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Expansion of scattering length in S-matrix poles and the phenomenon of resistant virtual states
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A simple expansion of the scattering length in terms of S-matrix poles is derived for the angular momenta
l > 0. This expression shows that the dominant role in the low-energy collisions is played by the poles lying
close to the origin of the complex momentum plane. Among these poles a peculiar class of virtual states is found
to respond very weakly to the scaled perturbation potentials and thus resistant to producing trajectories in the
complex momentum plane. Properties and an impact on low-energy collisions of these resistant virtual states are
discussed.
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I. INTRODUCTION

Most of what is known about interactions between particles
in the microworld has been established by means of collision
processes. The scattering length is the primary parameter for
a quantum description of a collision of two bodies in the
low-energy limit. As such, it has been intensively studied in a
number of domains of quantum physics. In nuclear physics the
scattering length is utilized to describe properties of nuclear
halo states within the effective field theory [1]. Besides the
most occurring and studied s-state halo nuclei, there are nu-
clear systems where the scattering length for the higher partial
waves of the neutron-nuclei collisions becomes important.
The p-wave scattering length was employed in the modeling
of elastic nα collisions [2], while the halo nuclei 15C and 17C
are described by the d-wave scattering length [3].

In the field of atomic and molecular physics, Feshbach
resonances have found many applications in ultracold gases,
where their presence allows for a fine tuning of the scatter-
ing length by electric and magnetic fields. Again, the vast
majority of these elastic-threshold resonances are in the s
wave. However, there are systems with the l = 1, 2 entrance
channels known in the μK domain [4]. Furthermore, the s-
and p-wave scattering lengths appear in the well-known low-
density expansions for the ground-state energy of many-boson
and many-fermion systems [5].

In the experiments that involve electron-molecule colli-
sions at low energies (below 1 eV), the scattering length can
be determined from the forward-backward anisotropy of the
measured cross sections [6,7]. In these experiments the large
and negative scattering length is often explained by the pres-
ence of a virtual state. From a theoretical point of view, the
virtual state is represented by a pole of the scattering S matrix
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that is located close to the origin, on the negative imaginary
axis in the complex momentum plane. A presence of virtual
states in the elastic e− + CO2 scattering has been demon-
strated in a number of calculations [8–12]. An enhancement
of the electron-impact vibrational excitation of molecules via
a virtual state has frequently been discussed in the literature,
mainly in connection with the elastic and inelastic threshold
peaks [13–17]. Dvořák et al. [18,19] have shown that the im-
pact of the virtual state on the vibrationally inelastic collisions
can extend up to several electronvolts of collision energies
through its coupling to the higher-lying resonant state. Note
that the virtual states involved in all the references above
possess the s-wave character.

For more than half of a century there have been attempts to
establish a link between the S-matrix poles and the parameters
of the effective range theory. The early work of Demkov and
Drukarev [20] discussed a two-pole approximation to the S
matrix. This approximation also employs a background phase
to correct for all the other poles not included in the model.
While the resulting s-wave scattering length was linked to
the imaginary components of the two poles, the unknown
background phase could not be ruled out. The later studies
of e + CO2 collisions [8,12] neglected the background phase
and assumed that the s-wave scattering length a0 can be sim-
ply computed from a single pole iκ , lying on the imaginary
momentum axis, as a0 = 1/κ .

An important contribution to this search of the link be-
tween the S-matrix poles and the effective range parameters
was made by Tolstikhin et al. [21] and their theory of s-wave
Siegert pseudostates (SPSs), later generalized for higher an-
gular momenta [22]. The theory was developed to solve the
spherical Hamiltonian problem inside a finite volume in terms
of complex eigenstates and eigenvalues of the momentum.
Authors demonstrated [22] that the s-wave scattering length
a0 does not depend solely on the imaginary components of
the the poles reciprocals but also on the box size r0, akin to
the background phase of Demkov and Drukarev [20].
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In the first part of this paper we focus on an extension of the
work of Batishchev and Tolstikhin [22] in which we derive a
simple formula for an expansion of the scattering length solely
in terms of the S-matrix poles, for l > 0. The formula will
show that the poles close to the origin possess a dominant
impact on the scattering length. This is in contrast to the
s-wave case derived by Batishchev and Tolstikhin [22]. The
second part of this paper discusses properties of such poles,
with a focus on the poles lying on the negative imaginary
axis, i.e., virtual states. It is shown that there exists a class of
peculiar virtual states that resist producing trajectories in the
momentum plane upon application of a scaled perturbation
potential. We call these states resistant virtual states (RVSs).

Throughout the rest of this paper, the virtual states and
bound states are characterized by their momenta k rather than
energies E = k2/2. This is convenient, since the momenta are
purely imaginary (k = iκ , κ ∈ R), where κ > 0 for the bound
states and κ < 0 for the virtual states. Unless stated otherwise,
the atomic units are used throughout the rest of this paper.

II. SIEGERT STATES

The virtual states discussed in this article belong to a
broader category of Siegert states [23]. A theory of these states
formulated by Tolstikhin et al. [21] and later generalized by
Batishchev and Tolstikhin [22] is reviewed in this section with
an emphasis on those aspects that are important in the context
of virtual states.

The potential V (r) considered in this paper is spherically
symmetric and has a finite range, V (r > r0) ≡ 0, or it decays
beyond r0 sufficiently rapidly with increasing r that the effect
of the tail on the scattering quantities is negligible. The Siegert
states are such solutions φk (r) of the Schrödinger equation[

−1

2

d2

dr2
+ l (l + 1)

2r2
+ V (r)

]
φk (r) = k2

2
φk (r) (1)

that are regular at the origin [φk (0) = 0] and satisfy the
asymptotic outgoing-wave boundary condition(

d

dr
− ik

)
φk (r)

∣∣∣∣
r→∞

= 0. (2)

The partial wave l � 0 is fixed, otherwise arbitrary. The eigen-
states that satisfy Eq. (2) include all the bound, resonant, and
virtual states of the potential V (r). Their eigenmomenta k are
pure positive imaginary for the bound states, pure negative
imaginary for the virtual states, and complex for the reso-
nances. The significance of these states is that the eigenvalues
k correspond to the poles of the scattering matrix in the com-
plex k plane [24].

