratios is
discussed in the Appendix. Here we mention that in the
BETASHAPE and KLI models the uncertainties are solely
attributed to Q and Rγ , as stated in [26]. However, the un-
certainty of the atomic structure calculation, which plays a
crucial role in determining the emitted neutrino energy and
consequently the decay rate, is not considered. To address this
limitation, our model introduces a solution by incorporating
an associated uncertainty to the atomic relaxation energies.
Thus, we provide a more comprehensive assessment of the
overall uncertainty in electron capture observables. Moreover,
the ad hoc assessment of uncertainties [26] does not guarantee
68% coverage. Our method, using pseudoexperiments, meets
the coverage criterion.

In this study, we investigate the electron capture shell ra-
tios and relative ratios of multiple nuclei and compare them
with other theoretical models (BETASHAPE and KLI) as well
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TABLE II. Comparison between several theoretical model results and measured electron capture decay ratios for isotopes studied in [28].
Here UF is used to denote unique forbidden transitions.

KLIa KLIa

Isotope Q − Rγ (keV)a Type Quantity BETASHAPEa no vacancy frozen orbitals This workb This workc RDd

7Be 861.89(7) allowed λL/λK 0.105(8) 0.1606(41) 0.0509(20) 0.11054(3) 0.11053(3) 0.101(13)
41Ca 421.64(14) 1st UF λL/λK 0.09800(40) 0.10415(16) 0.09078(16) 0.1050(2) 0.1046(2) 0.102(10)
54Mn 542.2(10) allowed λL/λK 0.11219(31) 0.10785(8) 0.09590(19) 0.1078(6) 0.1076(6) 0.1066(16)
54Mn 542.2(10) allowed λK/λ 0.88419(34) 0.88623(10) 0.90005(21) 0.8869(5) 0.8870(5) 0.8896(17)
55Fe 231.21(18) allowed λL/λK 0.11629(31) 0.11236(8) 0.10073(20) 0.1125(3) 0.1121(3) 0.1110(15)
55Fe 231.21(18) allowed λM/λK 0.01824(12) 0.019390(32) 0.014824(45) 0.01918(4) 0.01909(5) 0.01786(29)a

55Fe 231.21(18) allowed λM/λL 0.1568(11) 0.17257(31) 0.14716(49) 0.1705(4) 0.1704(4) 0.1556(26)a

109Cd 127.1(18) allowed λK/λ 0.8148(14) 0.8097(11) 0.8164(12) 0.807(7) 0.810(7) 0.812(3)
109Cd 127.1(18) allowed λL+/λK 0.2274(12) 0.2350(11) 0.2250(12) 0.2390(101) 0.2344(101) 0.2315(8)
125I 150.28(6) allowed λK/λ 0.79927(41) 0.79798(7) 0.80376(23) 0.7952(2) 0.7983(18) 0.8011(17)
138La 312.6(3) 2nd UF λL/λK 0.3913(25) 0.4077(15) 0.4242(49) 0.420(3) 0.409(7) 0.432(6)
138La 312.6(3) 2nd UF λM/λK 0.0965(9) 0.09908(41) 0.1002(11) 0.1025(8) 0.100(2) 0.102(3)a

138La 312.6(3) 2nd UF λM/λL 0.2465(20) 0.2430(22) 0.2362(24) 0.244(1) 0.244(1) 0.261(9)a

aFrom Ref. [28].
bThe neutrino energy is determined using the approximate energetics from Eq. (14).
cThe neutrino energy is determined using the more precise energetics from Eq. (13).
dFrom Refs. [62–70].

