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Calculating the many-potential vacuum polarization density of the Dirac equation
in the finite-basis approximation
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In this work, we propose an efficient and accurate computational method to evaluate the many-potential
α(Zα)n�3 vacuum polarization density of hydrogen-like atoms within the finite-basis approximation of the Dirac
equation. To prove the performance of our computational method, we choose to work with the one-electron
238
92 U atom. In summary, we find that compliance with charge conjugation symmetry is a priori required to
obtain physical results that are in line with our knowledge of the analytical problem. We also note that the
final numerical results are found to be in excellent agreement with previous formal analytical (and numerical)
evaluations that are limited to a few simple nuclear distribution models. Our technique can be efficiently
implemented and evaluated in codes that solve the radial Dirac equation in the finite basis set framework
and allows the use of arbitrary (radial) nuclear charge distribution. The obtained numerical results of the
nonperturbative vacuum polarization density automatically account for the extended nuclear size effect. This
method is hence of special importance for atomic Dirac problems whose analytical Green’s functions expressions
are not at hand or have relatively complicated analytical forms. Furthermore, we propose a vacuum polarization
density formula that forces compliance with charge conjugation symmetry and can be used in cases where the
relativistic basis violates this symmetry, as is the case in most relativistic basis set programs. In addition, we
have shown that vector components of the vacuum polarization four-current vanish in the case where the Dirac
Hamiltonian is symmetric under time-reversal symmetry.
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I. INTRODUCTION

In the seminal work of Wichmann and Kroll [1], the
bound-state [Furry picture quantum electrodynamics (QED)]
vacuum polarization effect, of order α(Zα)n�1, was rigorously
studied for the point nucleus problem. Their technique lay
in expressing the vacuum polarization (VP) density in terms
of the trace of the two-by-two radial Dirac Green’s function.
In addition, they constructed their Green’s function from two
radial solutions of the Dirac equation (in the presence of a
Coulomb potential), each satisfying the right boundary con-
dition at the origin, and at infinity, respectively, through what
is known in the differential equation framework as the Wron-
skian method. This problem was also studied by Hylton [2],
Yerokhin and Maiorova [3], Grant [4, Sec. 3.6], Swainson and
Drake [5], and Hill [6]. The importance of this construction
lies in the fact that it avoids using the conventional definition
of the Green’s function, given as a sum (and integration) of
outer products over the whole set of Dirac solutions with
poles placed on corresponding eigenvalues (spectral repre-
sentation). After a lengthy derivation, Wichmann and Kroll
obtained an exact expression for the total Laplace-transformed
VP density and showed that the regularized version of the
first-order contribution—that is linear in the external-potential
strength Zα—represents the VP density associated with the
Uehling potential [7], and furthermore isolated the third-order
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(Zα)3 VP density. Later, Blomqvist [8] evaluated the inverse
Laplace transform of this third-order density and derived the
associated real-space α(Zα)3 VP effective potential, which
solves, together with the associated density, the electrostatic
Poisson equation. This potential can be directly employed in
practical calculations to account for the third-order VP effect.
Due to their mathematical complexity, effective potentials
associated with the higher-order α(Zα)n�5 VP problems were
never derived. For further details about the nonlinear vacuum
polarization density (and potential) generated by point nuclei,
the reader can consult Refs. [9–13].

Up to this point, the external potential was assumed to be
the one generated by a point nucleus. The finite nuclear size
effect on the α(Zα)n�3 VP correction was first computed by
Rinker and Wilets [14], in addition to Gyulassy [15].

In the former work, the authors computed the total
VP density generated by a finite nucleus charge density
(Fermi distribution); their VP density expression included
a finite sum over bound states and a numerical integra-
tion along continuum solutions (up to some large enough
momentum). The obtained many-potential VP density re-
sults suffered from the following nonphysical aspects: (1) It
contains a finite gauge-noninvariant contribution that needs
to be removed, known from the simplest photon-photon
scattering process; this aspect is discussed in Refs. [14],
[15, pp. 40–42 and Appendix I], [16], [17, Sec. III.A.3],
and [18]. (2) It does not integrate to zero. The authors
then employed further treatments to refine their numerical
results.
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In the latter (more rigorous) work, Gyulassy [15] followed
Wichmann and Kroll and constructed the radial Green’s func-
tion associated with a general extended nuclear distribution
of a definite charge radius rn (this is the case of the sphere-
and ball nuclei) using the following reasoning. The solution
that is regular at infinity (far away from the nucleus) is the
one that solves the point nucleus problem. On the other hand,
the solution that is regular at zero (inside the nucleus) solves
the free particle equation, in the shell nucleus case. The full
radial solution is then constructed from these two solutions,
and by imposing wave-function continuity at r = rn. Gyulassy
considered both sphere (shell) and ball nuclei, proceeded in
computing the individual radial Green’s function associated
with Zα and (Zα)3 VP orders, calculated their corresponding
individual VP densities, and provided an estimate of the ex-
tended nuclear distribution effect on the VP density generated
by a point nucleus.

For further studies of the many-potential VP effect in
the presence of a finite nucleus, the reader may consult
Refs. [16–25]. We finally note that an alternative computa-
tion of this many-potential VP effect, in the presence of an
arbitrary radial nuclear distribution, was provided by Persson
et al. [26] (see also Grant and Quiney [27], as well as Sunner-
gren [28]). Their construction considered removing the linear
α(Zα) contribution (one-potential) from the total VP potential
rather than its associated VP density, through a partial-wave-
expansion (decomposition) technique. This technique allows
to decompose the full problem into individual ±κ problems,
yields a term-by-term divergence cancellation between con-
tributions of the opposite sign of κ , forces the spurious finite
gauge-noninvariant contribution to vanish, and yields accurate
numerical results, as observed by Soff and Mohr [18, p. 5068].

