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Improved modeling of dynamic quantum systems using exact Lindblad master equations
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The theoretical description of the interplay between coherent evolution and chemical exchange, originally
developed for magnetic resonance and later applied to other spectroscopic regimes, was derived under incorrect
statistical assumptions. Correcting these assumptions provides access to the exact form of the chemical exchange
interaction, which we derive within the Lindblad master equation formalism for generality. The exact form of the
interaction is only different from the traditional equation by a scalar correction factor derived from higher-order
interactions and regularly improves the radius of convergence of the solution (hence increasing the allowable
step size in calculations) by up to an order of magnitude for no additional computational cost.
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I. INTRODUCTION

Chemical exchange encompasses a broad scope of molec-
ular dynamics that results in a change of the system Hamilto-
nian and may be interrogated spectroscopically. Techniques
such as NMR, two-dimensional infrared spectroscopy, and
chirped-pulse Fourier transform microwave spectroscopy, are
sensitive to exchange processes on vastly different timescales
[1–10]. For example, these techniques have been used to study
the in situ structure and functionality of biomolecules, hy-
drogen bonding dynamics in liquids, and dynamic rotational
isomerization. The theoretical treatment presented here is also
applicable to discrete multisite exchange problems, such as
atoms migrating in an optical trap array. Interpreting the ex-
perimental data from any of these techniques often requires
the use of a physical model that unifies the coherent and
chemical dynamics.

The density matrix formalism is a convenient method to
include statistical averaging in systems that evolve coherently
and is ubiquitous in spectroscopy. Kaplan [11,12] and Alexan-
der [13,14] were the first to describe the chemical exchange
interaction within the density matrix formalism, motivating
the form of the interaction from first principles to describe the
NMR line shape under exchange. In essence, they described
exchange by the transformation

ρ̂ → R̂ρ̂R̂−1 − ρ̂, (1)

where R̂ρ̂R̂−1 was a similarity transform relating the density
matrix before and after an exchange event. For this reason,
exchange is often discussed as passing population between
different “sites,” where each site has a unique molecular
geometry and associated lifetime (Fig. 1). Binsch [15] later
unified Kaplan and Alexander’s theory of chemical exchange
with Redfield’s relaxation theory [16] to fully describe the
NMR line shape. By the advent of coherent optical spec-
troscopies, the traditional form of the chemical exchange

interaction had been supported by decades of experimental
evidence from the magnetic resonance community and was
thus adopted by the ultrafast spectroscopy community.

Recently, the theoretical underpinnings of Binsch’s uni-
fication of quantum dynamics and chemical exchange were
found to be flawed, because it motivated that the chemical
exchange interaction was simply an extension of the Redfield
relaxation [17]. Thermalization in liquid-state magnetic reso-
nance is generated by modulation of orientationally dependent
interactions during molecular dynamics on the femtosecond–
picosecond timescale. Fourier components of this modulation
on the order of NMR transitions then induce transitions that
drive the system towards equilibrium. However, the molecular
processes that are described by Redfield’s theory and chemical
exchange dynamics are different. While molecular tumbling is
continuous, chemical exchange is a fundamentally discontinu-
ous process, as the time required for molecular rearrangement
is often orders of magnitude faster than the lifetime in any
particular site. These two cases require different statistical as-
sumptions that directly impact the formulation of the chemical
exchange interaction.

Recently, we introduced an exact dissipative master equa-
tion [17] (DMEx) for chemical exchange that was rigorously
derived as a closed-form solution of the Dyson expansion.
This work agreed with Binsch’s treatment, under more jus-
tified assumptions, but only to lowest order in perturbation
theory. It was derived using projection or pseudorotation su-
peroperators, which are both common in magnetic resonance.
The resulting differential equation was proportional to a tra-
ditional exchange term by a scalar factor, which was obtained
by contraction of the higher-order terms of the Dyson series.
Including this correction improves the convergence radius of
the series by up to an order of magnitude for no additional
computational cost. However, the formulation using projec-
tion and pseudorotation superoperators restricts the generality
of the formalism.
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Here, we introduce a generalization of the exact dissipative
master equation formalism and extend the derivation to en-
compass both the cases of an arbitrary exchange pathway as
well as the case where the exchange pathway has permutation
group symmetry. For compatibility, we shall treat exchange as
a Lindblad [18–20] equation (also referred to as the Gorini-
Kossakowski-Sudarshan-Lindblad equation), as it is the most
general Markovian master equation. We will show that an
exact Lindblad master equation (LMEx) can be derived by
continuing the traditional derivation to infinite order in the
Dyson series. Within this formalism, we will show that the
chemical exchange interaction in its most general form can
be written as