as experimental data. Table II displays the results for seven
different transitions, including five allowed, one first unique
forbidden, and one second unique forbidden transition, which
span a wide range of mass numbers. The KLI model is evalu-
ated using two separate cases: The no vacancy approximation
and the frozen orbital approximation. The former assumes that
the final nucleus is in the ground-state configuration, while the
latter assumes that the atomic configuration of the final atom
is the same as the initial one, minus the captured electron.
In order to have a consistent comparison between models,
we use the approximate energetics presented in Eq. (14). All
models predict λK/λ ratios within 2% of experimental values.
However, the deviation increases to 12% when comparing
λL/λK ratios, which suggests large differences between mod-
els in the computation of λL. Other predicted ratios are within
10% of experimental values. All quoted deviations are quite
large when compared with the experimental uncertainties.
Nonetheless, our model and BETASHAPE model provide the
most accurate predictions. Next we present the results with
refined energetics. The main effect of this change is a smaller
deviation from experimental values for most fractions, espe-
cially for the low Q − Rγ transitions of 109Cd and 125I. We will
return to the comparison between energetics with a graphical
representation.

We now turn to evaluate the validity of our model across a
wide range of atomic numbers and various types of transitions.
In Table III we list the relative electron capture ratios for
a set of nuclei spanning from 7Be to 204Tl. In most cases
the predictions of λK/λ ratios agree with experimental val-
ues within one standard deviation. The largest discrepancy
in this quantity is still around two standard deviations, for
example, the second unique forbidden transition of 124I and
the allowed transition of 152Eu. For the majority of cases,
our results are consistent with the recommended data within
two standard deviations. The only instances where a simple
χ2 test with one degree of freedom fails at 90% confidence
level are the λM/λ ratios of 37Ar, 64Cu, and 73Se. In a few

instances where high-precision RD were available (124I,
152Eu, and 204Tl), the deviation of the central values is
within 3%. However, the theoretical uncertainty is quite large
(compared to the experimental one) in these cases and com-
patibility between theory and experiment is not affected.
Overall, our calculations are in excellent agreement with the
experimental data.

We now focus on the allowed EC transitions of five nuclei
(67Ga, 111In, 123I, 125I, and 125Xe), which are of practical
interest in either nuclear medicine or exotic physics searches
in liquid xenon experiments. It is worth noting that we could
not find any RD for 125Xe in the references mentioned above.
Therefore, we present only the theoretical predictions for all
excited states populated in the final nucleus, considering their
significance in the construction of background models in liq-
uid xenon experiments. The predicted relative capture ratios
are shown and compared with experimental values, where
available, in Table IV. As before, our model predicts λK/λ

ratios in excellent agreement (below two standard deviations)
with experimental measurements. Remarkably, even better
agreement is obtained for λL/λ ratios (below one standard
deviation in most cases). This feature is a consequence of the
improved energetics. Deviations between experimental and
theoretical predictions for λM/λ ratios are slightly larger (still
within 3-σ ) only for the first four transitions of 67Ga. Nonethe-
less, we expect our model to provide reliable predictions for
all interesting nuclei. For completeness, we also include the
λN/λ and λO/λ ratios, although no experimental values are
available.Finally, we discuss the effect of the energetics re-
finement. To this purpose we plot in Figs. 7 and 8 the λK/λ

and λL/λ ratios, respectively, for all nuclei presented in Ta-
bles III and IV. For transitions with multiple possible nuclear
final states, we choose the following: 7Be → ground state,
51Cr → 320.0835 keV, 67Ga → 184.579 keV, 123I → 440
keV, and 124I → 2335.03 keV. For each transition, we employ
both the approximate and the refined energetics [see Eqs. (14)
and (13), respectively]. Our results show that theoretical
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TABLE III. Systematic comparison between measured electron capture decay ratios and our predictions for selected isotopes. The precise
energetics was used in computing values in the sixth column.