In this work, on the other hand, we shall tackle the prob-
lem from a totally different angle, avoiding the numerical
implementation of (relatively) complicated analytical expres-
sions and their associated numerical integrations. Our primary
motivation is the efficient computation of the VP density,
specifically in the framework of the finite-basis approxima-
tion of the Dirac equation [29, Sec. 22.6], yet without loss
of numerical precision. The importance of performing such
calculations is that it is not based on a radial discretization
of the spherical space centered at the nuclear position (suited
for atomic calculations) [29, Sec. 22.6], but rather assumes
that the exact radial solution can be adequately described by
a linear combination of a finite set of radial functions (basis
set functions) that (1) satisfy physical boundary condition
requirements and (2) (if it is possible/practical) follow the
behavior of the exact wave function. This technique is widely
used in both atomic and molecular calculations, where in the
latter case a set of basis functions is centered on each of the
nuclear positions. Furthermore, in our calculations, we shall
consider Gaussian-type basis functions whose physical and
mathematical significance is discussed in Sec. III B.

After constructing the matrix representation associated
with the Dirac Hamiltonian, we numerically compute its
eigensolutions and proceed to calculate the VP density, from
the obtained solutions, using the conventional VP density
definition, which takes the difference between positive- and
negative-energy one-electron-state charge densities. We next
subtract the linear term (in Zα), containing the physical

Uehling correction together with a nonphysical divergence,
through a simple procedure, proposed by Rinker and Wilets
[14,16], and show that the obtained nonperturbative (many-
potential) VP density results are in excellent agreement with
the previous results of Mohr et al. [25, Sec. 4.2] that concerned
the one-electron uranium atom, where the nucleus was rep-
resented by a sphere-like nuclear distribution (hollow sphere
model).

We note that the efficiency of our method lies in the fact
that it avoids any kind of numerical integration (contrary to
the work of Gyulassy [15], Rinker and Wilets [14], or Persson
et al. [26]) in computing the VP density. It can also be shown
that the spurious gauge-noninvariant contact term, discussed
in Refs. [14], [15], and [17, Sec. III.3], automatically vanishes
in our calculation. This is a direct consequence of the fact that
in a finite basis framework, the Green function that is con-
structed out of the finite basis solutions is no longer singular
in the limit of coinciding spatial points, in addition to the
fact that the obtained solutions form a complete orthogonal
eigenbasis of finite size.

Furthermore, due to the kinetic balance condition, one ob-
tains a total even number of eigenvalues that equally splits
between positive and negative eigenvalues, as indicated by
Stanton and Havriliak [30]. Moreover, since our solutions are
normalized, the use of kinetic balance implies that the total VP
charge (spatial integral of the VP density) must always vanish.
Finally, in the case where charge conjugation symmetry (C
symmetry) is realized in the finite basis set, all even orders
of interaction with the external potential vanish, as recently
indicated by Grant and Quiney [27]. This reasoning goes back
to Furry [31], who used C symmetry to prove that there should
be no physical contributions coming from QED corrections
that are represented by Feynman diagrams containing closed
free-electron loops with an odd number of vertices. All ex-
pressions used and developed in this work are written in SI
units in order to facilitate their conversion to the favorite
choice of units adopted by the reader.

II. THEORY

The existence of an external nonquantized current source
Jext. = (cρext., Jext. ) in vacuum, where ρext. is the volume
charge density and Jext. is the volume current density, polar-
izes the electron-positron pairs that are simultaneously created
from the vacuum and annihilated into it. The collective emer-
gence of these pairs forms what is known as the VP density
cloud, which surrounds the inducing source, and screens its
interaction with other particles. In the atomic problem, where
the nucleus is typically assumed to be spherically symmetric,
a spherical VP cloud forms inside and closely around the
nucleus, and screens its Coulombic interaction with orbiting
bound electrons.

In Lorenz gauge, the four-potential generated by the exter-
nal source satisfies the following nonhomogeneous Maxwell’s
equations:

�Aext.
μ (x) = μ0Jext.

μ (x),

with � : = ∂μ∂μ = 1

c2

∂2

∂t2
− ∇2. (1)
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Here, the four-position and four-gradient are given by
xμ = (ct, x) and ∂μ = ∂/∂xμ, respectively. The external four-
potential Aext. = (φext./c, Aext. ) contains the scalar potential
φext. in addition to the (magnetic) vector-potential Aext.. In
the (static) atomic problem, the scalar potential energy can
be written as

−eφext.(x) = −(Zα)h̄c
∫

d3y
ρn(y)

|x − y| , (2)

where −e is the electron charge, α = e2/4πε0 h̄c is the fine
structure constant, and ρn is some arbitrary normalized nu-
clear distribution. The VP four-current generated by the
external source can be written as [32, Eq. (2.11)]

JVP
μ (x) = ih̄ecTr

[
γμSF

A (x, y)
]

y→x
, (3)

where SF
A (x, y) is the Feynman propagator of the Dirac prob-

lem [33, Eq. (17)] that satisfies{
γ μ

[
ih̄∂μ + eAext.

μ (x)
] − mc

}
SF

A (x, y) = δ4(x − y), (4)

and which can be written as a vacuum expectation value of
the time-ordered product of two electron field operators. This
corresponds to the Feynman choice of energy contour integra-
tion that enters the inverse Fourier transform expression of SF

A ,
and defines the Feynman propagator. Discussions about the
Feynman propagator in the presence of an external potential
can be found in Refs. [34, Secs. 2.5 and 3.1.4], [35, Sec. 15g],
and [36, Chap. 2]. Note also that Schwinger points out that
the space-time limit in Eq. (3) should be taken symmetrically
with respect to past and future (see, for instance, discussion in
Ref. [37, Eq. (9.111) and Sec. 14.1]).

We choose the γ μ = (γ 0, γ ) matrices to be those associ-
ated with the Dirac representation. The Zα factor in Eq. (2)
describes the nuclear potential strength and shall be used as an
expansion parameter for VP quantities throughout this work.
In the case where the source current Jext. is time independent,
the general VP current expression reduces to the following
time-independent expression:

JVP
μ (x) = JVP

μ (x)

= ec

2

[ ∑
En>0

ψ̄n(x)γμψn(x)−
∑
En<0

ψ̄n(x)γμψn(x)

]
, (5)

where ψ̄n = ψ†
n γ 0 is the Dirac adjoint [38], and where ψn(x)

and En form a solution of the time-independent Dirac equation

Hψn(x) = Enψn(x)

H = cα · [−ih̄∇+eAext.(x)]+βmc2−eφext.(x), (6)

in the presence of the time-independent source; here, α =
γ 0γ and β = γ 0 are the conventional Dirac matrices. We
note that Eq. (5) is formal; discrete sums over positive- and
negative-energy continuum solutions are to be replaced by
corresponding integrals over energy continua.