L̂ρ̂ = 1

τ

(
Âρ̂Â† − 1

2
{ÂÂ†, ρ̂}

)
exp

(−T

τ

)
.

This is similar to Eq. (1), where Â is a Hermitian operator
analogous to R̂ and imposes exchange on the system at a rate
1/τ . The significant difference from this equation and the
previous formalism for chemical exchange is the exponential
factor exp(−T/τ ), where T is the time over which the master
equation is averaged (usually, the time step in a calculation).
This factor is derived as the closed-form solution of the Dyson
series and has the practical implication of increasing the radius
of convergence up to an order of magnitude over the tradi-
tional master equation at no additional computational cost.

II. DERIVATION OF A GENERALIZED LINDBLAD
MASTER EQUATION FOR CHEMICAL EXCHANGE

We will show that the exact form of the chemical exchange
interaction may be derived ab initio using a minimal number
of foundational assumptions. To begin, we will establish the
assumptions to be used throughout the derivation:

(1) Exchange is a Hermitian, multiparticle coupling, and
therefore has a corresponding Hamiltonian Ĥ1(t ).

(2) The system is Markovian, permitting us to make the
substitution ρ̂(tn) → ρ̂(t ), where t > tn by time ordering.

(3) To satisfy the Hermiticity requirement, the system is
at a steady state. As such, the dynamics at the level of the
ensemble are assumed to be stationary.

(4) The time required for molecular rearrangement is
much faster than any other interaction in the system and may
thus be assumed to be instantaneous.

(5) We assume that any exchange process is not correlated
to any other exchange process. To satisfy this requirement, the
basis set of exchange processes are transformed such that they
are orthogonal, thus automatically satisfying this requirement.

It is important to note that these assumptions are identical
to those established for the DMEx. The substantial difference
between this treatment and the DMEx is that the form of the
exchange Lindbladian is determined a priori, as opposed to
the exchange superoperator, which is less stringently defined.
We will show that the exchange Lindbladian spans a well-
defined composite Hilbert-Fock space and only acts on the
Fock state, whereas the exchange superoperator acts directly
on the Hilbert state of the system. As such, the DMEx and
Lindblad treatments of exchange are complementary, and are
suited for different purposes. Direct action on the Hilbert
space is ideal for cases when molecules dissociate and the

dimensionality of the Hilbert-space changes. The action of
the Lindbladian on the Fock space makes this formulation
significantly more general.

At this juncture, we may begin deriving the Lindblad mas-
ter equation for chemical exchange, which treats the entire
system quantum mechanically before reducing the density
matrix. Under assumption (1) that exchange is Hermitian and
has a Hamiltonian, we may define the system Hamiltonian as

Ĥ(t ) = Ĥ0 + Ĥ1(t ). (2)

We have partitioned this into a static component, Ĥ0 that
contains the coherent interactions, and a stochastically modu-
lated component Ĥ1(t ) describing the exchange contribution
to the Hamiltonian. Using this within the Liouville–von Neu-
mann equation gives (h̄ = 1)

∂

∂t
ρ̂(t ) = −i[Ĥ0 + Ĥ1(t ), ρ̂(t )]. (3)

This may be simplified by transforming into the interaction
representation (dropping hats to denote frame) as

∂

∂t
ρ(t ) = −i[H1(t ), ρ(t )]. (4)

Formally integrating this result gives

ρ(t ) = ρ0 − i
∫ t

0
dt ′[H1(t ′), ρ(t ′)]. (5)

Equation (5) may be iteratively substituted into Eq. (4) to
give the terms of the Dyson series, where the first two terms
are