A. Siegert pseudostates

Tolstikhin et al. [21] developed a method to accurately
approximate the s-wave Siegert states by enforcing the bound-
ary condition with the same form as in Eq. (2), however,
at a finite r � r0 rather than at infinity. The solutions of
the Eqs. (1) and (2) obtained in this way are referred to as
Siegert pseudostates (SPSs). This approach cannot be applied
in a straightforward manner for l > 0. The presence of the
centrifugal barrier beyond r0 causes the difference between

the asymptotic character of φk (r) and its form at any finite
r � r0.

The theory of SPSs for l > 0 was developed by Batishchev
and Tolstikhin [22]. The solution φk (r) that meets the asymp-
totic boundary condition (2) is expressed at a finite value of
r � r0 in terms of the spherical Hankel function h(1)

l (z) [25]
as

φk (r)|r�r0
∝ krh(1)

l (kr). (3)

Then an introduction of the function

el (z) = eiz θl (−iz)

(−iz)l
, (4)

where θl are the reverse Bessel polynomials [26], allows for
an application of a boundary condition at finite r that is
equivalent to Eq. (2). The function el (z), up to a constant
phase factor, coincides with zh(1)

l (z) [26]. At the same time,
its logarithmic derivative satisfies the equation

1

el (z)

del (z)

dz
= i − 1

z

l∑
p=1

zl p

iz + zl p
, (5)

where zl p is the pth root of the reverse Bessel polynomial θl (z)
[22]. This directly yields the boundary condition at a finite r:⎛

⎝ d

dr
− ik + 1

r

l∑
p=1

zl p

ikr + zl p

⎞
⎠φk (r)

∣∣∣∣∣∣
r�r0

= 0. (6)

This “pull-back” of the boundary condition allows for accu-
rate numerical calculations of the SPSs using the expansion of
φk (r) in a finite basis set without the necessity of its extension
beyond the range of V (r). In a special case of l = 0, the
last term in the parentheses on the left-hand side of Eq. (6)
vanishes and the form of the boundary condition becomes
identical to that of Eq. (2).

The solution of Eq. (1) on a finite interval 〈0, r0〉, employ-
ing a finite basis set, results in a set of discrete eigenmomenta
kn and corresponding eigensolutions φn(r) ≡ φkn (r). These
SPSs are double complete on the space spanned by the given
basis set, and they can be orthonormalized with a scalar prod-
uct [22]:∫ r0

0
φn(r)φm(r) dr + i

φn(r0)φm(r0)

kn + km

×
⎡
⎣1 +

l∑
p=1

zl p

(iknr0 + zl p)(ikmr0 + zl p)

⎤
⎦ = δnm. (7)

III. SCATTERING LENGTH

According to the Wigner threshold law [27], the phase shift
δl (k) behaves at the low collision energies as

δl (k)
k→0−−→ −(alk)2l+1. (8)

The parameter al is the scattering length for a given partial
wave l . The aim of this section is to show how the low-energy
scattering parameter al can be expressed in terms of the S-
matrix poles. The formal framework for the derivation that
will follow is the Siegert pseudostate theory of Batishchev
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and Tolstikhin [22]. The authors have demonstrated that the
scattering matrix S can be written in terms of the SPS poles as

Sl (k) = e2iδl (k) = e−2ikr0

2N+l∏
n=1

kn + k

kn − k
. (9)

The finite basis of N elements on the radial interval 〈0, r0〉
provides exactly 2N + l SPSs. Furthermore, Batishchev and
Tolstikhin [22] have derived a general formula for the scatter-
ing length

a2l+1
l = − r2l+1

0

θ2
l (0)

[
−1

2l + 1
+ 1

2r0

2N+l∑
n=1

φ2
n (r0)

k2
n

]
, (10)

where φn(r0) are the surface values of the SPSs and the θl (z)
denote the above mentioned reverse Bessel polynomials [26].
In our experience those formulas that involve surface values
of the SPSs appear to be unstable, probably due to the fact
that most of these states exponentially grow. This weakness
can be easily remedied by use of Eq. (66) of Ref. [22], which
allows us to rewrite the scattering length into

a2l+1
l = r2l+1

0

(2l + 1)θ2
l

+ (−1)l+1σ2l+1(xi ), (11)

where σk (xi ) is the elementary symmetric polynomial of the
order k in variables xi [28], and the abbreviation θl ≡ θl (0)
will be used henceforth. The set of variables xi is a union of
two subsets [22] defined as

x1, x2, . . . , x2N+l ,︸ ︷︷ ︸
1
λ1

, 1
λ2

,..., 1
λ2N+l

,

x2N+l+1, . . . , x2N+2l︸ ︷︷ ︸
r0
zl1

,...,
r0
zll

, (12)

where λn are related to the Siegert poles λn = ikn and {zl p, p =
1, . . . , l} is a set of l roots of the reverse Bessel polynomial
θl (z). Note that the scattering length (11) is written in terms
of the box size r0, of roots zl p, and of the S-matrix poles λn.
In the following we aim to demonstrate that the fundamental
physical quantity al , defining the collisions at the low ener-
gies, should and will depend only on the S-matrix poles λn.

A. Symmetric polynomials

The elementary symmetric polynomials σk (xi ) are defined
as follows [28]:

σ0(x1, . . . , xn) = 1,

σ1(x1, . . . , xn) =
∑

1�i�n

xi,

σ2(x1, . . . , xn) =
∑

1�i< j�n

xix j, (13)

... .

The last identity required here from the Ref. [22] [Eq. (64)
from the reference] states that

σ2s+1(x1, . . . , x2(N+l ) ) = 0, s = 0, 1, . . . , l − 1,

l > 0. (14)

The physical interpretation of the identity is following. Equa-
tion (9) shows, that for a given angular momentum l , the S

matrix Sl (k) and hence the phase shift δl (k) can be computed
solely from the Siegert poles kn (or λn ≡ ikn). However, the
Wigner threshold law (8) dictates that all the coefficients a2s+1

s
in front of the k2s+1 with s < l should vanish. This property is
not satisfied by an arbitrary set of Siegert poles kn in Eq. (9).
Therefore, the distribution of the Siegert poles in the complex
plane cannot be arbitrary, and it must satisfy l conditions. We
will see that these conditions are represented by Eq. (14).