In the special case where the nuclear potential is assumed
to be spherically symmetric, it was shown by Indelicato et al.
[39] that the vector components of the VP four-current van-
ishes. However, a more general statement about the vanishing

of the VP current density JVP can be given by consideration
of time-reversal symmetry [40, Sec. 2.8.2]. The time-reversal
operator is given by

T = UTK0, (7)

where K0 is the complex conjugation operator, and UT =
γ 1γ 3 is the unitary matrix operator associated with the
time-reversal operation. In the absence of an external vec-
tor potential, Aext. = 0, each wave function ψn(x), associated
with energy En, has a (Kramers) partner T ψn(x) with the
same energy En (see, for instance, Ref. [41, Sec. 11.4]). The
contribution of a solution and its time-reversed partner to
components of the VP four-current may be expressed as

ψ†
n (x)γ 0γ μψn(x) + ψ†

n (x)[U †
T γ 0γ μUT ]tψn(x). (8)

From inspection of the sandwiched matrix of the second
term, one finds that

[U †
T γ 0γ μUT ]t =

{
1 if μ = 0

−γ 0γ μ otherwise
, (9)

showing that the vector component (μ = 1, 2, 3) of Eq. (5)
vanishes in the time-symmetric Dirac problem. On the other
hand, the time component of the VP four-current, the VP
charge density

ρVP(x) = e

2

[ ∑
En>0

ψ†
n (x)ψn(x) −

∑
En<0

ψ†
n (x)ψn(x)

]
(10)

is generally nonzero. Although this equation, to our knowl-
edge, appears for the first time in the work of Wichmann and
Kroll [1, Eq. (2)], one finds its roots in the work of Dirac [42]
that concerned relativistic density matrices and their associ-
ated divergences, in addition to the works of Schwinger of
Refs. [43, Eq. (1.14)], [44, Eq. (1.69)], and [32, Eqs. (2.3) and
(2.10)], in which the VP current of Eq. (5) is employed.

Another symmetry that shall be of particular importance
in this work is C symmetry—the symmetry that connects the
electron (particle) quantum state to the one associated with its
antiparticle partner (positron). For instance, when there are no
external sources, that is, when both Aext. and φext. are zero,
corresponding to the free-particle case, one can show, using
C symmetry, that the VP charge density ρVP vanishes as well.
The C operator can be written as [41, Sec. 11.3]

C = UCK0, with UC = γ 2. (11)

Using this operator, one can relate opposite energy-sign
solutions of Eq. (6) through ψ±

n (x) = Cψ∓
n (x), where + and

− superscripts are added to distinguish between positive-
and negative-energy free solutions, respectively. As a con-
sequence, we can write the density associated with a free
positive-energy solution as

ψ+†
n (x)ψ+

n (x) = ψ−†
n (x)U †

CUCψ−
n (x)

= ψ−†
n (x)ψ−

n (x). (12)

This result shows that every positive-energy density contri-
bution is balanced by a negative-energy density contribution,
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yielding a vanishing total vacuum polarization density in
Eq. (10).

Before closing this section, we stress that the vacuum
polarization current of Eq. (3) is strictly divergent. This
is due to the fact that the Feynman propagator (and the
Dirac Green’s function) diverges in the limit of coinciding
space-time points (y → x) and implies a divergent vacuum
polarization density. This real-space problem was considered
by Indelicato et al. [39] using the Pauli-Villars regularization
scheme, where auxiliary-mass propagators are introduced to
regularize divergent quantities, in an approach that is similar
to the conventional Fourier space treatment.

In this work, we shall consider the finite-basis approxima-
tion of the radial Dirac equation, where divergences can only
be manifested by finite spurious (nonphysical) contributions.
These contributions must be eliminated in order to obtain
valid physical results.

A. Radial Dirac problem

We shall now focus on the case where the external scalar
potential is spherically symmetric. The Dirac spinor can then
be written as [45, Sec. 2.6]

ψn,κ,mj (x) = 1

r

[
Pn,κ (r)
κ,mj (x̂)

iQn,κ (r)
−κ,mj (x̂)

]
, (13)

where r = |x| is the radial distance, n is the principal quan-
tum number, κ is the relativistic angular quantum number
[45, Sec. 1.5], and mj is the secondary total angular momen-
tum quantum number. 
κ,mj is the two-component spherical
spinor. Pn,κ and Qn,κ are large- and small-component radial
functions associated with the En,κ energy level. These three
quantities form a solution of the radial Dirac equation

(hκ − En,κ )ϕn,κ = 0, (14)

where the radial Dirac Hamiltonian is given by

hκ =
[

mc2 − eφext.(r) −ch̄
[

d
dr − κ

r

]
ch̄

[
d
dr + κ

r

] −mc2 − eφext.(r)

]
, (15)

with the corresponding two-component radial solution

ϕn,κ =
[

Pn,κ

Qn,κ

]
. (16)

If we now plug the relativistic atomic orbital of Eq. (13)
into the VP density expression of Eq. (10), and sum the prod-
uct of spherical spinors over mj (using [46, Eq. (3.12)]), we
obtain the following VP density expression [1, Eq. (8)]:

ρVP(x) =
∑

κ=±1,±2...

ρVP
κ (x), (17)

ρVP
κ (x) = e|κ|

4π

1

r2

∑
n

sgn(En,κ )ρn,κ (r), (18)

where ρn,κ = ϕ†
n,κϕn,κ is the radial probability density associ-

ated with the En,κ energy level.
In the case of an atom of charge Z , one can verify that the

radial electronic hZ,κ and positronic h−Z,−κ Hamiltonians are
related through

σ1hZ,κσ1 = −h−Z,−κ , (19)

where σ1 = [0 1
1 0

]
is the first Pauli matrix. We note that having

a negative sign of Z means that the Dirac electron interacts
with a negative nuclear charge, and this is equivalent to having
a Dirac positron interacting with a positive nuclear charge. If
we next assume that EZ,n,κ and ϕZ,n,κ are eigensolutions of
the electronic problem, i.e., they solve the time-independent
radial equation

hZ,κϕZ,n,κ = EZ,n,κϕZ,n,κ , (20)

then one can show that the positronic eigensolutions E−Z,n,κ

and ϕ−Z,n,κ , solving the corresponding positronic Hamiltonian
h−Z,κ equation, are related to the electronic solutions through
the following relations:

