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Nonadiabatic interaction effects in the spectra of ultralong-range Rydberg molecules
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Ultralong-range Rydberg molecules (ULRMs) are highly imbalanced bound systems formed via the low-
energy scattering of a Rydberg electron with a ground-state atom. We investigate for >*Na the d state and the
energetically close-by trilobite state, exhibiting avoided crossings that lead to the breakdown of the adiabatic
Born-Oppenheimer (BO) approximation. We develop a coupled-channel approach to explore the nonadiabatic
interaction effects between these electronic states. The resulting spectrum exhibits stark differences in compari-
son to the BO spectra, such as the existence of above-threshold resonant states without any adiabatic counterparts,
and a significant rearrangement of the spectral structure as well as the localization of the eigenstates. Our study
motivates the use of Na ULRMs, as a probe to explore vibronic interaction effects on exaggerated timescales

and length scales.
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I. INTRODUCTION

Rydberg atoms are an important player in modern quantum
physics due to their unique and extreme properties. Their size
and dipole moment scale as n?, and lifetimes and polarizabil-
ity scale as n® and n’, respectively, where n is the principal
quantum number [1,2]. They offer a state-dependent inter-
action strength and enhanced sensitivity to electromagnetic
fields, rendering them promising platforms for quantum com-
puting [3-7], external field sensing [8—10], detection of polar
molecules [11-13], and Rydberg-quantum optics [14—17].
The pioneering article in [18] predicted the formation of
ultralong-range Rydberg molecules (ULRMs), as a result of
attractive scattering interaction of the Rydberg electron with
a ground-state perturbing atom. These exotic bound states
feature permanent dipole moments of the order of kilodebye
and bond lengths of the order of micrometers, properties
which were unheard of in conventional diatomic molecules.
However, recent works have also studied other exotic bound
molecular systems with exaggerated properties, formed due to
different binding mechanisms like the Rydberg macrodimer
[19-21] and the Rydberg atom-ion molecule [22-27].

This work is dedicated to the diatomic ULRM, bound as a
consequence of low-energy electron-atom s-wave scattering.
The scattering mechanism enables the existence of two dis-
tinct classes of molecular states [18]. The first type is formed
when a Rydberg electron of low angular momentum (I < 2)
interacts with the neutral perturber. Molecules of the low-/
class exhibit shallow potential wells (approximately 10 MHz)
and a very small net electronic dipole moment [28]. The
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second type is the trilobite class of molecules [29,30], which
arise as the high-/ hydrogenic manifold is mixed by the
ground-state atom [31]. The trilobite molecules exhibit much
deeper potential wells (on the order of gigahertz) and a large
permanent dipole moment and is responsible for garnering
much interest to the field of ULRMSs. In addition, the use
of higher-order terms in our scattering interaction has also
demonstrated the existence of the butterfly state [32,33],
which arises as a consequence of p-wave shape resonances.
More recently, detailed theoretical models that include higher
partial waves of the electron-atom scattering interaction have
also been constructed [34]. Starting from its experimental
observation in [35], significant progress have been made in
the study of ULRMs over the past two decades. This includes
its utility, as a probe for spatial correlations in ultracold atomic
gases [36], in precision spectroscopy of negative-ion reso-
nance [37], and in the study of Rydberg impurities in ultracold
atomic gases [38,39]. Furthermore, the fine and hyperfine
structures of these molecules [40—42] as well as their behavior
in external electric and magnetic fields have been studied
[43—47], and major strides have been made in the experimen-
tal exploration of these molecules (see [33,35,37,48-59] for
examples of experimental investigations on ULRMs).

One of the important theoretical tools used in the analysis
of a ULRM is the well-established Born-Oppenheimer (BO)
approximation [60]. As a cornerstone of molecular physics,
the BO approximation advocates for the separation of slow
nuclear and fast electronic motion, allowing us to indepen-
dently solve the electronic problem in varying geometrical
arrangements of the nuclei, to obtain the so-called adiabatic
potential energy curves (PECs). However, there is typically
a ubiquity of avoided crossings featured in the PECs of the
ULRM and resultingly nonadiabatic interactions potentially
leading to the breakdown of the BO approximation are ex-
pected. Such a breakdown of adiabaticity can result in the
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altered spectra and lifetimes of molecular states and even
introduce metastable states that are subject to nonadiabatic
decay [61]. In the special case of a conical intersection (CI),
when the molecular geometry facilitates the degeneracy of
two PECs, the nonadiabatic couplings become singular and
the adiabatic approximation breaks down completely [62—-66].
Recent studies have demonstrated the existence of such CIs in
the Rb ULRM, for very specific conditions, when the electron-
perturber scattering phase shift divided by = is similar in size
to the quantum defect, i.e., uym ~ §; [67]. In the context
of traditional molecular physics, CIs play an important role
in molecular dynamics as they can cause fast nonradiative
transitions between electronic states [68—71], Jahn-Teller dis-
tortions [72,73], and surface hoppings [74,75], to name a few
examples. The study of nonadiabatic effects in the vicinity
of conical intersections has been proven to be necessary for
understanding a wide range of natural phenomena such as
photostability of DNA [76,77], photoisomerization [78,79],
and reaction mechanisms involving photosynthesis [80]. The
ULRM, on the other hand, provides us with a platform to
explore molecular dynamics in the unique and enormous
timescales of microseconds and on length scales of microm-
eters. Hence, the study of nonadiabatic interaction effects,
as well as their contribution to the spectral characteristics in
a molecule which features such exaggerated properties, is a
challenging and promising direction of research on ULRMs.
It is of relevance to mention that recent studies of the Rydberg
macrodimer and the Rydberg atom-ion molecule also consider
nonadiabatic interaction effects, enabling us to theoretically
explore beyond BO physics in multiple exotic Rydberg
systems [20,22,81].