Another kind of the symmetric polynomials, which will be
employed in the present derivation, is the sum of powers

sk (x1, . . . , xn) =
n∑

i=1

xk
i . (15)

The Fundamental Theorem on Symmetric Polynomials [28]
states that every symmetric polynomial (for example, the
power-sum polynomial sk) can be expressed uniquely as
a polynomial in the elementary symmetric polynomials
σ1, . . . , σk . Generally, the decomposition into the elementary
symmetric polynomials may be a complicated process, but in
the case of the symmetric polynomial sk it is streamlined by
one of the Newton formulas [28,29]

kσk =
k∑

r=1

(−1)r−1srσk−r, k = 1, 2, 3, . . . , (16)

which can be used recursively, starting with s1 = σ1.

B. Roots of Bessel polynomials

Roots of the Bessel polynomials play an important role in
a wide variety of the research, e.g., in the signal processing
[30], statistics [31], theory of differential equations [32], etc.
In the present study these roots enter the starting formula (11)
for the scattering length through the variables xi defined in
(12). While the roots of the reverse Bessel polynomials θl (z)
are denoted as zl p, the roots of the Bessel polynomials yl (z)
are simply the reciprocals 1/zl p. This can be easily seen from
the relation between the polynomials

yl (z) = zlθl (1/z) =
l∏

p=1

(1 − zzl p) =
l∏

p=1

(−zl p)

(
z − 1

zl p

)

= θl

l∏
p=1

(
z − 1

zl p

)
. (17)

Furthermore, the product formula (17) leads to a polynomial
expression, in which the coefficients are essentially the ele-
mentary symmetric polynomials [28] of the roots 1/zl p:

yl (z) = θl

l∑
m=0

(−1)l−mσl−m(1/zl p)zm =
l∑

m=0

(l + m)!

m!(l − m)!

(
z

2

)m

.

(18)
The last identity is the known definition of the Bessel

polynomials [33]. By comparing the coefficients on both sides
of the polynomial equality (18), the symmetric elementary
polynomials of the set of 1/zl p roots can be evaluated as

σk (1/zl p) = (−1)k

θl

(2l − k)!

k!(l − k)!2l−k
. (19)
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The first two orders of the above equation give

k = 0 : θl (0) = (2l )!

l!2l
= (2l − 1)!!, (20)

k = 1 : σ1(1/zl p) =
l∑

p=1

1

zl p
= −1. (21)

An identity similar to Eq. (19) but for the sum-of-power
polynomials sk has been reported previously [31]:

s2s+1(1/zl p) =
l∑

p=1

1

z2s+l
l p

=
{

0, 0 < s < l
(−1)l

θ2
l

, s = l
. (22)

The case of s = 0 is covered by Eq. (21), and the case of s > l
can be found in Refs. [31,34], but is of no relevance for the
present work.

C. Scattering length for l > 0

The s-wave scattering length has been reported previously
[22], and it can be easily derived from Eq. (11)

a0 = r0 −
∑

n

1

λn
= r0 +

∑
n

i

kn
. (23)

On the other hand, for the higher partial waves l > 0, the s =
0 condition (14) implies that

σ1(xi ) = σ1(1/λi ) + σ1(r0/zl p) = 0, l > 0, (24)

and therefore with the use of (21) we have

r0 = σ1(1/λi ) = s1(1/λi ) =
∑

n

1

λn
, l > 0. (25)

This expression clearly states that the leading term (−a0k) on
the r.h.s. of Eq. (8) vanishes for the partial waves with l > 0.

The scattering length for the higher partial waves can be
computed from Eq. (11)

(2l + 1)a2l+1
l = r2l+1

0

θ2
l

+ (−1)l+1(2l + 1)σ2l+1(xi ). (26)

The second term on the r.h.s. can be expanded by employing
the Newton formula (16) with the reversed order as

(2l + 1)σ2l+1(xi ) =
2l∑

k=0

(−1)ks2l+1−kσk . (27)

In the above equation, and in the following text, the symmet-
ric polynomials σk and sk without explicit arguments always
denote the polynomials σk (xi ) and sk (xi ), respectively.

Before the general version we start with an illustration for
the l = 1 case of Eqs. (26) and (27). In this particular case we
have

3a3
1 = r3

0

θ2
1

+ (s3 − s2σ1 + s1σ2)︸ ︷︷ ︸
3σ3

. (28)

The last two terms in the equation vanish because σ1(xi ) =
s1(xi ) = 0 as stated in Eq. (24). Furthermore,

s3(xi ) = s3(1/λi ) + s3(r0/zl p) = s3(1/λi ) − r3
0

θ2
1

, (29)

where the last equality utilized the result (22). Therefore the
p-wave scattering length can be written in terms of the Siegert
pseudostate poles as

3a3
1 = s3(1/λi ) =

∑
n

1

λ3
n

=
∑

n

i

k3
n

. (30)

Note that expression (28) is valid only for l = 1, as the
angular momentum l defines the arguments of the polyno-
mials σk and sk through the poles λn and the roots zl p. For
l > 1, the term 3σ3(xi ), represented by the parentheses in
(28), vanishes due to conditions (14). Since s3(r0/zl p) = 0
for l > 1, as stated in (22), the s3(1/λi ) must also vanish for
l > 1. This property will propagate for higher l values as will
be demonstrated below.

The general case starts with the expansion (27) written as

(2l + 1)σ2l+1 = s2l+1 − s2lσ1 + · · · − s2σ2l−1 + s1σ2l . (31)

The symmetric polynomials here are computed for the λi

eigenmomenta and zl p roots that are tied to the angular mo-
mentum value l . Due to this all the terms on the r.h.s of
Eq. (31) except the first s2l+1 vanish because one of these two
cases apply:

(a) The vanishing terms contain the odd order of the sym-
metric elementary polynomial σ2s+1 with s < l . In this case
the condition (14) is responsible for their disappearance.