Isotope Q (keV)a Rγ (keV)b Type Quantity This work RDc

7Be 861.89(7) 0 allowed λK/λ 0.90047(2) 0.908(12)
7Be 861.89(7) 0 allowed λL/λ 0.09952(2) 0.092(12)
7Be 861.89(7) 477.612(3) allowed λK/λ 0.90046(5) 0.908(12)
7Be 861.89(7) 477.612(3) allowed λL/λ 0.09954(5) 0.092(12)
22Na 2843.32(13) 1274.537(7) allowed λK/λ 0.91925(2) 0.923(4)
22Na 2843.32(13) 1274.537(7) allowed λL/λ 0.07877(2) 0.077(4)
37Ar 813.87(20) 0 allowed λK/λ 0.89892(6) 0.9021(24)
37Ar 813.87(20) 0 allowed λL/λ 0.08853(6) 0.0872(20)
37Ar 813.87(20) 0 allowed λM/λ 0.012551(9) 0.0106(7)
51Cr 752.39(15) 0 allowed λK/λ 0.89004(6) 0.8919(17)
51Cr 752.39(15) 0 allowed λL/λ 0.09427(5) 0.0927(14)
51Cr 752.39(15) 0 allowed λM/λ 0.015688(9) 0.0154(6)
51Cr 752.39(15) 320.0835(4) allowed λK/λ 0.8891(1) 0.8910(17)
51Cr 752.39(15) 320.0835(4) allowed λL/λ 0.09509(9) 0.0935(14)
51Cr 752.39(15) 320.0835(4) allowed λM/λ 0.01584(2) 0.0156(6)
64Cu 1674.62(21) 1345.777(23) allowed λK/λ 0.8815(2) 0.884(3)
64Cu 1674.62(21) 1345.777(23) allowed λL/λ 0.1008(2) 0.099(2)
64Cu 1674.62(21) 1345.777(23) allowed λM/λ 0.01714(3) 0.0162(5)
73Se 2725(7) 427.902(21) allowed λK/λ 0.8792(9) 0.8810(15)
73Se 2725(7) 427.902(21) allowed λL/λ 0.1006(8) 0.1001(12)
73Se 2725(7) 427.902(21) allowed λM/λ 0.0180(1) 0.0172(4)
88Y 3622.6(15) 3584.784(19) allowed λK/λ 0.716(34) 0.721(12)
88Y 3622.6(15) 3584.784(19) allowed λL/λ 0.227(28) 0.225(10)
88Y 3622.6(15) 3584.784(19) allowed λM/λ 0.0475(63) 0.0542(25)
108Ag 1917.4(2.6) 1052.78(5) allowed λK/λ 0.8595(10) 0.8611(14)
108Ag 1917.4(2.6) 1052.78(5) allowed λL/λ 0.1122(9) 0.1118(11)
108Ag 1917.4(2.6) 1052.78(5) allowed λM/λ 0.0232(2) 0.0227(5)
124I 3159.6(19) 2335.03(1) 2nd UF λK/λ 0.82040(273) 0.82099(43)
124I 3159.6(19) 2335.03(1) 2nd UF λL/λ 0.14024(233) 0.13959(19)
124I 3159.6(19) 2335.03(1) 2nd UF λM/λ 0.03099(54) 0.03135(15)
124I 3159.6(19) 2483.362(13) 1st UF λK/λ 0.83148(215) 0.83184(41)
124I 3159.6(19) 2483.362(13) 1st UF λL/λ 0.13175(183) 0.13127(18)
124I 3159.6(19) 2483.362(13) 1st UF λM/λ 0.02891(43) 0.02928(14)
142Pr 746.5(25) 0 1st UF λK/λ 0.8373(13) 0.8398(15)
142Pr 746.5(25) 0 1st UF λL/λ 0.1258(11) 0.1255(11)
142Pr 746.5(25) 0 1st UF λM/λ 0.0283(3) 0.0280(5)
152Eu 1874.5(7) 1529.802(3) allowed λK/λ 0.8082(13) 0.8109(17)
152Eu 1874.5(7) 1529.802(3) allowed λL/λ 0.1467(10) 0.1465(12)
152Eu 1874.5(7) 1529.802(3) allowed λM/λ 0.0345(3) 0.0341(7)
169Yb 899.1(8) 316.14633(11) allowed λK/λ 0.8074(9) 0.8093(17)
169Yb 899.1(8) 316.14633(11) allowed λL/λ 0.1465(7) 0.1457(12)
169Yb 899.1(8) 316.14633(11) allowed λM/λ 0.0353(2) 0.0349(7)
195Au 226.8(10) 98.880(2) 1st UF λK/λ 0.445(19) 0.452(6)
195Au 226.8(10) 98.880(2) 1st UF λL/λ 0.400(14) 0.398(4)
195Au 226.8(10) 98.880(2) 1st UF λM+/λ 0.1552(53) 0.1499(18)
204Tl 344.1(12) 0 1st UF λK/λ 0.5845(78) 0.5843(14)
204Tl 344.1(12) 0 1st UF λL/λ 0.3016(59) 0.3024(10)
204Tl 344.1(12) 0 1st UF λM+/λ 0.1138(22) 0.1133(5)