In this work we focus on the nonadiabatic interaction
between two electronic states in 2*Na ULRMs, due to the vi-
bronic coupling between them. The electronic level structure
of 2’Na leads to avoided crossings and state mixing between
the trilobite and the d-state PECs (see [82], for a recent study
on vibronic couplings between trilobite and butterfly states).
The onset of prominent vibronic interaction effects, as a result
of the aforementioned electronic level structure, justifies the
choice to study sodium as opposed to heavier atoms. We
highlight results for specific n values, with near-degenerate
avoided crossings that cause singular vibronic couplings, ex-
plained using the concept of CIs in synthetic dimensions. A
coupled-channel approach is employed to obtain the vibronic
spectra, thereby using the nonadiabatic couplings between the
trilobite and d-state PECs. We observe features of vibronic
interactions in the underlying spectra including scattering res-
onance states with no adiabatic counterparts. We also use
the single-channel Born-Huang approximation, including the
nonadiabatic diagonal corrections without the off-diagonal
couplings as a comparative resource. The analysis of vibronic
and vibrational spectra is used to justify the necessity of a
coupled-channel approach to study the 2?Na ULRM.

This work is organized as follows. Section II contains
the theory and methodology used throughout this work. Sec-
tion IT A elaborates on the general molecular Hamiltonian
and gives insight into the approximations and terminology
used to study nonadiabatic couplings. Section IIB focuses
on the electronic interactions in the ULRM and introduces
the electronic states and PECs relevant to our work, before

FIG. 1. Sketch of the 2Na ULRM, illustrating the scattering
interaction between the Rydberg electron at position r and the
ground-state atom at position R. The triplet nature of the scattering
interaction is highlighted.

we discuss the specific two-level system and the problem of
diabatization in Secs. IIC and II D, respectively. The com-
putational tools used as well as the approach to obtain the
vibronic spectra are discussed in Sec. III. Section IV fea-
tures the results and discussion. Section IV is further divided
into Sec. IV A, addressing the electronic structure of the
2Na ULRM; Sec. IVB, discussing the nonadiabatic cou-
plings; and Sec. IV C, providing a comparative analysis of
the coupled-channel vibronic spectrum and the single-channel
approximations. A summary and outlook are presented in
Sec. V.

II. THEORY AND METHODOLOGY

In this section we present the Hamiltonian governing the
internal molecular dynamics of the ULRM and the corre-
sponding Schroédinger equation in atomic units. We then
proceed to elaborate on the nonadiabatic features of our
system and the approximations used to circumvent them.
Later we introduce the scattering interaction which forms the
binding mechanism of the ULRM and discuss the electronic
spectra of the molecule. The focus is then shifted to the inter-
action between the trilobite and the d state, and the vibronic
coupling between them. Finally, we introduce the concept of
diabatization and use it in our two-state system as a precursor
to obtaining the vibronic spectra.

A. Hamiltonian, adiabatic separation,
and nonadiabatic couplings

Our system consists of two 2*Na atoms, one in the Rydberg
state and the other one in the ground state. Transforming the
two-atom system into relative coordinates, R is the internu-
clear vector of the two atoms and r is the Rydberg electron
position, with the ionic core at the coordinate origin, as de-
picted in Fig. 1. The Rydberg electrons’ interactions with
the parent core and the ground-state perturber, as well as the
vibrational motion of the diatomic system, are captured in the
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molecular single-electron effective Hamiltonian

2 2
Hm — nu + pe
2u 2.

+ VRyd(r) + Ven(Rs I') . (1)

H:.(R,r)

The first term represents the nuclear kinetic energy T;, along
the vibrational degree of freedom, the second term and the
third term represent the kinetic energy of the Rydberg electron
T; and its interaction with the Rydberg ionic core Vgyq, respec-
tively, and the last term V,, represents the electron-perturber
interaction. In addition, u and u. are the reduced masses
of the two nuclei and the electron, respectively. Isolating
H.(R, r) as the electronic Hamiltonian which is paramet-
rically dependent on the internuclear coordinate, we could
solve for the corresponding electronic problem. The resulting
eigenvalues, i.e., the PECs ¢;(R) and eigenvectors v;(R, r),
depend parametrically on the internuclear coordinates and we
have

H.(R, 1) [i(R, 1)) = &i(R) [i(R, 1)) . 2)

The total molecular wave function can be expanded us-
ing the electronic eigenfunctions according to W, (R, r) =
> xiR)W;(R, 1), known as the Born-Oppenheimer expan-
sion [60,83]. It is an exact representation of the molecular
wave function, as the electronic eigenfunctions form an or-
thonormal and complete basis. Here { x;(R)} are the expansion
coefficients which portray the R-dependent mixing of elec-
tronic states. Inserting this expansion into the molecular
Schrodinger equation Hy, W, = EW,, and integrating out the
electronic degrees of freedom, we obtain the coupled-channel
time-independent Schrodinger equation (TISE) for the vibra-
tional motion [62]

~ L V3@ + eR)x®) - — > AGR)X;(R)
211« RAI i i ZM - ij J

= Exi(R). 3)

Here A;; are the nonadiabatic couplings between the nuclear
and electronic motions, which can be written as

Aij =2P; Ve + Qij, 4)

where P = (P;;) and Q = (Q;;) are the first- and second-order
derivative couplings, defined as

Pij = (iR, 0)|VR|¥;(R, 1)), ®)