(b) The vanishing terms contain the odd order of the sym-
metric powers-sum polynomial s2s+1 with s < l . The zero
value of these polynomials is less trivial and must be built
by the induction process that employs a lower order version
of Eq. (31),

0 = (2s + 1)σ2s+1

= s2s+1 − s2sσ1 + · · · − s2σ2s−1 + s1σ2s, s < l, (32)

which is valid for all s < l:

s = 1 : 0 = s3 − s2σ1 + s1σ2,

s = 2 : 0 = s5 − s4σ1 + s3σ2 − s2σ3 + s1σ4,

...
...

s = l − 1 : 0 = s2l−1 − · · · + s1σ2l−2. (33)

The induction starts with s1(xi ) = σ1(xi ) = 0 and employs the
statement (a) above. The power-sum polynomials s2s+1 can be
split to two parts as

0 = s2s+1(xi ) = s2s+1(1/λi ) + s2s+1(r0/zl p), for s < l,

(34)

and because of properties (20) the term

s2s+1(1/λi ) = 0, for s < l. (35)

Since one of the above cases (a) or (b) always applies for all
but the first term in Eq. (31), only the leading term contributes:

(2l + 1)σ2l+1 = s2l+1(1/λi ) + r2l+1
0 s2l+1(1/zl p). (36)

The properties (20) allow us to evaluate the second term on
the r.h.s. of Eq. (36) as s2l+1(1/zl p) = (−1)l/θ2

l . Such identity
simplifies the expression (26) to the final formula

(2l + 1)a2l+1
l = (−1)l+1s2l+1(1/λi). (37)

012807-4



EXPANSION OF SCATTERING LENGTH IN S-MATRIX … PHYSICAL REVIEW A 108, 012807 (2023)

With a more physical language, the (2l + 1)-power of the l-
wave scattering length can be written in terms of the S-matrix
poles λn ≡ ikn as

(2l + 1)a2l+1
l = (−1)l+1

∑
n

1

λ2l+1
n

=
∑

n

i

k2l+1
n

, l > 0,

(38)
or finally

a2l+1
l = 1

2l + 1

∑
n

i

k2l+1
n

, l > 0. (39)

Note that the s-wave version (23) depends explicitly on the
box size r0, while this parameter disappears from the explicit
formula (39). However, the implicit dependence on the box
size remains, since the Siegert-pseudostate poles kn describe
not only the physical resonances but also the discretized
continuum spectrum, so-called box states. In situations, fre-
quently encountered in atomic and molecular physics, where
only a few poles appear near the threshold, a few-pole approx-
imation of Eq. (39) provides a convenient way to calculate the
scattering length.

Recently we have found that the scattering-length formula
(39) can also be derived in an alternative and simpler way by
employing some of the ideas from Ref. [35].

IV. RESISTANT VIRTUAL STATES

While the effect of the low-energy resonances and weakly
bound states on the low-energy scattering has been extensively
explored, the role of the virtual states has so far been under-
stood primarily on a qualitative level. According to Eq. (39),
valid for l > 0, a virtual state near the threshold can signifi-
cantly affect the low-energy scattering as well.

To the best of our knowledge, the related studies have
been exclusively focused on the virtual states in the s wave,
unanimously concluding that their presence near the threshold
causes a large low-energy scattering cross section. However,
its quantification has been limited. Batishchev and Tolstikhin
[22] formulated the first analytical expression that accurately
quantifies this influence for l = 0, and Eq. (39) is its equiv-
alent for the higher partial waves. As is shown below, it is
not difficult to find an interaction, the scattering length of
which is in the p-wave predominately determined by the near-
threshold virtual state and all the remaining poles form only
a small correction. The validity of Eq. (39) is general within
the scope of the short-range interactions, and it can be applied
to electron collisions with atoms or molecules. It provides a
convenient way of calculation of the scattering length in cases
of dominant near-threshold poles.

To demonstrate this effect, the S-matrix poles near the
threshold in the p-wave were calculated for a short-range po-
tential by Davis and Sommerfeld [36]. As is discussed below,
this calculation revealed that the character of the virtual state
providing a dominant contribution to the scattering length
is unusual. Usually the S-matrix poles for a local potential
appear in pairs. A bound state with a positive imaginary
momentum is paired with a virtual state on the negative
imaginary axis [37]. For a resonance in the fourth quadrant
of the complex momentum plane, another pole in the third
quadrant exists, symmetrically with respect to the imaginary
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FIG. 1. (a) The potential in Eq. (40). The solid black and red
(gray) lines correspond to the angular momenta l = 0 and l = 1,
respectively. The red (gray) dashed line illustrates the energy of the
p-wave bound state. (b) The elastic scattering cross section in the p
wave as a function of the energy is plotted.

axis. These pairs move along the trajectories in the complex
momentum plane as the overall strength of the interaction
changes. With the potential becoming increasingly more at-
tractive, the resonance pair symmetrically moves towards the
origin (for l > 0), where it splits and forms a pair of the
bound and virtual state, moving away from each other as the
interaction further becomes more attractive.

All the calculated poles of the p-wave S-matrix of the po-
tential studied below [36], except one, follow this pattern. One
virtual state appears without any associated bound state. In an
attempt to identify its partner, its trajectory in the complex
momentum plane was studied as a function of the scaling
factor in front of the potential. As is shown below, this virtual
state not only appears without any corresponding bound state,
furthermore, its position on the negative imaginary axis is
only very weakly affected by the modification of the potential
depth. In terms of Eq. (39), this state represents the dominant
contribution to the scattering length. More detailed study re-
vealed that this unusual virtual state exists for a broad variety
of short-range potentials, and it has not been previously char-
acterized. It will be referred to as the resistant virtual state
(RVS).