∂

∂t
ρ (1) = −i[H1(t ), ρ(t )], (6)

∂

∂t
ρ (2) = − �T

∫ t

0
dt1 [H1(t ), [H†

1(t1), ρ(t1)]]. (7)

�T is the Dyson time-ordering operator that enforces t > t1.
Note that we have indicated the term of the Dyson series by
ρ (n) and have dropped the formal time dependence on the
left-hand side for brevity. Before continuing, we introduce an
operator expansion of H1(t ) for chemical exchange (Fig. 2)
as the tensor product between an operator Ak that acts on
the Fock space of the system to generate exchange and the
stochastically modulated operator Fk that describes the molec-
ular dynamics:

H1(t ) =
∑

k

Ak (t ) ⊗ Fk (t ). (8)

Ensemble averaging only affects the Fk operators, as they
carry the stochastic modulation. In accordance with the as-
sumption that the ensemble dynamics are stationary, we define
the operator Âk in terms of Fock-space creation (â†

k) and
annihilation (âk) operators that generate transitions between
two sites connected by an exchange process as

Âk = âk + â†
k.

(9)

The creation and annihilation operators are subjected to
âk âk = 0 such that double occupation in a site never occurs,
and as such have SU (2) features. For instance, Âk is similar
to the Pauli matrix σ̂x. As F̂k (t ) is stochastic and varies for
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FIG. 1. Manifestations of exchange. (a) Chemical exchange of-
ten results in rearrangement of molecules, which may be both
intramolecular (shown here) or intermolecular. 1H nuclei are colored
to distinguish configurations. (b). Molecular rearrangement is not
necessarily required if coherent interactions are site dependent and
the species interchanges between sites 1 and 2.

each member of the ensemble, we will only be able to define
statistical metrics of this operator over the entire ensemble.

The Markovian assumption (2) permits the substitution
ρ(t1) ≈ ρ(t ) in each term of the Dyson series. Further-
more, the stationary assumption (3) has the ramification that
〈Fk (t )〉 = 0, as this term would generate drift in the stochastic
motion. As such, the leading observable term is the second-
order term from the expansion. The only time parameter of
importance is the difference between t and t1, and we can use
the change of variables t − t1 = τ to give

∂

∂t
ρ (2) = �T

∑
jk

∫ 0

t
dτ

[
Aj (τ ) ⊗ Fj (τ ),

[Â†
k ⊗ F̂ †

k , ρ]

]
. (10)

Note that the limits of integration are swapped with this
transformation and that the differential transforms as dt1 →
−dτ . In doing this, the operators Âk and F̂k lose time
dependence and thus can be written in the Schrödinger repre-
sentation (with hats). At this juncture, it is pertinent to isolate
the degrees of freedom in ρ corresponding to the stochastic

FIG. 2. Formulation of exchange Hamiltonian. For ensemble to
be stationary, two systems (A and B) must simultaneously exchange
between sites 1 and 2. As such, we impose pairwise action of â and
â†, which leads to definition of Â. Operator F̂(t ) describes molecular
trajectories of each dynamic process.

operators, which are delineated as ρB. Inverting the limits of
integration, expanding the double commutator, and averaging
over the stochastic components gives ( �T is assumed)

∂

∂t
ρ (2) =

∑
jk

∫ t

0
dτ

(
Aj (τ )ρÂ†

k

−Aj (τ )Â†
kρ

)
〈Fj (τ )F̂ †

k ρB〉

+
∫ t

0
dτ

(
Â†

kρAj (τ )

−ρÂ†
kA j (τ )

)
〈F̂ †

k Fj (τ )ρB〉. (11)

Here, the angle brackets indicate the partial trace over
the stochastic degrees of freedom. We shall assume that at
the level of the ensemble, the stochastically distributed ex-
change events are independent of one another and uniformly
distributed, which permits us to assume that exchange is a
Gaussian process. Doing so permits us to rearrange the cor-
relation function under Isserlis’ theorem as

〈Fj (τ )F̂ †
k ρB〉 = 〈Fj (τ )F̂ †

k 〉〈ρB〉
+ 〈Fj (τ )ρB〉〈F̂ †

k 〉 + 〈F̂ †
k ρB〉〈Fj (τ )〉. (12)