E−Z,n,κ = −EZ,n,−κ , (21)

ϕ−Z,n,κ = σ1ϕZ,n,−κ . (22)

It should become clear now that in the absence of an exter-
nal potential (Z = 0), the last relations reduce to [47]

E0,n,κ = −E0,n,−κ , (23)

ϕ0,n,κ = σ1ϕ0,n,−κ , (24)

showing that C symmetry connects free-particle eigensolu-
tions of opposite sign of energy and κ quantum number.
Using these relations, our VP density associated with the −κ

problem can be written as [40, Sec. 4.4]

ρVP
−κ (x) = −e|κ|

4π

1

r2

∑
n

sgn(E0,n,κ )ρ0,n,κ (r)

= −ρVP
+κ (x), (25)

where ρ0,n,κ = ϕ
†
0,n,κϕ0,n,κ . This relation shows that the total

VP density of Eq. (10) vanishes due to a total cancellation
between opposite κ sign radial VP densities. In the atomic
problem (where Z �= 0), a partial cancellation between these
contributions is expected, as indicated in Refs. [28, Sec. 5.4],
[26], and [40, Sec. 4.5.3], and to be shown in the numerical
Sec. III. For this reason, one should always compute the radial
VP density in pairs of opposite κ-sign contributions

ρVP
|κ| (x) = ρVP

+κ (x) + ρVP
−κ (x). (26)

Furthermore, we shall show that in practical radial calcu-
lations where we set Z = 0 (the free-particle problem), if the
C symmetry is not realized, Eq. (25) will not hold and as a
consequence, the free VP density shall not vanish. This is a
worrying nonphysical result.

B. Dirac equation in finite basis

The basic idea behind the (relativistic) finite-basis method
is to approximate large- and small-component radial functions
Pn,κ and Qn,κ by a finite set of basis functions, that is (by
construction), respecting the right radial boundary conditions
of the exact radial functions, at both short and large distances.
This machinery allows the transformation of the differen-
tial eigenvalue problem into an integral eigenvalue problem,
which can be readily solved on a computer. We start by intro-
ducing a four-component basis set (two radial components) in
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which the radial Dirac spinor of Eq. (16) is expanded as

ϕα,κ =
nκ∑

i=1

cα,κ,i

[
π+

κ,i

π−
κ,i

]
, (27)

where π±
κ,i are some large (+) and small (−) radial functions,

and nκ represents the basis set size of the κ problem. Alter-
natively, one can expand the Dirac spinor by two independent
large and small sets of basis functions

ϕα,κ =
n+

κ∑
i=1

c+
α,κ,i

[
π+

κ,i

0

]
+

n−
κ∑

i=1

c−
α,κ,i

[
0

π−
κ,i

]
. (28)

Early representations of the Dirac equation in the finite
basis set framework suffered from the appearance of spuri-
ous eigenvalues, and the occurrence of variational collapse
[48–50]. For a detailed mathematical study on the occurrence
of spurious solutions in different relativistic basis sets the
reader can consult the more recent works of Lewin and Séré
[51,52].

It was later found that the reason behind this instability
was that the same (or arbitrary) set of basis functions was
given for π+

κ,i and π−
κ,i, while from the Dirac equation of

Eq. (14), we see that large and small components are cou-
pled. To overcome (1) the observed unphysical results and
(2) the fact that the exact coupling between the radial compo-
nents is energy dependent (unknown before computation), the
kinetically balanced (KB) basis was introduced [30,53–56].
Following the KB prescription, which is valid for positive-
energy solutions, one uses the basis expansion of Eq. (28),
introduces a set of large-component radial functions π+

κ,i,
and generates the small-component radial functions through
π−

κ,i = h̄
2mc [ d

dr + κ
r ]π+

κ,i. This coupling between components
is obtained from the exact coupling after assuming that (1)
the energy can be approximated by E ≈ mc2, which holds (to
some extent) for bound-states, and (2) the external potential
can be neglected in front of this energy |eφext| � mc2, which
is obviously not valid for point nuclei. Similarly, one can
consider the negative-energy version of this prescription and
assume that the energy can be approximated as E ≈ −mc2,
and that the scalar potential can be neglected in front of this
energy. This reasoning leads to the inverse kinetic balance
(IKB) [57] basis construction, where one uses the basis expan-
sion of Eq. (28), introduces small-component radial functions
π−

κ,i, and generates the large-component basis function using
π+

κ,i = h̄
2mc [ d

dr − κ
r ]π−

κ,i.
Finally, a more symmetric treatment between positive-

and negative-energy solutions is provided by the dual kinetic
balance (DKB) prescription, proposed by Shabaev et al. in
Ref. [58], in which one writes

ϕDKB
α,κ =

n+
κ∑

i=1

c+
α,κ,i

[
π+

κ,i

h̄
2mc

[
d
dr + κ

r

]
π+

κ,i

]

+
n−

κ∑
i=1

c−
α,κ,i

[
h̄

2mc

[
d
dr − κ

r

]
π−

κ,i

π−
κ,i

]
. (29)

It should be noted, however, that within both KB and IKB
prescriptions, following the basis construction of Eq. (28),

large and small basis functions are decoupled, and this pro-
vides good computational flexibility. On the other hand, the
DKB construction [following Eq. (27)] combines both pre-
scriptions while keeping the radial couplings between large-
and small-component functions fixed. Similar to KB and IKB
cases, the DKB construction is, in principle, not valid for the
point nucleus problem.