A. Model potential

In order to compare various methods for calculation of
resonances, Davis and Sommerfeld [36] studied the electron
scattering off the potential

Vl (r) = V (r) + l (l + 1)

2r2
, (40)

where

V (r) = (ar2 − b)e−cr2
(41)

and a = 0.028, b = 1, and c = 0.028. This potential is plot-
ted in Fig. 1 for the angular momenta l = 0, 1. Their study
was restricted to the elastic scattering in the p wave where a
shape resonance exists at energy ER = 3.17 eV that has width
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TABLE I. Energies (in eV) of the bound state, virtual state, and
low-energy resonances of the potential (40) in the partial waves p, d ,
and f .

p wave d wave f wave

State ER 	 ER 	 ER 	

Bound −7.1705 0.0 −0.4921 0.0 – –
Virtual −7.1704 0.0 −0.4930 0.0 – –

−0.0977 0.0 – – −0.469 0.0
Resonance 3.1730 0.3216 6.484 3.029 5.001 0.258

	 = 0.32 eV. In addition, this potential supports a bound state
with the energy EB = −7.17 eV. The calculated p-wave cross
section is shown in the inset of Fig. 1. The cross section is
dominated by a high peak at around 1 eV; the resonance peak
at 3.2 eV represents a relatively small feature as compared to
the threshold peak. In addition, this potential also supports a
virtual state with very small energy ≈ −98 meV that is not
mentioned by Davis and Sommerfeld [36]. The positions of
the resonances as well as the virtual states were obtained by
solving the Lippmann-Schwinger equation on the unphysical
sheet [38] (see the Appendix).

B. Trajectories of virtual states

As can be seen in Table I, the potential (40) supports a
single bound state and two virtual states. The question we
would like to address here is how the imaginary momenta of
the virtual states change with the overall strength of the po-
tential and whether the virtual state that is not associated with
a bound state can leave the negative imaginary momentum
semiaxis.

To this end, we introduce a real factor 
 that scales the
model potential (41),

Wl (r) = 
V (r) + l (l + 1)

2r2
, (42)

and calculate the imaginary momenta of the bound and virtual
states for different values of 
. While for one virtual state,
the momentum significantly depends on the potential strength,
it only very weakly changes for the other, even at 
 → ∞.
On the the energy scale, the energy of the near-threshold
virtual state changes only from about −98 meV to −55 meV
and remains unchanged with further increase of the potential
strength. Due to this “resistance,” this state will be referred to
as the RVS.

Figure 2 displays the imaginary momenta κ of the bound
and virtual states as a function of 
. In addition to the bound
state and RVS, a second virtual state exists that develops
almost symmetrically to the bound state. It merges with the
bound-state curve as 
 decreases and both states turn into a
pair of resonances (not shown in Fig. 2) at 
 ≈ 0.46. Only
one state appears on the imaginary k axis for 
 � 0.46—the
RVS.

As the value of 
 raises, excited bound states appear along
with the corresponding virtual states. These exhibit a series of
very narrow avoided crossings with the RVS. Details of the
first crossing are shown in the inset of Fig. 2.
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 1.4

 0  0.5  1  1.5  2  2.5  3  3.5

κ 
(a

.u
.)

Λ

Bound states
Virtual states

FIG. 2. Imaginary momentum κ = −ik as a function of the di-
mensionless scaling parameter 
 [see Eq. (42)] in the partial wave p.
The unperturbed potential (40) corresponds to 
 = 1. The red dots
κ > 0 represent the trajectories of the bound states; the black dots
κ < 0 correspond to the trajectories of the virtual states. The RVS is
clearly seen.

Although the RVS presented here was calculated for the
specific model potential (40) in the p wave, it appears for
a wide category of the short-range potentials and for higher
partial waves. Its nature is discussed in the rest of this sec-
tion along with its effect on the low-energy scattering.

C. Role of RVSs in scattering

Virtual states in the s wave are known to strongly impact
the elastic [6,7,9] and vibrationally inelastic [17,18] collisions
of electrons with molecular targets at low collision energies.
With the toolkit of the SPSs [22] we can examine the role of
the p-wave RVS in the low-energy scattering, specifically the
scattering by the Davis-Sommerfeld potential [36] defined by
Eq. (40).

Since the SPSs φn(r) form a complete and orthonormal set
of functions inside a finite interval 〈0, r0〉, a general scattering
solution φl (r, k), for a collision energy E = k2/2, can be
expressed by a linear combination of SPSs. This expansion
was given by Batishchev and Tolstikhin [22] as

φl (r, k) =
∑

n

cnφn(r)

= −ike−ikr0
(−ikr0)l

θl (−ikr0)

∑
n

φn(r0)

kn(kn − k)
φn(r). (43)

The expansion coefficients cn are complex. Their absolute val-
ues |cn| for four selected collision energies E = 10−3, 10−2,
10−1, 1.0 a.u. and for the angular momentum l = 1 are shown
in Fig. 3. There are several observations that can be made from
this numerical study:
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FIG. 3. Absolute values |cn| of the expansion coefficients (43) for the scattering solution at four selected collision energies E for the p
wave. The contribution of the bound and antibound states is shown by black, the contributions of the outgoing- and incoming-wave SPSs are
displayed by red (full gray lines) and blue (dashed gray lines), respectively. The inset in the top-left panel shows the distribution of the SPS
poles that are closest to the origin. The resistant pole is marked by the number 2.

(1) At low energies E � 10−2 a.u. the contribution of
outgoing- and incoming-wave SPSs is very similar as the p-
wave phase shift is small. That leads to an S matrix S ∼ 1 that
gives a weak phase unbalance between asymptotic incoming
and outgoing waves.

(2) The RVS is the only pole from the imaginary axis
contributing to the scattering wave function. This is because
the scattering solutions are orthogonal to the bound space.

(3) An importance of the resistant VS increases with the
decreasing collision energy as it becomes one of the dominant
contributions at E = 10−3 a.u. for this particular potential.

The expansion of the scattering length (39) in terms of
the S-matrix poles offers another perspective of the role of
the RVSs in the scattering. An accurate calculation of the
p-wave scattering length (8) of the potential from Eq. (40)
yields the value a1 = 8.137 a.u. A single-pole approximation
of Eq. (39) including only the RVS yields a very close value,
8.182 a.u. The RVS predominately determines the scattering
physics in the threshold region where the Wigner threshold
law is applicable.

The picture provided by the study of the model potential
(40) can be, in the case of the more general short-range

interaction, complicated by low-energy resonances or weakly
bound states and their associated virtual states. In these cases
their contributions to the expansion (39) can be comparable to
that of the RVS.