Due to the stationary assumption, only the first term sur-
vives averaging. Furthermore, 〈ρB〉 = Ê (the identity matrix)
by definition. It is now pertinent to introduce the form of the
correlation functions. For chemical exchange, the correlation
function 〈Fj (τ )F̂ †

k 〉 dictates both the rate of exchange as well
as the jump time between sites, which under assumption (4)
is instantaneous, or δ correlated in time. Finally, our stipula-
tion that exchange processes are only self-correlated imposes
quadratic action of any term in the exchange Hamiltonian,
which is required to exchange population between sites. As
such, we may write the correlation functions as

〈Fj (τ )F̂ †
k 〉 = δ(τ )

τk
δ jk . (13)

τk is the characteristic lifetime in the two configurations
connected by the process F̂k . Equations (12) and (13) permit
us to extend the integration limits and rewrite Eq. (9) as

∂

∂t
ρ (2) =

∑
k

1

2

∫ ∞

−∞
dτ

(
Ak (τ )ρÂ†

k

−Ak (τ )Â†
kρ

)
δ(τ )

τk

+ 1

2

∫ ∞

−∞
dτ

(
Â†

kρAk (τ )

−ρÂ†
kAk (τ )

)
δ(τ )

τk
. (14)

Note that we have acquired a factor of 1/2 by also taking
the lower integration limit to −∞ such that the δ(τ ) function
is real valued. Performing integration greatly simplifies the
expression to

∂

∂t
ρ (2) =

∑
k

1

2τk

(
ÂkρÂ†

k + Â†
kρÂk

−ÂkÂ†
kρ + ρÂ†

kÂk

)
. (15)

Remembering that Âk are Hermitian, we may cast this into
the conventional Lindblad form, using {Â, B̂} = ÂB̂ + B̂Â as
the notation for the anticommutator:

∂

∂t
ρ (2) =

∑
k

1

τk

(
ÂkρÂ†

k − 1

2
{ÂkÂ†

k, ρ}
)

. (16)

This is the traditional master equation for chemical ex-
change written in Lindblad form. The term ÂkρÂ†

k generates
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the similarity transform relating the two sites, and the term
proportional to the anticommutator simply reduces to ρ̂ when
the Âk operators interchange populations between two of the
Fock states. The entire equation is similar to the form of the
chemical exchange interaction originally motivated by Kaplan
and Alexander. This equation can be recovered if one begins
from the traditional form of the chemical exchange interaction
[21]; however, the benefit of deriving the result ab initio is
that the framework is established to calculate higher-order
interactions. It will be advantageous to write Eq. (16) as

∂

∂t
ρ (2) =

∑
k

L̂kρ

τk
, (17)

where L̂k is the Lindbladian dissipator corresponding to
the term in parentheses. For brevity, we will call this the
second-order Lindblad master equation (LME2), which is the
exchange analog of the conventional Lindblad master equa-
tion derived for open quantum systems.

Traditionally, the chemical exchange interaction is as-
sumed to be small relative to all other interactions, which
allows the Dyson series to be truncated to its leading term.
While higher-order chemical exchange interactions become
irrelevant if Eq. (14) can be analytically integrated, it is rarely
possible to accomplish this in realistic systems. Instead, it is
beneficial to think of this result in terms of a numerical simula-
tion method. The LME2 will no longer be representative of the
physical system as soon as the integration grid approaches a
spacing where two or more exchange events become possible.
As such, convergence of the simulation requires integration
grids that are finely spaced to prevent multiple exchange
events.