A recent interesting DKB-like scheme was proposed by
Grant and Quiney [27], where the radial Dirac spinor is writ-
ten as

ϕCKG
α,κ =

n+
κ∑

i=1

c+
α,κ,i�

+
κ,i +

n−
κ∑

i=1

c−
α,κ,i�

−
κ,i. (30)

Positive- and negative-energy basis elements are given by

�+
κ,i = N+

κ,i

⎡
⎣ π+

κ,i

h̄
mc+E+

κ,i/c

[
d
dr + κ

r

]
π+

κ,i

⎤
⎦

�−
κ,i = N−

κ,i

[
h̄

mc−E−
κ,i/c

[
d
dr − κ

r

]
π−

κ,i

π−
κ,i

]
, (31)

where N±
κ,i are the corresponding appropriate normalization

constants. The radial couplings of the last basis elements are
obtained from the exact couplings after assuming |eφext| �
E±

κ,i. As noted by Grant and Quiney, this choice of ba-
sis functions follows the exact coupling between large- and
small-component function in the free-particle problem, where
φext.(r) = 0. In addition, the energy parameters E±

κ,i are cho-
sen to be the unique positive and negative solutions to the
following equations:

E±
κ,i =

∫ ∞

0
dr�±†

κ,i (r, E±
κ,i )h

Free
κ �±

κ,i(r, E±
κ,i ), (32)

respectively, where hFree
κ is the free-particle version of the

radial Dirac Hamiltonian hκ of Eq. (15). In the case where
Gaussian basis functions [Eqs. (54 and 55) of Sec. III B] are
employed, a straightforward calculation yields the following
free-particle energy-momentum relation

E±
κ,i = ±c

√〈
p2

κ,i

〉± + m2c2. (33)

The effective squared-momentum〈
p2

κ,i

〉± = h̄2ζ±
κ,i(|2κ ± 1| + 2), (34)

written in terms of the Gaussian exponent ζ±
κ,i and the quantum

number κ , is also directly obtained as an expectation value
of the squared-momentum operator with respect to Gaussian
basis functions π±

κ,i, given in Eqs. (54) and (55). Equation (33)
shows that each basis function �±

κ,i is associated with a
distinct energy parameter E±

κ,i which controls the coupling
strength between radial components. We finally note that if
the Gaussian basis is replaced by a Slater one, the energy
parameter is found to be κ independent

E±
κ,i = ±c

√
h̄2(ζ±

κ,i )
2 + m2c2. (35)

For both bases, it is clearly seen that for small exponents
ζ±
κ,i → 0, E±

κ,i → ±mc2, and the new construction of Eq. (30)
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then coincides with the original DKB scheme of Shabaev et al.
[58], given in Eq. (29).

The proposal of Quiney and Grant is clearly interesting,
for instance, showing excellent energy convergence for the
atomic point nucleus problem, but shall not be further dis-
cussed or tested in the current work.

C. C symmetry in the finite basis

In previous work, we considered the relativistic basis set
compliance with C symmetry [47]. We have shown that the
DKB construction can be made C symmetric if one forces the
large and small basis functions to follow [40, Sec. 2.11.6]

π+
±κ,i = π−

∓κ,i, (36)

and have concluded that the use of Gaussian j-based basis sets
assures such compliance; see Grant and Quiney [27, Eq. (40)].
This basis construction was discussed by Dyall [59], where
the same list of exponents is given for basis functions of
same j (total angular momentum) quantum number: Basis
functions of opposite signs of κ . We furthermore note that
the C-symmetry realization is achieved with a more general
condition

ζ±
κ,i = ζ∓

−κ,i, (37)

which gives more flexibility for optimizing these exponents,
since (in general) different sets of exponents can be given
for large- and small-component Gaussians. Gaussian basis
sets are discussed in Sec. III B. This same analysis holds for
the DKB construction of Grant and Quiney, discussed in the
previous section.

In addition, we have considered the C-symmetry realiza-
tion in the KB and IKB problems. Here, we find that if the
free-particle solutions (given in Ref. [47, Eqs. (10) and (11)],
for instance) are used as basis set functions

π+
κ,i = r j|κ+ 1

2 |− 1
2
(k|κ|,ir) (38)

π−
κ,i = r j|κ− 1

2 |− 1
2
(k|κ|,ir), (39)

for the KB and IKB constructions, respectively, then the C
symmetry is automatically realized. We note that for the ±κ

problems, one must introduce the same set of scaling fac-
tors k|κ|,i with i = 1, . . . , nκ . To see how this realization is
achieved, we proceed as follows. Using the spherical Bessel
functions relations of Ref. [60, Eqs. (10.1.21), and (10.1.22)],
one can directly write the small-component function of the
KB prescription as[

d

dr
+ κ

r

]
π+

κ,i = +sgn(κ )k|κ|,iπ+
−κ,i.

This relation shows that the small-component function of
some +κ problem (left-hand side) is a large-component func-
tion of the −κ problem (right-hand side), proving that this
choice of basis is symmetric under C symmetry; cf. Eq. (24).
Similarly, for the IKB problem, we find[

d

dr
− κ

r

]
π−

κ,i = −sgn(κ )k|κ|,iπ−
−κ,i. (40)

The main impractical feature of these basis sets is that there
exist no closed expressions for the radial integrals, associated
with the matrix representation of the radial Dirac equation.

D. VP in the finite basis

We recall that in the radial problem, the VP density is
written as [cf. Eq. (18)]

ρVP
κ (x) = e|κ|

4π

1

r2

nκ∑
α=1

sgn(Eα,κ )ρα,κ (r), (41)

where ρα,κ = ϕ†
α,κϕα,κ is now the radial probability density

associated with the numerical solution of index α for a given
κ problem, and nκ represents the total number of solutions,
i.e., the basis set size. This density can be expanded in powers
of the nuclear charge Z (the Zα expansion) as

ρVP
κ (x; Z ) =

∞∑
n=0

ρVP,n
κ (x; Z )

ρVP,n
κ (x; Z ) = ∂n

∂Zn
ρVP

κ (x; Z )
∣∣∣
Z=0

Zn

n!
. (42)

We know from Furry’s theorem [31], which is based on
a C-symmetry argument, that any free-electron loop with an
odd number of vertices yields no physical contribution. This
means that if the used basis set realizes C symmetry, then all
even-order VP densities must vanish under C symmetry, as
indicated by Wichmann and Kroll [1, p. 849], and later by
Gyulassy [15, Eq. (2.19)]. Furthermore, we know that the VP
contribution that is linear in Z , which contains the (physical)
Uehling contribution, is of an overall quadratic divergence
(momentum space integration); the full Uehling contribution
is obtained after summing over all possible values of κ . This
degree of divergence is reduced to a logarithmic one once
gauge invariance (current conservation) is imposed on the
polarization tensor; see, for instance, Ref. [35, Sec. 15e]. In
order to remove this source of divergence, Rinker and Wilets
[16] suggested eliminating the linear part of the VP density
through the simple subtraction