D. Virtual states induced by boundary condition

To understand the nature of the states in the focus of
this work for an arbitrary short-range potential V (r), the
discussion in the rest of this section will be restricted to
the imaginary k axis parameterized by κ . It is convenient to
rewrite the left-hand side of Eq. (6) as a functional:

Fl [κ, ϕiκ (r)] = 1

ϕiκ (r0)

dϕiκ (r)

dr

∣∣∣∣
r=r0

+ κ + 1

r0

l∑
p=1

zl p

zl p − κr0
,

(44)

where ϕiκ (r) is a solution of the Schrödinger equation (1)
calculated for the momentum k = iκ that is regular at the
origin [ϕiκ (0) = 0] and that is not subject to any other bound-
ary condition, such as (2). Such solutions are related to their
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derivatives at given and fixed r0 via the R matrix [39,40]:

ϕiκ (r0) = R(−κ2/2)
dϕiκ (r)

dr

∣∣∣∣
r=r0

, (45)

where R is only a function of the energy. Therefore, in terms
of κ , it depends on |κ|. Substitution of Eq. (45) into Eq. (44)
yields a function of κ:

fl (κ ) = 1

R(−κ2/2)
+ κ + 1

r0

l∑
p=1

zl p

zl p − κr0
. (46)

Then the condition (6), specifying the momenta of the bound
and virtual states, can be written as fl (κ ) = 0.

A possible (not necessarily accurate or computationally
beneficial) method to calculate the bound and virtual states
would be to first numerically calculate the logarithmic deriva-
tive 1/R(−κ2/2) of the solutions of the Schrödinger equation
at r0 for a set of values of κ . This can be used to construct
the function (46). Its zeros determine those values of κ that
satisfy the boundary condition (6) on the imaginary axis and
hence they correspond to the bound and virtual states of V (r).

The nodes of fl (κ ) are related to its poles. Since the func-
tion values span all positive and negative values in the vicinity
of the pole, the nonsingular part of the function yields a zero
value in its vicinity. The poles can arise either from the first
or from the third term of Eq. (46). When a negative energy
changes in the vicinity of the bound state from the region
below it to the region above the bound state, the corresponding
wave function ϕiκ (r) changes its character in the vicinity of r0

from exponentially increasing through exponentially decay-
ing (at the exact energy of the bound state) to exponentially
increasing with a node. For certain energy in this interval,
ϕiκ (r0) vanishes and the term 1/R possesses a pole. Therefore,
the first term of Eq. (46) yields a pole of fl (κ ) in the vicinity
of the bound states and their associated virtual states (due to
the even symmetry of the R matrix along the κ axis). Apart
from these narrow regions of κ , the first term of Eq. (46) does
not yield any poles along the imaginary momentum axis.

It is a well-known property of the reverse Bessel polyno-
mials that there are no real roots zl p for even values of l and
there is only one unpaired real zero zl p for every odd l [41].
For l = 1, θ1(z) = z + 1 and the only root is z11 = −1. This
implies that f1(κ ) has a pole at κP = −1/r0. As the first two
terms of Eq. (46) smoothly depend on κ in the vicinity of κP,
the presence of the pole implies an existence of an associated
node of f1(κ ) in the vicinity of κP. While its existence does
not depend on any particular character of V (r), its position
does via the first term of Eq. (46). Therefore, the virtual state
near the pole κP is due to the p-wave boundary condition.

Function f1(κ ) calculated for the model potential (40) is
for the vicinity of κP plotted in Fig. 4. Note that the position
of the pole κP is not physically significant, since it depends
on r0. Since the boundary condition (6) holds for any r � r0,
so does its form expressed in terms of fl (κ ). Therefore, the
nodes of fl (κ ) do not depend on r0. The radial dependence
due to the third term in Eq. (46) is compensated by the radial
dependence of the R matrix in the first term.

The imaginary momentum of the virtual state of the model
potential (40) calculated using Eq. (46) coincides with the
momentum of the RVS. The approach presented above shows

-1

-0.5

 0

 0.5

 1

-0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02

-1/15

-1/20

f 1
(κ

) 
(a

.u
.)

κ (a.u.)

r0 = 15 a.u.
r0 = 20 a.u.

FIG. 4. Function f1(κ ) calculated for the model potential (40) in
the vicinity of the pole κP due to the third term of Eq. (46). The
solid black line and dashed green (gray) line represent the results for
r0 = 15 a.u. and for r0 = 20 a.u., respectively.

that a virtual state exists as a consequence of the properties
of the spherical Hankel functions for a broad category of
the short-range potentials. However, this discussion does not
make its “resistance” against the scaling of the potential read-
ily visible. Another example, discussed in Sec. V, shows that
the RVSs also exist in a different category of interactions—
separable potentials, along with the virtual states that are not
associated with any bound states. However, in the case of the
nonlocal separable potentials, these two types of states do not
necessarily coincide.

E. Higher partial waves

The discussion of the pole of function fl (κ ) [Eq. (46)]
due to the outgoing-wave boundary condition presented in
Sec. IV D for the p wave can be generalized in a straightfor-
ward way to every odd partial wave, since the reverse Bessel
polynomials of the odd orders have a single unpaired real root.

As can be seen in Table I for the model potential (40), the
virtual state that is not associated with the bound state exists
in the partial waves p and f . The dependence of the f -wave
RVS on the potential strength 
 is plotted in Fig. 5 along with
the bound states and their associated virtual states. It shows
that the virtual state that is not associated with the bound state
is an RVS, similar to the one in the p wave (see Fig. 2).

On the other hand, the RVSs are not guaranteed to exist
in the even partial waves as the reverse Bessel polynomials
of the corresponding orders do not have any real roots. This
corresponds to the absence of the additional virtual state in
Table I for the d wave of the model potential (40). The RVS
is also absent in the plot of the momenta of the d-wave virtual
and bound states as a function of the potential strength 
 in
Fig. 6.
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FIG. 5. The same quantities as in Fig. 2, here plotted for the
partial wave f .