We may continue the derivation of higher-order chemical
exchange interactions by substituting Eq. (8) into the fourth-
order term of the Dyson series, noting that the stationary
assumption only permits even-order terms to be nonzero:

∂

∂t
ρ (4) = �T

∑
jklm

∫ ∫ ∫ t

0
dtn〈Fj (t )F †

k (t1)Fl (t2)F †
m (t3)ρB〉

× [Aj (t ), [A†
k (t1), [Al (t2), [A†

m(t3), ρ]]]]. (18)

The restriction that exchange processes are only self-
correlated processes permits arbitrary reindexing of the

operators, allowing the four-point correlator to be factored out
of the commutators and averaged. We have used

�T
∫ ∫ ∫ t

0
dtn · · · = �T

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 · · · (19)

to represent the time-ordered integral. Using Isserlis’ theorem,
we may also note that the only terms that will be nonzero will
be those where ρB is averaged separately from the stochastic
operators, similar to Eq. (12). This allows us to write the four-
point correlation function as

〈Fj (t )F †
k (t1)Fl (t2)F †

m (t3)ρB〉
= 〈Fj (t )F †

k (t1)〉〈Fl (t2)F †
m (t3)〉

+ 〈Fj (t )Fl (t2)〉〈F †
k (t1)F †

m (t3)〉
+ 〈Fj (t )F †

m (t3)〉〈F †
k (t1)Fl (t2)〉. (20)

Equation (13) allows us to define these quantities as

〈Fj (t )F †
k (t1)Fl (t2)F †

m (t3)ρB〉

= 1

τ 2
k

⎛⎜⎝δ(t − t1)δ(t2 − t3)+
δ(t − t2)δ(t1 − t3)+
δ(t − t3)δ(t1 − t2)+

⎞⎟⎠δ jklm

= 3

τ 2
k

δ(t − t1)δ(t2 − t3)δ jklm. (21)

The second equality is permitted as the only time at which
Eq. (21) is nonzero is when all time variables are identical,
allowing us to freely reindex the time variables. We have em-
ployed the self-correlated assumption (5) to introduce δ jklm.

The time-ordered integral will become cumbersome for
successively higher-order terms, but can be simplified by un-
coupling the integrals. This is accomplished by dividing the
resulting equation where the integrals are uncoupled by the
number of degenerate time orderings. Generally, for the nth-
order term of the Dyson series, the time-ordering degeneracy
will be (n−1)! upon integration. We will again use the station-
ary assumption to make the change of variables τ1 = t − t1
and τ2 = t2 − t3. This, along with Eq. (21), lets us rewrite
Eq. (18) as

∂

∂t
ρ (4) =

∑
k

1

τ 2
k

3

3!

(∫ 0

t
dτ1

[
Ak (τ1),

[
Â†

k,

∫ 0

t
dτ2[Ak (τ2), [Â†

k, ρ]]δ(τ2)

]]
δ(τ1)

)∫ t

0
dτ2. (22)

The limits of integration may be reversed for two of the
integrals within the parentheses without obtaining a sign
change, and we will choose to extend the limits of integration
for these two integrals to ±∞, each time acquiring a factor
of 1/2. The final integral arises from the dt2 integral after the

change of variables, and can be effectively factored out of the
commutators. For clarity, we will simply change the upper
limit of integration from t → T , as this limit effectively de-
notes the time over which the equation of motion is averaged.
This gives

∂

∂t
ρ (4) = 1

4

∑
k

1

τ 2
k

3

3!

(∫ ∞

−∞
dτ1

[
Ak (τ1),

[
Â†

k,

∫ ∞

−∞
dτ2[Ak (τ2), [Â†

k, ρ]]δ(τ2)

]]
δ(τ1)

)∫ T

0
dτ2. (23)

012806-4



IMPROVED MODELING OF DYNAMIC QUANTUM SYSTEMS … PHYSICAL REVIEW A 108, 012806 (2023)

FIG. 3. Distinguishable and indistinguishable exchange pro-
cesses on methylamine isotopologs. The ∗ indicates position of
exchanged atoms. (a) In CH2DNH2, exchange processes 1 and 2 are
distinguishable from process 3 as bottom position of methyl group is
distinct from upper positions, whereas upper positions are equivalent.
(b) In CH3NH2, all exchange processes result in same molecular
conformation and are indistinguishable.