ρVP,n�3
κ (x; Z ) = ρVP

κ (x; Z ) − ρVP,1
κ (x; Z ), (43)

ρVP,1
κ (x; Z ) = lim

δ→0

Z

δ
ρVP

κ (x; δ). (44)

These equations assume that the C symmetry has been
realized, and therefore that the zero- and two-potential terms
ρVP,0

κ and ρVP,2
κ vanish. At this point, the reader should be

reminded that this subtraction eliminates the wanted physical
Uehling contribution together with the unwanted nonphysical
logarithmic divergence. This should cause no worry since we
know the exact expression for the Uehling potential that is
given by [61]

−eϕUeh.(x) = −2α(Zα)

3π
h̄c

∫
d3y

ρn(x − y)

|y| K1

(
2|y|
λ̄

)
(45)

with

K1(x) =
∫ ∞

1
dζe−xζ

(
1

ζ 2
+ 1

2ζ 4

)√
ζ 2 − 1, (46)

where λ̄ = h̄/(mc) is the reduced Compton wavelength, and
ρn is an arbitrary nuclear distribution that enters Eq. (2). This
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potential corrects the nuclear potential of Eq. (2) at short
distances and can be easily included as an effective potential
in the Dirac equation, to account for the missing physics.
Approximate expressions for this potential are provided by
Fullerton and Rinker, in the last cited reference, in order to
facilitate numerical evaluations. This physical (regularized)
scalar potential solves the electrostatic Maxwell equation

�ϕUeh.(x) = −ρUeh.(x)/ε0, (47)

where ρUeh. is the regularized (and renormalized) version of
the divergent one-potential VP density, given in Eq. (44)
(summed over all values of κ). This density can be called
the Uehling (VP) density; its expression is found in Ref. [1,
Eq. (45)] for the point nuclei case.

Going back to the finite basis set problem, we note that
if the set does not allow the realization of C symmetry, then
VP densities that are of even orders of interaction with the
external field (even orders in Z) shall not vanish, and will
therefore corrupt the numerical result. In order to remove
these unwanted terms, and therefore obtain cogent results, one
can, instead of ρVP

κ of Eq. (41), use the following VP density:

ρVP
κ,C (x; Z ) = 1

2

[
ρVP

κ (x; Z ) − ρVP
κ (x; −Z )

]
. (48)

This replacement forces the VP density to automatically
obey C symmetry, even if the basis set in which the density
is constructed does not do so. We now follow the previous
reasoning and obtain the following expression for the many-
potential VP density expression

ρ
VP,n�3
κ,C (x; Z ) = ρVP

κ,C (x; Z ) − lim
δ→0

Z

δ
ρVP

κ,C (x; δ)

= 1

2

[
ρVP

κ (x; Z ) − ρVP
κ (x; −Z )

]
− lim

δ→0

Z

2δ

[
ρVP

κ (x; δ) − ρVP
κ (x; −δ)

]
. (49)

We note that in the case where the finite basis obeys the
C symmetry, the initial VP density ρVP

κ of Eq. (41) becomes
equal to the new VP density ρVP

κ,C of Eq. (48). This last formula
shall be used within the KB scheme where the C symmetry is
generally violated.

III. NUMERICAL COMPUTATIONS

In this section, we shall present some computational results
of the VP density in the finite-basis approximation. The first
part shall concern a qualitative improvement of the numerical
results, driven by C symmetry, and in the second one, we
shall see how quantitative results can be efficiently obtained.
In the presented calculations, we have used the fine-structure
constant value of α = 1/137.036 instead of the recommended
value of α = 1/137.035999084(21) by CODATA2018 [62,
Table XXXI], allowing direct comparison of our VP density
results, with the previous results of Mohr et al. [25, Sec. 4.2].
In the computation of the many-potential VP densities of
Eqs. (43), (44), and (49), we have chosen the small nuclear
charge parameter to be δ = 10−6. Since we are using the
lowest-order forward finite-difference formula, this implies
that the error associated with our derivatives is of order
O(10−6). To reduce this error, smaller values of δ and/or

higher-order finite-difference expressions can be employed.
All presented results were computed using WOLFRAM MATHE-
MATICA [63].

A. Nuclear models

Our calculations include the following nuclear models:
(1) The point nucleus model, where the nuclear distribu-

tion and its associated scalar potential, entering Eq. (2), are
respectively given by

ρn(x) = δ(x), (50)

−eφext.(x) = −Zα

r
h̄c. (51)

(2) The shell nucleus (hollow sphere) model, where we
correspondingly have

ρn(x) = 1

4πr2
n

δ(r − rn) (52)

−eφext.(x) = −Zα

r>

h̄c, (53)

where r> = max(r, rn) and rn represents the shell radius after
which the electric potential transitions from a constant func-
tion, to the point nucleus 1/r behavior. For the uranium atom,
this parameter shall be set to rn = 5.86 fm, following Mohr
et al. [25, Sec. 4.2].

In addition to the shell nucleus, standard extended nu-
clear models include Gaussian, Fermi, and ball distributions
(volumetric charge density), where each model is associated
with the appropriate parameter(s). Details concerning these
potentials can be found in Refs. [64–66]. The choice of a
nuclear model is usually made with respect to rendering the
computation more practical. This reasoning is justified by the
fact that the nuclear-size effect on the electron energy shift
is dominated by a term that is proportional to the root mean
square (RMS) charge radius 〈r2〉1/2 = [∫ d3xr2ρn(x)]1/2; see,
for instance, Refs. [67, Sec. 8.3] and [68]. An empirical for-
mula for this RMS function as a function of the atomic mass
A was provided by Johnson and Soff in Ref. [69, Eq. (20)],
allowing to determine nuclear parameters (such as rn), as done
by Visscher and Dyall in Ref. [64].

B. Gaussian basis functions

In our finite basis set calculations we shall use the follow-
ing large and small Gaussian basis functions:

π+
κ,i(r) = r|κ+ 1

2 |+ 1
2 e−ζ+

κ,ir
2
, (54)

π−
κ,i(r) = r|κ− 1

2 |+ 1
2 e−ζ−

κ,ir
2
. (55)

For each radial problem associated with some κ quantum
number, we shall introduce a set of exponents ζ±

κ,i for i =
1, . . . , n±

κ , where the ± sign is added to distinguish between
large- and small-component exponents. In addition, we note
that the radial powers of these functions are chosen such
that they describe the right leading order in r, of the exact
solutions, at very short distances from the origin for both (1)
the spherical free particle problem [47, Sec. 2.3.1] as well as
(2) the extended nucleus nuclear model case [4, Sec. 5.4.1].
In addition, it was noted by Ishikawa et al. [70] that these
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TABLE I. Gaussian bases parameters.