F. General perturbation

Previous sections have shown that energy of the RVS re-
mains finite even when potential strength increases to infinity.
It is important to mention that this property holds even for a
perturbation that differs from the original interaction potential
V (r). We chose to demonstrate it on the potential (41),

Vl (r) = (ar2 − b)e−cr2 + l (l + 1)

2r2
+ λU (r), (47)

where U (r) is a general perturbation. An example for

U (r) = −e−r

r
(48)

and l = 1 is displayed in Fig. 7. Note that while Figs. 2 and
7 look similar they have different perturbation strengths as a
variable on the x axis. Figure 2 refers to the global scaling
parameter 
 in Eq. (42), whereas λ in Fig. 7 scales only the
additional perturbation U (r). Hence, the data in the figures co-
incide only for 
 = 1 and λ = 0.
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FIG. 6. The same quantities as in Fig. 2, here plotted for the
partial wave d . The RVS is absent.
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FIG. 7. Imaginary momentum κ = −ik as a function of the di-
mensionless perturbation strength λ [see Eqs. (47) and (48)] and
l = 1. The red dots κ > 0 represent the trajectories of the bound
states; the black dots κ < 0 correspond to the trajectories of the
virtual states.

V. RVS IN SEPARABLE POTENTIAL

While the potential (40) has a straightforward spatial
character, advanced computational methods are necessary to
accurately calculate the poles of its S matrix. A complemen-
tary set of potentials exist that can be constructed by fixing the
complex momentum of a bound or a virtual state—separable
potentials. Analysis of the near-threshold virtual states for a
potential in this category provides a view on the RVSs that is
complementary to the preceding sections.

An essential object in this analysis is the coupling func-
tion 
(κ ) [42]. For an attractive potential V , it is defined
as follows: A bound-state problem is solved for the scaled
potential 
V , where the value of 
 is sufficiently large to
support a bound state. The pairs of varying values of 
 and
corresponding eigenenergies E of the bound states define
the real function 
(E ). Using the relation E = −κ2/2, this
function can be written as 
(κ ) for κ > 0.

To see the role of 
(κ ) in the RVSs for l > 0, its ana-
lytical expression would be desirable. While it is not known
for the local potentials discussed in the sections above, it is
straightforward for the separable potentials. This problem has
been studied, for example, by Kok and van Haeringen [43] as
well as by Horáček and Pichl [44]. Consider a simple model
Hamiltonian with a single separable interaction in a single
partial wave l:

H
 = p2

2
− |g〉
〈g|, (49)

where p is a momentum operator and the form fac-
tor |g〉 satisfies the threshold law in the momentum
representation [45]

g(p) ∼ pl , (50)

where p is the eigenvalue of the operator p. Solving the
Schrödinger equation

H
|φ〉 = −κ2

2
|φ〉 (51)
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TABLE II. Form factors gln(p) from Eq. (53) for l = 1, n =
0, 1, 2 and corresponding coupling functions 
ln(κ ) obtained from
Eq. (52) along with its asymptotic behavior for κ → ∞.

n g1n(p) 
1n(κ ) 
1n(κ → ∞)

0
p

p2 + a2

2(a + κ )2

(a + 2κ )
∼ κ

1
p

(p2 + a2)3/2

8a(a + κ )3

(a + 3κ )
∼ κ2

2
p

(p2 + a2)2

16a3(a + κ )4

(a2 + 4aκ + κ2)
∼ κ2

for the bound states in the momentum representation with the
normalization 〈φ|φ〉 = 1 yields [43]

1


(κ )
= 2

π

∫ ∞

0

p2g(p)2

p2 + κ2
d p. (52)

This equation can be used in two ways: the energy of the
bound state may be obtained for selected 
 or, vice versa,
the potential strength can be calculated for given κ . Note that
the separable interaction 
V = |g〉
〈g| can provide at most
one bound state. In the following the coupling function (52) is
analytically continued to to describe the virtual states (κ < 0)
and resonances (κ ∈ C).

A form factor, widely used in nuclear physics, is used here
to demonstrate the RVSs. It is of the form

gln(p) = pl

(p2 + a2)l+n/2
, (53)

where n is a nonnegative integer [45] and a is a real constant.
Its explicit forms for l = 1 and three lowest values of n are
listed in Table II along with corresponding coupling functions

n(κ ) obtained from Eq. (52).

The functions 
1n(κ ) in Table II show different asymptotic
behavior for κ → ∞. The function 
10(κ ) increases linearly,
whereas the functions 
1n(κ ) ∼ κ2 asymptotically for n > 0
(even for higher n than considered here). The potentials (53)
by Mongan [45] with the lowest values of n have been selected
for this study due to the fact that the asymptotic character
of their coupling functions 
1n(κ ) reflects the behavior of

(κ ) for the local potentials. It has been shown by Bárta and
Horáček [46] that 
(κ ) ∼ κ2 for all finite local potentials,
whereas for the local potentials with a singularity, 
(κ ) ∼ κ ,
as in the case of potential with the g10(p) form factor intro-
duced above.

It is clear that the coupling function 
(κ ) here fits the same
role as the interaction strength used for the local potential
(42). Since the coupling function 
(κ ) is known, inversion
of the formulas listed in the third column of Table II reveals
a dependence of the roots κ on the potential strength 
. In
the case of 
10(κ ), two roots exist that represent a pair of
one bound and one virtual state, a pair of resonances or two
virtual states. Similarly, the function 
11(κ ) yields three roots,

12(κ ) yields four roots, etc.