0ij = (Vi(R, 1) VR [¥;(R, 1)) , (6)

where angular brackets denote the integration with respect to
the electronic degrees of freedom. Here P and Q essentially
introduce the coupling between different electronic states ;
and v¥; due to the motion of the nuclei, which in turn affects
the vibrational motion of the nuclei. Once the P matrix is
obtained, it is straightforward to calculate the second-order
coupling using the relation

Qij = VrP; + Pj @)
where

P} = — (Vryi(R, )| VRY; (R, 1)) . (8)

It is possible to write Eq. (3) in a more compact way, using
the complete P matrix as

1
_Z(VR +P)’Xx(R) +eR)X(R) = Ex(R), (9

with the vector x = (x;), which contains the expansion co-
efficients, and the diagonal potential energy matrix ¢, which
contains the corresponding PECs. The nonadiabatic couplings
are shown to manifest as off-diagonal terms in the kinetic
energy operator for the nuclear vibrational motion.

The BO approximation [60,62—64,83] is used to solve
Eq. (3) as a standard approximation, where the nonadiabatic
terms are completely neglected, resulting in the decoupling of
the molecular vibrational Schrédinger equations governing x;
to form

—ivﬁxi(R) + &iR)Xi(R) = E; xi(R). (10
Here the total molecular state is simply W, ;(R,r)=
xi(R)Y; (R, r), i.e., the electronic and nuclear motion are
adiabatically separated. In addition, ¥;(R, r) is the adiabatic
eigenstate, ¢;(R) is the adiabatic PEC which describes the
electronic motion, and y;(R) is the vibrational wave function
on each PEC. These adiabatic states and energy surfaces can
be obtained by solving H. at each fixed nuclear geometry.
Equation (10) then describes the vibrational motion of each
individual adiabatic potential energy curve. The adiabatic ap-
proximation can be justified due to the large differences in
masses between the electrons and the nuclei, resulting in very
different timescales of their motions. Hence the nuclei are ap-
proximated to remain frozen over the course of the electronic
dynamics.
In a second approximation, called the Born-Huang (BH)
approximation [84-86], we include the diagonal derivative
coupling operator A;; in Eq. (10),

1
_ﬂvlszi(R) + &/ (R)xi(R) = Eixi(R), (1)

where
e/(R) = &(R) — L Ai(R). (12)
2p

The Born-Huang approximation still maintains the decoupling
between different adiabatic electronic states due to nuclear
motion; instead it merely adds a correction to each isolated
PEC due to the finite kinetic energy of the nuclei. Hence the
BH approximation, much like the BO approximation, results
in a single-channel TISE by ignoring the off-diagonal cou-
plings of the coupled-channel TISE (3). The nomenclature
used here is based on works in nonadiabatic molecular physics
[85,86] and is not to be confused with the notion of a Born-
Huang expansion or other potentially ambiguous terminology.
Note that P is anti-Hermitian, whereas Q is non-Hermitian.
Hence, if the electronic eigenfunctions are real, P;, the diag-
onal first-order term vanishes and we obtain (A; = Q;;) < 0
[from Egs. (7) and (8)], thereby causing a purely positive shift
in the adiabatic PEC.

Both the Born-Oppenheimer and Born-Huang approxima-
tions are valid only when the R dependence of ; and ¢; is
adiabatic, i.e., the change of electronic motion with respect
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to R is gradual. However, both of these assumptions are
broken in the vicinity of an avoided level crossing of two
PECs, where the coupling between the electronic states is non-
negligible due to a high R sensitivity of the electronic states.
The strong vibronic coupling effects between the vibrational
and electronic states, due to the avoided crossings, can change
the spectra and lifetimes of molecules and facilitate surface
hopping across the avoided crossing.

B. Electronic interaction

Solving the molecular Hamiltonian for a ULRM first
requires the characterization of the electronic interaction be-
tween the Rydberg electron and ground-state atom, which
perturbs the Rydberg electron wave function via low-energy
scattering. We model V,,, the interaction potential, using a
Fermi pseudopotential [87,88] for s-wave scattering,

V,u(r, R) = 27a’ (k)8(r — R), (13)

where al (k) = al (0) + mak/3 is the energy-dependent
triplet s-wave scattering length for electron collisions with
ground-state atoms, where a’ (0) = —5.9 is the zero-energy
triplet scattering length [89,90] and o = 162.7 is the polar-
izability [91-93]. The wave number k can be semiclassically
determined using k> = 2/R — 1/n?. The negative triplet scat-
tering length facilitates an attractive interaction capable of
binding the two 2*Na atoms. A pictorial representation of the
interaction is presented in Fig. 1.

The adiabatic electronic Hamiltonian for the ULRM is
hence given by H. = Hryq + Ven, Where Hgyq is the Rydberg
electron Hamiltonian. The H. can be diagonalized in the
Rydberg-state basis {(r|nlm) = ¢,;,,(r)}, which satisfies the
Rydberg atom’s TISE

Hgyq [nlm) = — Inlm) (14

where |nlm) is an atomic Rydberg eigenstate. In our case u;
is the [-dependent quantum defect of 23Na [67,94], which
determines the detuning of each quantum-defect state with
reference to the hydrogenic state with energy E, = —1/2n.
It is worth noting that we omit the fine and hyperfine struc-
tures of the atomic Rydberg Hamiltonian. These terms may
indeed be relevant for specific systems and consequently can-
not be ignored if the aim is a comparison with (precise)
spectroscopic experimental data. However, our goal is to pro-
vide evidence for the vibronic interaction effects primarily
and hence we focus purely on the binding interaction, but
acknowledge the necessity to introduce further interactions
depending on the considered case and species. The spherical
symmetry of the Hamiltonian implies that, without loss of
generality, the internuclear axis can be taken as the z axis and
only m = 0 states contribute. The high-angular-momentum
states (n — 1 > [ > 3 for Na) are approximately degenerate to
the hydrogenic manifold due to negligible quantum defects.
Degenerate perturbation theory is used to obtain the high-/
adiabatic electronic states of H.,

n—1

1
1) = = > duo(REuio (x), (15)