Basis ζκ,1 ζκ,n n

10G 103 107 10
50G 103 1011 50

150G 103 1011 150

Gaussian functions follow the exact next radial order(s). This
indicates that Gaussian functions are well suited to mimic the
radial functions behavior within the (finite) nuclear region.
Furthermore, the mathematical importance of these functions
comes from the fact that the radial integrals (in the matrix
representation) can be analytically evaluated, therefore avoid-
ing numerical integrations. For future purposes, we note that
in addition to these interesting features, Gaussian-type func-
tions play an essential role in molecular calculations due to
the Gaussian product rule that is associated with multicenter
two-electron integrations, first noted by Boys in Ref. [71]; see
also Refs. [72, Appendix A] and [73, Sec. 9.2]. It should be
kept in mind that Gaussian functions have a faster decay rate
than exact solutions (exponential decay); this should cause no
problem since we aim to study the VP process, which is a
very local effect. We shall use Gaussian exponents that are
generated through the even-tempering prescription

ζκ,i = ζκ,1(ζκ,n/ζκ,1)
i−1
n−1 , for i = 1, . . . , n, (56)

where we shall specify the smallest and largest exponents ζκ,1

and ζκ,n, in addition to the number of exponents n. Through-
out this work, we shall use three sets of Gaussian exponents
whose associated parameters are tabulated in Table I.

In all of the presented results, we shall set the same Gaus-
sian exponent lists for both ±κ problems as well as both large-
and small-component functions. This setting corresponds to
j bases, discussed in Sec. II C, and leads to the C-symmetry
realization in the DKB framework, as seen from Eq. (37) and
indicated in our previous works of Refs. [47, Sec. 2.3.1] and
[40, Sec. 2.11.6].

C. Free-electron VP density

As discussed in Sec. II, in the free-particle spherical prob-
lem, the total VP density vanishes due to cancellation between
solutions of opposite signs of energy and κ . We have therefore
performed free-particle calculations (Z = 0) of the κ = ±1
problems using the 10G Gaussian basis of Table I. In the first
calculation, we compute the total VP density of Eq. (41) in
the KB basis construction, where the C symmetry is violated,
for both κ = ±1 problems, and present the obtained results in
Fig. 1(a). This figure shows a nonvanishing sum of the two
VP density components and indeed indicates C-symmetry vi-
olation. In the second calculation, we computed the same VP
density, within the DKB construction where the C symmetry
is obeyed, and present the corresponding results in Fig. 1(b).
Contrary to the previous result, we find a total cancellation
(within numerical precision) between VP density components
(±κ), as also noted by Grant and Quiney [27].

FIG. 1. Free VP densities using 10G basis: (a) KB calculation
and (b) DKB calculation.

We now turn to the atomic problem, where Z �= 0, and
show how C symmetry can guide us in obtaining more promis-
ing computational results.

D. Total VP density

We run the same previous calculations (with KB and DKB
constructions), but this time with a point nucleus of Z = 92,
and take a closer look at the VP density behavior at distances
r � λ̄. Results are presented in Fig. 2. Again, contrary to the
KB calculation, the DKB calculation provides better physical
results by yielding a decaying VP polarization density at dis-
tances larger than the reduced Compton wavelength, as seen in
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FIG. 2. Atomic VP densities of the point nucleus uranium using
10G basis: (a) KB calculation and (b) DKB calculation.

Fig. 2(b), contrary to Fig. 2(a), where a spurious contribution
is still surviving.

The total VP density can be expanded in powers of the
external potential (Z), as given in Eq. (42), and the first-order
contribution comes from the free VP density ρVP

κ (x; 0). In the
KB construction, where this contribution does not vanish, the
total VP density gets contaminated by the nonvanishing free
VP density, as seen when comparing Fig. 1(a) to Fig. 2(a).
Additional contaminations shall come from all nonvanishing
(spurious) VP contributions of even orders in Z , with decreas-
ing amplitudes.

Although any numerical evaluation (within the finite-basis
approximation) of the VP density will yield a finite numerical
result, this result is still divergent due to the linear contribution

(in the nuclear charge parameter Z). This divergent behavior
can be observed by gradually increasing the finite basis set
size (including more Gaussian exponents) and realizing that
the obtained density never converges, notably when more lo-
calized functions (with larger exponents) are appended in the
finite basis. For this reason, we shall next consider removing
the linear contribution through a simple procedure and isolate
the many-potential VP density that is free of divergences.

E. Many-potential VP density with DKB

Using the Green’s function construction suggested by
Wichmann and Kroll [1], Soff and Mohr [18] wrote the VP
density expression in terms of the analytical expression of the
Dirac Coulomb Green’s function in the presence of a shell
nucleus; they then subtracted the linear contribution that is
written in terms of the shell nucleus potential and the free
Green’s function. A numerical evaluation of the residual in-
tegrations was performed, and the many-potential VP density
for the first κ = ±1, . . . ,±5 problems were presented in Ref.
[25, Sec. 4.2, Fig. 9].

We, on the other hand, have decided to tackle the problem
from the finite basis set perspective, and have shown that we
are capable to reproduce the same results up to a high degree
of precision, at lower computational cost (no needed numer-
ical integration), and using arbitrary radial nuclear charge
distributions. We note that in the case of a Fermi-distribution
nuclear model, potential dependent matrix elements do not
have closed analytical forms in a Gaussian basis. This means
that some numerical integration will be needed to construct
the matrix representation.