Let us now discuss in detail the separable potential with
the form factor g11(p). The corresponding coupling function

11(κ ) is of the third order (see Table II), and the equation for
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FIG. 8. Imaginary momentum κ2 of the bound state and imagi-
nary momenta κ1, κ3 of the virtual states for the separable potential
with the form factor (53) as a function of the coupling constant 
.

the eigenmomenta yields


11(κ ) = 8a(a + κ )3

(a + 3κ )
= 
. (54)

The solutions κ1, κ2, and κ3 can be explicitly written as

κ1(
) = −1

2

(
q

22/3a
+ 2a + 


3
√

2q

)
, (55)

κ2(
) = (1 − i
√

3)q

4 22/3a
− a + (1 + i

√
3)


4 3
√

2q
, (56)

and

κ3(
) = (1 + i
√

3)q

4 22/3a
− a + (1 − i

√
3)


4 3
√

2q
, (57)

where

q(
) = 3

√
4a3
 +

√
2
√

8a6
2 − a3
3. (58)

These solution may represent (1) one bound state and a
resonance pair, (2) one bound state and two virtual states, or
(3) three virtual states. They show different behavior as 
 →
∞. Specifically, κ3 remains finite,

lim

→∞

κ3(
) = −a

3
, (59)

while the remaining roots increase to infinity as κ1,2(
) ∼√

. The finite limit of κ3 corresponds to the pole of the

coupling function 
11(κ ) in Eq. (54). All three roots κ1(
),
κ2(
), κ3(
) are shown in Fig. 8 for a = 0.5. The fig-
ure reveals, that the separable potential with the form factor
g11 provides one VS for 0 < 
 < 1 before the resonant pair
is transformed into the bound and virtual pair. However, in
contrast to the case of the local potential Eq. (41) discussed
in the previous section, this single low-
 pole is not the RVS.
The resistant VS in this case is the virtual state that appears in
pair with the bound state once the interaction becomes strong
enough to support the bound state, i.e., for 
 > 1.
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VI. CONCLUSIONS

The first conclusion of this article is Eq. (39). It is an
expression of the scattering length—an essential parameter
of the low-energy short-range scattering—only in terms of
the poles of the S matrix for an arbitrary angular momentum
l > 0. This formula confirms that the low-lying resonances
and weakly bound states greatly affect the scattering cross
section in the limit of low collision energy. Furthermore, it
quantifies the contribution of the near-threshold virtual states.
In the absence of the low-lying resonances and weakly bound
states, these can have a dominant and essential effect on the
scattering length.

This was demonstrated on the short-range potential (40)
introduced by Davis and Sommerfeld [36] in the p wave. The
near-threshold poles of its S matrix were calculated, and it was
shown that the scattering length is dominated by a low-lying
virtual state. However, this virtual state was not associated
with any bound state, as is usual in the case of the short-
range local potentials with l > 0. Its position in the complex
momentum plane as a function of the potential strength was
analyzed to assess whether it turns into a bound state or a
resonance as the potential becomes increasingly more and less
attractive, respectively. This S-matrix pole not only does not
move away from the negative imaginary momentum semiaxis,
it shows only very weak dependence on the potential strength.
To the best of our knowledge, virtual states with this behavior
(referred to as resistant virtual states) have not been previously
reported.

Further analysis presented in this article revealed that the
appearance of the RVS is a rather general phenomenon. A
single RVS is present in every odd partial wave for ev-
ery local short-range potential. It is a consequence of the
outgoing-wave boundary condition and analytical properties
of the spherical Hankel functions’ linear combination, which
forms the solution of the Schrödinger equation in the asymp-
totic region. The position of its momentum on the negative
imaginary axis is affected by the details of the interaction
potential.

While all the analysis of the RVSs in this article was
presented for the case of a local short-range potential in the
X representation, the example in Sec. V shows that they can
also be supported by separable potentials. In this example,
however, a virtual state supported even in the absence of any
bound state is different from the RVS that appears only at such
strength of the interaction that allows one state to be bound.
While this structure of the virtual states is different from the
local interaction, it suggests that the phenomenon of the RVSs
is more general than the scope of the discussion presented
here.
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APPENDIX: METHOD OF CALCULATION OF BOUND
AND VIRTUAL STATES

The energies of the bound and virtual states can be
easily found using a simple integral equation. The Lippmann-
Schwinger equation can be written in the coordinate represen-
tation as follows [37]:

ψl (r) = ĵl (kr) − i

k
ĵl (kr)

∫ ∞

r
ĥ(1)

l (kr′)2V (r′)ψl (r
′) dr′

− i

k
ĥ(1)

l (kr)
∫ r

0
ĵl (kr′)2V (r′)ψl (r

′) dr′, (A1)

where ĵl (kr) and ĥ(1)
l (kr) are the spherical Riccati-Bessel and

Riccati-Hankel functions, respectively. Note that Taylor [37]
employs Hankel functions ĥ(+)

l = iĥ(1)
l , where the definition

of ĥ(1)
l can be found in Ref. [47]. At large values of r, where

the interaction V (r) is negligible, this equation yields

ψl (r) = ĵl (kr) − iĥ(1)
l (kr)Tl (k), (A2)

where

Tl (k) = 1

k

∫ ∞

0
ĵl (kr)2V (r)ψl (r) dr. (A3)

Equation (A1) can be transformed into the Volterra-type inte-
gral equation [37]

φl (r) = ĵl (kr) + i

k

∫ r

0

[
ĵl (kr)ĥ(1)

l (kr′) − ĵl (kr′)ĥ(1)
l (kr)

]
× 2V (r′)φl (r

′) dr′ (A4)

that can be very accurately solved using the Romberg ex-
trapolation technique as described in Refs. [38,48]. Different
boundary conditions of the solution φl (r) lead to a different
expression for the T matrix:

Tl (k) =
1
k

∫ ∞
0 ĵl (kr)2V (r)φl (r) dr

1 + i
k

∫ ∞
0 ĥ(1)

l (kr)2V (r)φl (r) dr
. (A5)

The poles of the T matrix are determined by the equation

1 + i

k

∫ ∞

0
ĥ(1)

l (kr)2V (r)φl (r) dr = 0. (A6)

Equation (A4) is, in general, complex. However, for calcu-
lations of the bound and virtual states (for pure imaginary
momentum) it can be trivially transformed into a real equa-
tion and the solution φl (r) then becomes a real function.
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[38] M. Čížek and J. Horáček, J. Phys. A: Math. Gen. 29, 6325

(1996).
[39] M. Aymar, C. H. Greene, and E. Luc-Koenig, Rev. Mod. Phys.

68, 1015 (1996).
[40] P. Burke, R-Matrix Theory of Atomic Collisions: Application

to Atomic, Molecular and Optical Processes (Springer, Heidel-
berg, 2011).

[41] M. de Bruin, E. Saff, and R. Varga, Indagationes Math. 84, 1
(1981).

[42] V. I. Kukulin, V. M. Krasnopolsky, and J. Horáček, Theory of
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