1=3

where
n—1
7> =" lpuo(RD)I’, (16)
1=3
and the corresponding potential energy curve
t(R) = 2mal (k)T?, (17)

which are popularly known as the trilobite state and trilo-
bite PEC [18,31,41]. The low-angular-momentum Rydberg-
electron states (I < 3) are energetically far detuned from the
hydrogenic manifold due to significant quantum defects. Us-
ing nondegenerate perturbation theory, we obtain the isolated
low-/ adiabatic electronic state of H.,

lg) = ¢uio(r) (18)
and the corresponding potential energy curve
q(R) = 2ra] (k)| puo(RD)I, (19)

where v = n — ; is the effective principal quantum number.
Note that the low-/ molecular electronic state is essentially
the Rydberg-electron state, without any R-dependent state
mixing. These two PECs, first introduced in [18], are the
building blocks of the Rydberg ULRM. The trilobite PECs
feature wells which are significantly deeper (on the order of
gigahertz) than their low-/ counterparts (on the order of mega-
hertz) and can support multiple bound molecular states. These
trilobite molecules are extremely polar with a large electric
dipole moment D & R — n?/2 eay (ag is the length scale in
atomic units) as compared to the nonpolar low-/ molecules,
which can only support a few weakly bound states. This
simple perturbative method covers the fundamental properties
of Rydberg molecules and it allows us to study the two distinct
classes of PECs and analyze the properties of both polar and
nonpolar molecules formed by them.

C. Two-level system

As a prototype setup, the nonadiabatic interactions in 2*Na
ULRMs can be effectively probed by studying the interaction
between the trilobite and / = 2, i.e., the d quantum-defect
state relevant in sodium. We expand H. in a restricted basis
{l¢), |g)} consisting of the trilobite and d state to obtain

Tl @] [0 Jar
Ve‘[<r|He|q> <q|He|q>}‘[ﬁ q+A]’ 20)

where A is the energy splitting between the d state with
reference to the hydrogenic manifold. Note that the notation
used is based on [67], for the sake of continuity and conve-
nience, but the inner product of two eigenstates is summed
over coherently without the loss of sign information. The
upcoming strategy would be to use the BO approximation and
obtain the adiabatic states of the restricted two-level system
and utilize them to calculate the nonadiabatic coupling terms.
The behavior of these nonadiabatic terms might warrant the
necessity to transform our system into a basis where the vi-
bronic spectra can be readily calculated. Moving along our
road map, two adiabatic PECs (see Fig. 2) are obtained from
the diagonalization

ViR) =3t +q+A £t —g— A2 +4q1], (2D
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FIG. 2. (a) Adiabatic and diabatic potential energy curves for n = 48. The V_ and ¢ PECs converge to the 484 electronic state as it
approaches the dissociation limit (approximately 4500 a;) and V.. and ¢ PECs converges to the n = 48 hydrogenic state. The inset presents the
lowest five vibrational levels in the V_ PEC and their probability densities. (b) Magnified view of the region with prevalent state mixing
(2000 a9 < R < 40004ap). The diabatic curves are allowed to cross each other, but the adiabatic curves show nearly degenerate avoided
crossings at R ~ 2295 ay and 3210 a, (encircled regions), respectively. The color bar features the / = 2 character of the PECs as a function

of R.

along with their corresponding adiabatic electronic states

[Y_) =cos@ |t) 4+ sinf |q),

. (22)
|[Y+) = —sinf |t) + cos b |gq),
where 0 is the mixing angle given by
t
6 = arccos L . 23)
VWV =)+ gt

The state mixing is largely determined by the detuning
and the coupling strength. For A > ¢, ¢ such that /qf/(t —
q — A) ~ 0, as is the case for [ < 2, we obtain Vi ~ {q, t}.
For large detuning the adiabatic PECs act similarly to the
uncoupled d state PEC and trilobite PEC independently. Here
we assume that the rotational motion of the molecule is
negligible, thereby restricting the internuclear motion to the
radial dimension and establishing our system as a two-level
single-parameter model. The validity of this assumption relies
on the fact that the extremely large internuclear distance re-
sults in an extremely narrow rotational structure (proportional
to kilohertz). Hence, the dominant interaction effects visible
at moderate resolution are primarily due to the coupling of
electronic and vibrational motion (proportional to megahertz
and gigahertz). From this two-level picture, the derivative
couplings between the two adiabatic states are determined to
be

P = (Y |3glY4) = =0,

O = (Y_[831y_) = =07 +cos*(0) (t|d3lr), (24
0 = (Y_|dgly_) = =0 + sin*(9) (t]93]1),
where
5 M* B
(tI0g10) = 3 = =5 (25)
with 0 =030, B>=Y ¢ (R)* and M>=

Zl ¢;,10(R)¢n10(R)-
Figure 3(a) shows the calculated derivative couplings for
n = 48. The derivative couplings determined are prone to be

divergent for certain n» and R. The existence of these sin-
gularities [95] pose numerical problems in solving Eq. (3);
hence it is of use to employ methods whereby the vibrational

200 — Piy/(pao) ]
(a) —=— Qu/(2u)
100F =~ Qaa/(21) i

E (units of GHz)

—1001 E I 1

2300

—200f ‘ ‘
2000 2800 3600
R (units of ag)
103
ST /
) 102 §
4TF &
= 45- 0 =
1 10° é
41F /
1 1 1 A —1
0.9 1.2 15 10
R/n?