We have first evaluated the many-potential VP density for
the one-electron uranium atom (Z = 92) of a point nuclear
distribution using the 50G basis and present the result in
Fig. 3. We chose the uranium atom, since, as already men-
tioned, highly accurate results are available from Mohr. Our
method is, however, applicable to any atom (and finite nuclear
charge distribution). In the upper and lower panels, we plot
the many-potential VP densities at short and relatively large
distances, respectively. The dashed red line is positioned at the
nuclear radius rn, discussed in Sec. III A. We observe a very
low-quality VP density near the point nucleus; this problem
persists when the basis set size is gradually increased and can
be traced back to the following two reasons. The first reason is
that our radial solutions were constructed within the Gaussian
basis, which does not describe the right radial behavior of the
wave function near a point nucleus, as observed in Ref. [74,
Chap. 7]. Secondly, the various kinetic balance constructions
(KB, IKB, and DKB) assume that the nuclear potential obeys
|φext(r)| � mc2; this is clearly not the case of the point nu-
cleus, notably in the limit r → 0. We should also note that
Wichmann and Kroll [1] have shown that in the point-nucleus
potential case, the many-potential VP density consists of a
negative point-charge (singular) distribution, condensed at the
origin, and an extended (nonsingular) VP charge distribution
at finite distances. These positive and negative VP charges
cancel each other out. More details were provided by Brown
et al. in Ref. [9]. Nevertheless, we observe that our point nu-
cleus results are able to reproduce the finite nucleus result of
Mohr et al. [25] at distances r > λ̄. Basis sets that are designed
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FIG. 3. Many-potential VP density λ̄r2ρVP,n�3
|κ|=1 computed using

DKB, the 50G basis, and point nucleus. (a) Short distances and
(b) long distances.

to describe radial Dirac wave functions of the point nucleus
problem (L and S spinors), and account for its singularities,
are discussed in detail by Grant [4, Secs. 5.8 and 5.9]. We
note that additional calculations show that with a larger basis
set size, the wiggly behavior we have at r > 4λ̄ in Fig. 3(b)
can be totally damped.

We have next performed the same calculation but this time
using a shell nucleus model of radius rn (see Sec. III A) and
present the obtained result in Fig. 4. We clearly observe a large
agreement with the results of Mohr et al. at both small and
(relatively) large distances.

FIG. 4. Many-potential VP density λ̄r2ρVP,n�3
|κ|=1 computed using

DKB, the 50G basis, and shell nucleus. (a) Short distances and
(b) long distances.

Repeating the last calculation with a larger (150G) basis
set size yields a perfect agreement, notably at r > 4λ̄, as
presented in Fig. 5. We finally note that in the numerical
limit rn → 0, point nucleus results of Fig. 3 can be perfectly
recovered.

F. Many-potential VP density with KB

We have shown that using the KB prescription in construct-
ing relativistic basis sets, one obtains nonphysical results such
as a nonvanishing free VP density and a nondecaying atomic
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FIG. 5. Many-potential VP density λ̄r2ρVP,n�3
|κ|=1 computed using

DKB, the 150G basis, and shell nucleus. (a) Short distances and
(b) long distances.

VP density at distances larger than the reduced Compton
wavelength λ̄.

In this section, we shall show that by employing our formu-
las discussed in Sec. II D, the C symmetry gets automatically
obeyed and one can surpass the spurious limitations associ-
ated with the KB prescription, or any other basis construction
that violates C symmetry. In addition, we shall show that an
efficient evaluation of the many-potential VP density within
the KB construction is possible.

We remind the reader that in the free-particle case (Z = 0),
both total and many-potential VP densities of Eqs. (48) and

FIG. 6. Many-potential VP density λ̄r2ρVP,n�3
|κ|=1 computed using

KB, the 50G basis, and shell nucleus. (a) Short distances and (b) long
distances.

(49) vanish. To demonstrate the usefulness of Eq. (49), we
employ it in computing the many-potential VP density for
the one-electron uranium problem and use solutions that are
calculated within the KB basis construction. We ran four
calculations, with Z = ±δ, and ±92, on the shell nucleus
problem, and present the final VP density in Fig. 6. The ob-
tained results agree very well with the ones of Mohr et al. and
prove that the many-potential VP density can be efficiently
and accurately computed in standard molecular programs (fi-
nite basis) that are typically based on the KB construction
(where the C symmetry is generally violated).
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IV. CONCLUSION

In this paper, we have investigated the construction of
the VP charge density for one-electron atoms within the
finite-basis approximation, with a particular focus on the
many-potential contribution that is free of divergences. In
addition, we have shown that in our case the VP three-current
vanishes due to time-reversal symmetry.

Concerning the finite basis problem, we have found that
compliance with C symmetry is crucial to obtain physi-
cally valid VP density results. We note that within the DKB
construction, the C-symmetry realization is manifested by a
vanishing total VP density once the proper matching between
large and small basis functions is settled. Furthermore, we
have computed this total VP density in our C-symmetric
basis, using an extended nuclear distribution (shell model),
and subtracted out the linear contribution (in Z), where the
logarithmic VP divergence is buried. The obtained results are
found to be in excellent agreement with the former results of
Mohr et al. [25, Sec. 4.2].

In the standard KB construction, the C symmetry is gen-
erally violated, and as a consequence, the computed VP
density is found to be contaminated by spurious (nonvan-
ishing) contributions. Moreover, we have shown that within
this construction, the C symmetry can be forced by choosing
the large-component free-particle solution (spherical Bessel
functions) to be the large-component basis function. Due to
the KB coupling, the small-component basis function auto-
matically becomes the small free-particle solution. The same
analysis applies to the IKB construction. The main draw-
back of this basis is that it does not allow writing the radial

integrals of the Dirac equation matrix representation in closed
analytical forms; one is therefore obliged to employ numerical
integration techniques. Furthermore, we have shown that the
KB inadequacy in computing the VP density can be surpassed
by imposing the C symmetry on the VP density expression
instead of the basis set. This result indicates that any rel-
ativistic finite-basis (molecular or atomic) program whose
Dirac matrix representation is constructed according to the
KB prescription (as is the case of most molecular codes)
can efficiently compute the many-potential VP effects; this
approach transcends including the limited effective VP po-
tential (of Ref. [8]) that is associated with the third-order VP
correction to the Coulomb potential (of a point nucleus).

We finally note that, besides numerical efficiency, the
importance of our proposed many-potential VP density com-
putation machinery lies in the fact that it can be applied to
radial Dirac problems with arbitrary radial nuclear charge
distributions. This method is therefore of particular signifi-
cance for Dirac problems where analytical expressions of the
associated Green’s function are not at hand.
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