aFrom Ref. [31].
bFrom Ref. [32].
cFrom Refs. [62–70].

predictions based on refined energetics exhibit better agree-
ment with experimental data, as evidenced by an increase
in λK/λ ratios and a decrease in λL/λ ratios, for all nuclei
studied. The improvement is more significant for transitions
with low values of Q − Rγ , as expected. In particular, we
highlight the transitions of 125I, 152Eu, 195Au, and 204Tl, with

Q − Rγ = 150.3, 344.7, 127.92, and 344.1 keV, respectively.
Theoretical estimations based on approximate energetics de-
viate from experimental values by more than one standard
deviation. However, employing refined energetics shifts the
theoretical predictions to almost perfect agreement, even at
the level of central values.
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TABLE IV. Systematic comparison between our theoretical predictions and experimental values of the capture ratios for selected nuclei of
interest in nuclear medicine and exotic physics searches with liquid xenon detectors.

Isotope Q (keV)a Rγ (keV)b Model λK/λ λL/λ (λM/λ) × 102 (λN/λ) × 103 (λO/λ) × 103

67Ga 1001.2(11) 0 this work 0.8818(3) 0.0995(3) 1.715(5) 1.504(5) 0
67Ga 1001.2(11) 0 RD 0.8836(15) 0.0989(12) 1.640(40) – 0
67Ga 1001.2(11) 93.312(5) this work 0.8816(3) 0.0997(3) 1.718(6) 1.507(5) 0
67Ga 1001.2(11) 93.312(5) RD 0.8834(15) 0.0991(12) 1.640(40) – 0
67Ga 1001.2(11) 184.579(6) this work 0.8814(4) 0.1000(3) 1.722(6) 1.510(6) 0
67Ga 1001.2(11) 184.579(6) RD 0.8832(15) 0.0993(12) 1.640(40) – 0
67Ga 1001.2(11) 393.531(7) this work 0.8806(5) 0.1005(4) 1.734(8) 1.521(8) 0
67Ga 1001.2(11) 393.531(7) RD 0.8824(15) 0.0999(12) 1.650(40) – 0
67Ga 1001.2(11) 887.701(8) this work 0.8661(32) 0.1125(29) 1.970(53) 1.730(47) 0
67Ga 1001.2(11) 887.701(8) RD 0.8680(17) 0.1119(14) 1.88(5) – 0
111In 860(3) 416.72(3) this work 0.8494(24) 0.11922(206) 2.520(46) 5.532(101) 0.609(11)
111In 860(3) 416.72(3) RD 0.8518(2) 0.11835(13) – – –
123I 1228(3) 158.994(22) this work 0.8513(10) 0.1166(8) 2.516(2) 5.913(45) 0.942(7)
123I 1228(3) 158.994(22) RD 0.8533(14) 0.1163(10) 2.48(5) – –
123I 1228(3) 440.00(4) this work 0.8489(13) 0.1185(11) 2.563(26) 6.027(61) 0.960(10)
123I 1228(3) 440.00(4) RD 0.8510(14) 0.1181(10) 2.53(5) – –
123I 1228(3) 489.78(5) this work 0.8482(14) 0.1190(12) 2.580(28) 6.057(66) 0.965(11)
123I 1228(3) 489.78(5) RD 0.8503(14) 0.1186(10) 2.54(5) – –
123I 1228(3) 505.35(4) this work 0.8480(14) 0.1191(13) 2.580(28) 6.067(68) 0.966(11)