FIG. 3. Nonadiabatic couplings of the adiabatic electronic states
|[¥_) and |¥,). (a) First-order derivative coupling (black) P/u
for n = 48. The inset depicts the second-order derivative coupling
011/2u (red) and Oy /2p (blue). Both the first- and second-order
derivative couplings portray two near-singular peaks corresponding
to the avoided level crossings at R ~ 2295a, and 3210 a,, respec-
tively. (b) Parameter scan of the magnitude of Py, (n, R) over varying
n. Multiple n values are found possessing strong nonadiabatic cou-
plings; the peaks near n = 48 are encircled.
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Schrodinger equation is solved without dealing with divergent
derivative couplings.

D. Diabatization

The derivative coupling terms, as discussed before, mani-
fest as off-diagonal terms based on the nuclear kinetic energy
operator. The idea of diabatization [62,64] is to perform a
unitary transformation which diagonalizes the kinetic energy
matrix, whereby the need for derivative couplings in solving
the vibrational TISE is circumvented. As a result of such
a transform, off-diagonal potential energy terms may be in-
troduced in the new basis, which accounts for the vibronic
couplings in the diabatic basis. A unitary transformation
X(R) = U(R)x(R) would transform the TISE (9) into

1 _
—@a[ak + P)*xX(R) + E(R)X(R) = EX(R), (26)

where

8R)=U'e(RU, P=U"(PU + dgU). (27)

The transformed derivative coupling matrix vanishes if
ogrU = —PU, (28)

in which case the matrix U represents the diabatic transform,
and ¢ is the diabatic potential energy matrix with off-diagonal
terms. While it may not be possible to construct such a unitary
transform in all situations, for a two-level system with a single
parameter R, such a transformation exists analytically [20,96]
where U is a rotation about the angle,

V(R)=/ Pi2(Ry)dR;. (29)
R

Using the corresponding form of P, we obtain y(R) =
— fROO 0'(R1)dR, = —6(R). Hence, the diabatic basis is
proven to be the restricted electronic basis {|¢), |¢)}, which
was used as the initial ansatz. This gives the diabatic potential

matrix
_— t Jqt
o= V) 0

We have theoretically derived the adiabatic electronic states,
nonadiabatic couplings, and the diabatic potential energy
curves. What is left is to obtain the vibronic spectrum, by solv-
ing the coupled vibrational Schrodinger equations, using the
given diabatic potential energy matrix, the elements of which
vary as smooth functions of R, devoid of any singularities.

III. COMPUTATIONAL APPROACH: VIBRONIC
STRUCTURE

Based on the diabatic PECs, we use a tenth-order
finite-difference method [97] to obtain the vibrational wave
functions by solving the TISE for each adiabatic PEC. Con-
vergent eigenvalues and wave functions are observed for a
grid of 1000ay—6000ajy, with a step size of lay. Conver-
gence of P and Q demands much finer grid steps near the
avoided crossings. This is overcome by diabatization; using
the smooth diabatic PECs, we obtain a convergent eigenspec-
trum for the coupled-channel vibronic system for a step size of

lag. Once the diabatic basis is obtained, the coupled-channel
vibronic Hamiltonian in the diabatic basis can be represented
as

by [Tuti®
"L var®)

where Ty, is the nuclear kinetic energy term acting on each
of the diagonal PECs. Solving the TISEs H, = T;,y, +t(R)
and H, = T,y + q(R) on the aforementioned grid gives us the
eigenspectra {E], |x/)} and {Ei" ) xl.q )} corresponding to each
diagonal diabatic PEC. We can then expand any eigenvector
of H, as

JAR)
T + q(R) + A}’ D

N—-1

N—1
(wi) = |z + Y odl %)) . G2

1=l i=0
where
Hy |V]) =E/ |W]). (33)

Here {c/} and {d/} are expansion coefficients obtained by
diagonalizing H, in the diabatic basis and N is the number of
vibrational states from each diagonal PEC used for diagonal-
ization. Note that the eigenvector can no longer be separated
into well-defined electronic or vibrational parts. However,
tracing out the electronic degree of freedom leaves us with the
vibrational probability density of | W) along the internuclear
axis,

2

PIR) = % B[ + |X)®R) (34)

where
) N-1 ) N-1 .
X(R)=) cx®), XJR)=) dxR). (395
i=0 i=0

The P/(R) can be compared to the probability density of the
vibrational states in each adiabatic PEC (see Figs. 4 and 5),
whereby differences in vibrational motion can be observed
between the adiabatic and nonadiabatic cases. To observe
electronic-state mixing, we transform the vibronic eigenstate
back to the adiabatic basis where X/ = UTX’, where UT is
the inverse-diabatic transform, to obtain

|Wi) = X/ (R) [y—) + XL(R) [4) (36)

where X, provides the R-dependent electronic-state mixing
due to the nonadiabatic couplings, and

pa = / X, (R)dR, 37)

which provides the population for the state |1/1). Color map-
ping the P/(R) with the population p_ (see Figs. 4 and 5) is an
effective way to visualize both the electronic and vibrational
contributions to each vibronic eigenstate. The unbound states
above the dissociation threshold suffer box-state behavior due
to the fixed boundary conditions we impose and are sensitive
to the changes in the boundary-wall position. Hence, only
the bound states below the threshold and resonance states
above threshold are considered in our analysis. We ensure
convergence of these states with respect to variation of both
boundary position and grid size.
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FIG. 4. Eigenspectrum of the ultralong-range sodium molecule for n = 48. Selected vibrational energy levels and probability densities
of bound states correspond to (a) the V_ Born-Oppenheimer curve, (b) the V> Born-Huang curve, and (c) the coupled-channel nonadiabatic
system, with the adiabatic curves plotted for reference. Each vibrational level is color graded according to the electronic contribution by the
|¥_) state, represented by the population p_. The dissociation threshold of the V_ PEC, given by V2 = —0.925 GHz, is presented in (a).