123I 1228(3) 505.35(4) RD 0.8501(14) 0.1187(10) 2.54(5) – –
123I 1228(3) 687.97(3) this work 0.8444(20) 0.1219(17) 2.649(40) 6.233(94) 0.993(15)
123I 1228(3) 687.97(3) RD 0.8464(14) 0.1216(10) 2.62(5) – –
123I 1228(3) 783.62(3) this work 0.8412(25) 0.1243(21) 2.709(49) 6.380(117) 1.017(19)
123I 1228(3) 783.62(3) RD 0.8436(14) 0.1237(10) 2.67(5) – –
123I 1228(3) 894.77(6) this work 0.8350(35) 0.1290(30) 2.829(69) 6.671(163) 1.064(26)
123I 1228(3) 894.77(6) RD 0.8377(15) 0.1283(11) 2.78(5) – –
123I 1228(3) 1036.62(5) this work 0.8140(72) 0.1448(60) 3.234(140) 7.652(333) 1.221(54)
123I 1228(3) 1036.62(5) RD 0.8182(18) 0.1427(13) 3.16(6) – –
123I 1228(3) 1068.23(6) this work 0.8028(93) 0.1532(76) 3.450(180) 8.179(433) 1.305(70)
123I 1228(3) 1068.23(6) RD 0.8082(21) 0.1503(15) 3.36(7) – –
125I 185.77(6) 35.4925(5) this work 0.7983(18) 0.1566(14) 3.539(31) 8.395(74) 1.340(12)
125I 185.77(6) 35.4925(5) RD 0.8011(17) 0.1561(13) 3.49(7) – –
125Xe 1636.7(4) 188.416(4) this work 0.8516(1) 0.1162(1) 2.519(3) 6.011(6) 1.010(1)
125Xe 1636.7(4) 188.416(4) RD – – – – –
125Xe 1636.7(4) 243.382(4) this work 0.8514(2) 0.1163(1) 2.523(3) 6.021(7) 1.011(1)
125Xe 1636.7(4) 243.382(4) RD – – – – –
125Xe 1636.7(4) 372.066(13) this work 0.8508(2) 0.1168(1) 2.533(3) 6.047(7) 1.016(1)
125Xe 1636.7(4) 372.066(13) RD – – – – –
125Xe 1636.7(4) 453.792(9) this work 0.8504(2) 0.1171(1) 2.541(3) 6.066(8) 1.019(1)
125Xe 1636.7(4) 453.792(9) RD – – – – –
125Xe 1636.7(4) 1007.450(16) this work 0.8446(4) 0.1215(3) 2.653(6) 6.342(16) 1.066(3)
125Xe 1636.7(4) 1007.450(16) RD – – – – –
125Xe 1636.7(4) 1089.904(12) this work 0.8426(4) 0.1230(3) 2.691(8) 6.434(18) 1.081(3)
125Xe 1636.7(4) 1089.904(12) RD – – – – –
125Xe 1636.7(4) 1180.872(13) this work 0.8396(5) 0.1253(4) 2.750(9) 6.579(22) 1.106(4)
125Xe 1636.7(4) 1180.872(13) RD – – – – –
125Xe 1636.7(4) 1442.79(5) this work 0.8109(15) 0.1468(12) 3.304(28) 7.948(68) 1.337(11)
125Xe 1636.7(4) 1442.79(5) RD – – – – –

aFrom Ref. [31].
bFrom Ref. [32].

V. CONCLUSION

We have presented a thorough reexamination of the EC for-
malism and calculations of capture fractions, including several
critical atomic effects. We employed the Dirac-Hartree-Fock-
Slater self-consistent framework for the bound electron wave

functions. The reliability of this method for EC calculations
is underlined by systematic comparisons of binding energies
and Coulomb amplitudes with previous theoretical models
and experimental data.