IV. RESULTS AND DISCUSSION

In this section we discuss the electronic and vibronic
spectral properties of the sodium ULRM. The principal quan-
tum number n = 48 is used to illustrate the structure of the
adiabatic PECs and derivative coupling terms, as it is repre-
sentative of a strong vibronic interaction. We then proceed to
discuss the complete vibronic spectra in comparison to the BO
and the BH spectra and elaborate on the specific differences
between them due to nonadiabatic interaction effects. The vi-
bronic spectrum for n = 43 is also discussed, as it features less
prominent vibronic coupling when compared to the n = 48
case.

A. Electronic structure

Figure 2 features the two-state adiabatic PECs V. de-
termined for n = 48 (solid lines). At large R, close to the
dissociation limit (R ~ 4500 ap), the PECs become nearly
flat and match the energies of the hydrogenic manifold (V)
and the d state (V_), respectively. Inside the Rydberg orbit
R < 2n?, the |,) electronic state splits off of the hydrogenic

manifold, causing the V. PEC to descend towards the V_ PEC
and form narrow avoided crossings at R & {2295, 3210}a,,
where nonadiabatic couplings become large.

The exchange of the electronic-state character due to state
mixing at avoided crossings is given by color grading the
adiabatic PECs, with the R-dependent overlap of the adia-
batic states with the d state. Corresponding to the mixing of
electronic states, the V. PECs split away from g(R) and 7(R)
for 1700 ag < R < 4300 ay. For R values between the avoided
crossings, V_ acquires a trilobite character, as is visible from
the well structure of the PEC and the low-d-state contribution
to [{_). On the other hand, V., while being d-state dominant,
has a significantly altered well structure. Note that, although
q(R) appears to be flat in the relevant energy scale, it does
exhibit oscillatory structures of depth less than or equal to
6 MHz, significantly different in depth and structure from
V_ for the complete R interval within which potential wells
appear. The mixing of electronic states leads to the modifi-
cation of transition dipole moments, facilitating the excitation
of high-/ states via two-photon transitions. We remark that the
validity of our surfaces V. is confirmed by comparison to nu-
merically obtained adiabatic PECs including atomic Rydberg

1 | R 1] i
[ WAL T aaa N\ [ H [
. i :’iﬁﬁ ] | T p-
_-1.30¢ - il r Il
: S ﬁ% | 1
Z-132f [ i ! I u |
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FIG. 5. Eigenspectrum of the ULRM for n = 43. Selected vibrational energy levels and probability densities of bound states correspond
to (a) the V_ Born-Oppenheimer curve, (b) the V¥ Born-Huang curve, and (c) the coupled-channel nonadiabatic system, with the adiabatic
curves plotted for reference. Each vibrational level is color graded according to the electronic contribution by the [1/_) state, represented by
the population p_. The dissociation threshold of the V_ PEC, given by V2 = —1.287 GHz, is presented in (a).
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states belonging to energetically neighboring n» manifolds, as
well as corresponding quantum-defect split states.

Furthermore, the single-color dashed lines are used to rep-
resent the diabatic PECs, corresponding to the trilobite state
(red) and the d state (blue). Note that the diabatic curves cross
each other at R values corresponding to the avoided crossings.
This is expected, as the crossing of diabatic curves, given by
the relation = ¢ + A, minimizes the energy gap between the
adiabatic PECs to |V, — V_| = \/4qt [see Eq. (21)]. Due to
the oscillatory nature of the d-state PEC, it is possible that the
diabatic curves cross each other near the node of the |nd0)
eigenstate. Such a coincidence would result in an extremely
narrow avoided crossing, as is illustrated in Fig. 2 for the
special case of n = 48.

Extending our analysis, if the t = ¢ + A crossing exactly
coincides with the node of |[nd0), then g vanishes and the adia-
batic PECs become degenerate, i.e., |V, — V_| = 0. However,
the von Neumann—Wigner noncrossing theorem prohibits an
exact degeneracy of the PECs corresponding to electronic
states of the same symmetry, in single-parameter (determined
by R) diatomic systems [98]. We note that the use of the prin-
cipal quantum number 7, as a synthetic dimension [67], allows
us to bypass the noncrossing theorem. This is facilitated by
using Whittaker Coulomb functions as a replacement for the
hydrogenic radial wave functions, for probing noninteger n
[99,100]. The two-parameter diatomic system introduces the
possibility of forming conical intersections at specific {n, R}
coordinates. Such CIs would result in complete degeneracy of
the adiabatic potentials, representing {n, R} values where the
diabatic curves cross each other at exactly the node of |nd0).
Hence, the width of the avoided crossings and consequently
the strength of the nonadiabatic coupling is ascertained to
be n dependent, corresponding to the proximity of the {n, R}
coordinate to a CIL.

B. Nonadiabatic coupling

Figure 3 features the nonadiabatic couplings of the two
adiabatic electronic states of the ULRM. Since the P matrix
is anti-Hermitian, it suffices to analyze P, (=—P»;) as off-
diagonal coupling. Here P, is divided by the reduced mass
@ and ap so that it can be expressed in units of energy, as
represented in Eq. (3). Similarly, Q;; and Qy; are divided by
twice the reduced mass. The nonadiabatic couplings are then
expressed in the same energy scale as the adiabatic PECs,
allowing to us to compare their relative strengths as they
appear in the vibrational TISE [see Eq. (3)] and consequently
establish their importance in the calculation of the eigenspec-
trum.

The derivative off-diagonal coupling for n =48 [see
Fig. 3(a)] exhibits two near-singular peaks corresponding to
the same R values as the narrow avoided crossings of the
underlying PECs. At other R values, P, also exhibits oscil-
latory structures with smaller amplitude, which are caused
by the well structures of V, and V_ resulting in an oscilla-
tory potential energy difference between them. The couplings
vanish beyond R > 4500 ag and R < 1500 ag, due to a negligi-
ble R-dependent state mixing. The second-order nonadiabatic
couplings Q1 and Oy, are both dominated by the contribution
from Pj,, overpowering the derivative term in Eq. (7). Hence

both diagonal terms feature near-singular peaks correspond-
ing to the narrow avoided crossings, with negligible strength
at other R values, on the displayed scale. The magnitude of
the peaks in the nonadiabatic couplings far exceed the en-
ergy scale of the adiabatic potential energy curves near the
avoided crossing, thereby causing the breakdown of the BO
approximation. The strong contribution from the off-diagonal
term which dominates the diagonal term implies that the BH
approximation is also not applicable. Note that the magnitude
and double-peak structure of the nonadiabatic couplings are
specific to the n = 48 case, which allows the extremely nar-
row avoided crossings.

To further study the n dependence of nonadiabatic effects,
we determine the magnitude of Pj, over a parameter range
of the principal quantum number [see Fig. 3(b)]. The linear
structures formed by Pj, stem from the fact that the length
scale of the ULRM, and hence the position of the avoided
crossings, scales as n2. As explained before, these avoided
crossings turn into CIs when the trilobite PEC crosses the
d-state PEC, exactly at the zero of |nd0). Figure 3(b) features
near-singular peaks for specific n values, which corresponds
to the existence of such conical intersections accounting for
synthetic dimensions. The n = 48 case is highlighted, as it
is very close to two CIs, which explains the existence of
two nearly degenerate avoided crossings and the double-peak
structure of nonadiabatic couplings. Other integer n values
which are not in the vicinity of a CI also feature prominent
but less-peaked derivative couplings which correspond to their
respective avoided crossings, which are wider compared to the
n = 48 case.

C. Vibrational and vibronic spectra

We now perform a comparative analysis of the spectral
features of the sodium ULRM, obtained using the BO ap-
proximation, the BH approximation, and the coupled-channel
Hamiltonian for n = 48. Figures 4(a) and 4(b) show the vi-
brational probability densities of selected bound eigenstates
shifted according to their energy eigenvalues calculated us-
ing the BO and BH approximations, respectively. Figure 4(c)
shows the vibrational probability density of selected bound
eigenstates of the coupled-channel Hamiltonian, obtained by
tracing out the electronic degree of freedom, shifted according
to their energy values. The probability densities are colored
according p_, the population of state |{r_). The black lines
represent the V_, V; PECs in Figs. 4(a) and 4(c) and the BH
corrected V? PEC in Fig. 4(b).

We observe that the vibronic eigenvalues exhibit a signifi-
cant positive shift in energy when compared to the vibrational
eigenvalues obtained using the BO approximation. For n =
48, the full vibronic system possesses a ground-state shifted
approximately 6 MHz higher in energy than the BO ground
state and exhibits negligible energy shifts for bound states
near the continuum threshold. The energy gaps between
the eigenvalues of the BO system fail to mimic the energy
gaps exhibited by the coupled-channel nonadiabatic system.
The Born-Huang correction shifts the vibrational ground
state approximately 11 MHz higher in energy than the BO
ground state, effectively placing it above the first excited
state of the BO system and above the ground state of the
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coupled-channel system. The higher excited states near
the continuum also show significant positive-energy shifts
(approximately 4 MHz) between the BO and the BH approx-
imations. The overcorrection in energy values, due to the BH
correction, is a result of including only the positive diagonal
terms without considering the level repulsion introduced by
the off-diagonal terms.

We also observe pronounced differences in the vibrational
probability densities obtained within the three models. The
vibrational ground state associated with the V_ PEC is delo-
calized between several wells (2500 ag—3300 ap). The ground
state belonging to the BH and exact spectra, although simi-
lar in density profile, is more localized. Subsequent excited
states belonging to the BH and exact spectra, while exhibiting
different density profiles, also show more localized behavior.
For example, the fourth excited BO state in Fig. 4(a) is de-
localized in R over the entire of the V_ PEC at the relevant
energy scale. In contrast, the corresponding coupled states
presented in Fig. 4(c) exhibit localization in R over the span
of a single potential well. Similar effects of localization are
also clearly visible in the fifth and seventh excited states of
the system. The higher potential barrier introduced between
the potential wells by the diagonal BH correction can be
viewed as an explanation for vibrational localization in the BH
spectrum. However, the vibronic spectrum has a significantly
altered probability distribution that is not explained by the
diagonal correction alone. Interestingly, the fourth and fifth
excited states of the vibronic spectrum are localized in two
separate outer wells, allowing them to be nearly degenerate.
Note that below the continuum threshold of —0.925 GHz, the
BO and BH spectra contain states with purely v_ character.
Counterintuitively, we observe significant state mixing for the
first three excited states of the coupled system, even though
they appear to be well localized in the V_ PEC. This indicates
strong nonadiabatic couplings between the two closed chan-
nels, well below the continuum limit.