In this paper we have provided a refined evaluation of the
energy of the emitted neutrino. Previous models determined
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FIG. 7. Ratio between the theoretical and experimental values for relative capture probability from the K shell considering both the
approximate (orange triangles) and the refined (blue circles) method of computing the neutrino energy. The inset is the same figure but
with an extended y axis. Error bars are computed with theoretical and experimental uncertainties summed in quadrature.

the emitted neutrino energy by neglecting the total change
in electron binding energy between initial and final atoms
and the rearrangement energy of the captured electron. We
proposed a more rigorous method, in which both the above
quantities were computed using atomic structure calculations.
Although CPU intensive, this approach yielded improved
agreement with experimental values for electron capture frac-
tions, particularly in low-energy transitions.

In the comparison between theoretical predictions we ob-
served deviations from experimental values below 2% for
the λK/λ ratios for all models. These deviations increased to
12% for captures from higher shells. Overall, the BETASHAPE

model and our model provided the most accurate values.
Furthermore, we tested the validity of our model by com-
paring theoretical predictions to experimental values across
wide ranges of atomic numbers and transition energies. We
found excellent agreement (below two standard deviations)

between theory and experiment in most cases. The only ex-
ceptions were the λM/λ ratios of 37Ar, 64Cu, and 73Se. We also
investigated in detail five nuclei (67Ga, 111In, 123I, 125I, and
125Xe) of interest in either nuclear medicine or exotic physics
searches with liquid xenon detectors. We obtained less than
one standard deviation between predictions and experimental
values of the relative capture fractions in almost all cases,
except λM/λ for the first four excited final states of the 67Ga
decays.

Finally, we note that using refined energetics leads to better
agreement between experimental and theoretical EC ratios,
particularly for low-energy transitions. We believe that this
characteristic could have an impact on the determination of
the neutrino mass scale from electron capture processes. In
conclusion, our results have significant implications for future
studies in the field of EC, as well as for related applications in
nuclear physics and astrophysics.

FIG. 8. Same as Fig. 7 but for the L shell.
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FIG. 9. Result of 106 pseudoexperiments used for the evaluation
of the uncertainty of rλL/λ for the allowed e− + 88Y → 88Sr∗ + νe

transition. The blue histogram is the PDF of r. The orange curve is
the cumulative distribution function of r. The vertical dot-dashed line
passes through the mean value r̂. The two dotted lines correspond to
rlow and rup.
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APPENDIX: UNCERTAINTY ESTIMATION

In this study, we assess the uncertainties associated with
the capture ratios presented in Tables II–IV using a pseudo-
experiment technique. The approach involves the sampling

of parameters that can potentially fluctuate from probability
distribution functions (PDFs). The capture rates are then
computed for each set of sampled parameters and the corre-
sponding ratios r are determined, resulting in PDFs for the
ratios f (r). The mean values r̂ of these PDFs are reported as
the central values in the tables. To obtain the two-sided bounds
(rlow and rup) for each ratio, we solve the equations∫ rlow

0
dr f (r) = 0.16,

∫ 1

rup

dr f (r) = 0.16. (A1)

Since the PDFs f (r) are not symmetric, we avoid undercover-
age by quoting as uncertainty the number

max(r − rlow, rup − r). (A2)

This procedure has the advantage of correctly accounting for
correlations between the numerator and denominator of each
ratio.

The primary factor contributing to the uncertainty in the
capture rate ratios is the neutrino energy. To account for this,
we only sample qx in Eq. (13) as follows. We assume that
the Q value and nuclear relaxation energy Rγ are normally
distributed with experimental values as means and standard
deviations. The theoretical uncertainty in the atomic relax-
ation energy Rx is the only remaining source of uncertainty. In
Fig. 6 we show that the DHFS self-consistent method agrees
with experimental values within 3% for all Rx. Therefore, we
use a uniform distribution to model Rx in our pseudoexperi-
ments, with a range of [0.97R̂x, 1.03R̂x], where R̂x is obtained
from Eq. (29).

For each nucleus, we use 106 pseudoexperiments. For
illustration purposes, the results for the ratio r = λL/λ for
the allowed transition e− +88 Y →88 Sr∗ + νe are shown in
Fig. 9.
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