A key observation to be made is the existence of nona-
diabatic resonance states visible above the V_ dissociation
threshold. For energies above —0.925 GHz, the n =48 V_
adiabatic PEC corresponds to an open channel, featuring only
continuum states. However, in the complete vibronic picture
[Fig. 4(c)], bound states are observed at energies of approxi-
mately —0.919 and —0.912 GHz, with significant state mixing
(determined by color value). The vibrational probability den-
sity of these bound states is localized in the potential energy
wells of V,, but is localized much below the ground state of
V.; hence, it cannot be interpreted to belong to either one of
the single channels. The BH spectrum does contain a bound
state of energy —0.915 GHz localized in the V¥ PEC, but this
does not compare in energy value or probability density to the
aforementioned resonance states. The bound states are hence
explained as scattering resonances due to the off-diagonal
nonadiabatic coupling between an open channel (limited to
V_) and a closed channel (limited to V).

Figure 5 features the vibrational and vibronic spectra, as
an extension of the previous case study, for n = 43, following
the same structure and description as in Fig. 4. The n = 43
case is of comparative value, as the system is not in the
vicinity of a CI [Fig. 3(b)] as opposed to the n = 48 case. The
PECs features a much wider avoided crossing (R ~ 2700 a)

as portrayed in Fig. 5, and the differential couplings, while
prominent, are not as peaked as in the n = 48 case. The
ground states of the BH spectrum and the exact spectrum are
shifted by approximately 11 MHz and 6.5 MHz, respectively,
relative to the BO ground state. The positive-energy shift
due to the nonadiabatic coupling does not vary significantly
between the n = 43 and n = 48 cases. However, the deeper
wells of the n =43 PECs ensure that the energy splitting
is of less relative importance than for the n = 48 case. The
first two excited eigenstates of the exact spectrum portray
significant state mixing and the nonadiabatic bound states are
more localized than the BO states. The BH states near the con-
tinuum threshold show lower-energy splitting than the n = 48
case, which is associated with the fact that n = 43 has a less
prominent diagonal correction, due to its less prominent nona-
diabatic coupling. Much like the previous case, the vibronic
interaction does introduce the radial localization of states for
n = 43. The fourth, fifth, and eighth excited states of the BO
spectrum are all delocalized over multiple wells, in contrast
to the corresponding well-localized nonadiabatic states. As a
final note in our comparison, a scattering resonance state with
no BO or BH counterpart is observed at an energy of approx-
imately —1.278 GHz, well above the continuum threshold of
—1.287 GHz.

It is worth noting that although the nonadiabatic cou-
plings are highly n dependent, the behavior of the diabatic
curves does not vary significantly over n. Hence the positive-
energy shifts (on the order of megahertz), state localization,
and existence of resonance states for the exact spectrum are
all commonly observed for 30 < n < 60. The pattern of n-
dependent singularities [Fig. 3(b)] are also repeated regularly
for 30 < n < 60. However, as the energies of the PECs scale
as n=3, the contribution of nonadiabatic interaction effects to
the complete molecular spectra becomes more important for
higher-n values.

V. CONCLUSION AND OUTLOOK

We have investigated nonadiabatic and vibronic interac-
tion effects in the sodium ultralong-range molecule, using
the vibronic coupling between states of trilobite and d-state
character. The oscillatory nature of the trilobite and d-state
PECs, along with the specific quantum defect splitting of
sodium, ensures the formation of avoided crossings for a
range of n values. We observed that the avoided crossing
between the adiabatic PECs introduce significant nonadiabatic
couplings that can behave like a singularity for specific n,
which is associated with the existence of CIs in synthetic di-
mensions. Irrespective of the form of the derivative couplings,
the exact spectra feature pronounced differences from the BO
spectra, including megahertz-scale positive-energy shifts in
eigenvalues, localized probability densities, and the existence
of scattering resonance states near the avoided crossings, with
no adiabatic counterpart. While the Born-Huang correction
does partially explain the energy shift and the state localiza-
tion, it cannot account for the exact spectra and the resonance
states. Hence, our results confirm that a coupled-channel ap-
proach is necessary to study the vibronic spectra of sodium
ULRMs, irrespective of the corresponding principal quantum
number n.
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A direct extension of our present work would be to include
the p-wave scattering terms as well as fine and hyperfine
interactions. Inclusion of these terms, although representing
a challenge, can help obtain results that are empirically com-
parable and be further developed to study nonadiabatic effects
in spin interacting systems. Nonadiabatic interactions in such
systems might give insight into spin-changing and /-changing
collision dynamics.

Furthermore, the present study of ULRMs also offers the
possibility for research opportunities in nonadiabatic wave-
packet dynamics. Notably, the introduction of an electric field
breaks the spherical symmetry of the system and facilitates
the existence of conical intersections in spatial dimensions.
This provides ample opportunity to probe and observe nonadi-
abatic dynamics near Cls, on timescales of microseconds and
distances of the order of micrometers, which are accessible
in present-day cold-atom laboratories. Finally, explorations
of ULRMs to date have been focusing on heavier molecules

formed by the species K, Rb, Cs, and Sr [35,49,53,101]. Here
the ability to concoct these molecules allows for a probing of
vibronic interaction effects in heavier ULRMs. In addition,
corresponding experiments with (ultra)cold sodium clouds
would allow one to address the presently investigated ULRMs
[102,103]. Hence, we justify the utility of lighter molecules
based on Na, as they feature strong nonadiabatic effects and a
rich vibronic structure and promote interest in the experimen-
tal study of sodium Rydberg molecules.
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