Performing integration and simplifying yields

∂

∂t
ρ (4) =

∑
k

1

4
[Âk, [Â†

k, [Âk, [Â†
k, ρ]]]]

T

2τ 2
k

. (24)

We must now make a distinction of the type of system
being studied (Fig. 3), in particular to identify if the exchange
processes are distinguishable or indistinguishable. We will re-
strict ourselves to delineate these cases based on the timescale
over which the interaction is expected to be modeled. For
instance, it is routine to measure magnetic resonance signals
over several seconds, so only interactions that evolve over this
time period can lead to an inequivalence between sites and
be classified as a distinguishable process. For distinguishable
exchange processes where F̂j �= F̂k , the δ jklm function holds
and Eq. (24) may be written as

∂

∂t
ρ (4) =

∑
k

(
L̂k

τk

)2

ρ
T

2
. (25)

However, when the exchange processes are indistinguish-
able, such that F̂j = F̂k after reindexing, the δ jklm function
must be bifurcated into δ jkδlm, which permits different ex-
change processes Â j and Âk to be coupled. Additionally,
τ j = τk when F̂j = F̂k , which will simply be called τ for
simplicity. As such, the fourth-order term for the case of

indistinguishable molecular processes becomes

∂

∂t
ρ (4) =

∑
jk

1

4
[Â j, [Â†

j , [Âk, [Â†
k, ρ]]]]

T

2τ 2

∂

∂t
ρ (4) =

(∑
k

L̂k

τk

)2

ρ
T

2
. (26)

Note that the j index can be removed by raising the sum-
mation to a power.

Notice that in both Eqs. (25) and (26), the dissipator is
proportional to the square of the Lindbladian, indicating that
the fourth-order term encapsulates the probability of two ex-
change events. Furthermore, this term will naturally disappear
as the step size T → dt , because only one exchange event will
be probable in the differential limit.

Following the same procedure as in deriving the fourth-
order interactions, we may recast the entire Dyson expansion
in terms of the exchange Lindbladian, which in the case of
distinguishable exchange processes is

∂

∂t
ρ =

⎧⎨⎩
∞∑

n=0

∑
k

(
L̂k

τk

)n+1
1

n!

(
T

2

)n
⎫⎬⎭ρ, (27)

and similarly for the case of distinguishable ensembles:

∂

∂t
ρ =

⎧⎨⎩
∞∑

n=0

(∑
k

L̂k

τk

)n+1
1

n!

(
T

2

)n
⎫⎬⎭ρ. (28)

In either of these cases, the most challenging aspect of
evaluating these equations is calculating the infinite powers
of the Lindbladian, and is typically why perturbation theory
is only extended to the few lowest-order terms. However, we
previously noted when deriving the DMEx that these equa-
tions may be dramatically simplified if the dissipator, in this
case the Lindbladian, obeys the property

L̂n+1ρ = L̂nL̂ρ = γnL̂ρ, (29)

which states that L̂ρ is an eigenfunction of L̂n with an eigen-
value γn, which is a scalar quantity. For indistinguishable
exchange processes, L̂ is the k sum of individual Lindbladians
and for distinguishable exchange processes, L̂ = L̂k . In that
case, all higher-order Lindbladians may be written as being
proportional to the lowest-order term. If Eq. (29) is obeyed,
then the infinite Lindblad series for exchange is given by

∂

∂t
ρ =

{∑
k

L̂k

τk

∞∑
n=0

γn

n!

(
T

2τk

)n
}

ρ. (30)

This result is identical for both indistinguishable and dis-
tinguishable exchange processes. Now, the infinite sum is
proportional only to scalar quantities, and all higher-order
Lindbladian dissipators are simply proportional to L̂k . We
define the infinite sum as the exchange-generating function

∞∑
n=0

γn

n!

(
T

2τk

)n

= �

(
T

2τk

)
, (31)

which relates all higher-order chemical exchange interactions
to the lowest-order interaction. Using this definition, we may
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FIG. 4. Exchange-generating function accounts for higher mo-
ments of chemical exchange. Over period dt , a molecule only has
opportunity to undergo a single exchange event. However, multiple
exchange events are probable over a finite period of time T , which
are accounted for by exchange-generating function. As T increases,
probability of higher-order exchange terms appearing increases.
Hence, as T → ∞, probability of system appearing to undergo an
exchange event of the form L̂ρ, leading order term, asymptotically
approaches zero.

write the exact Lindblad master equation for chemical ex-
change as

∂

∂t
ρ =

∑
k

L̂kρ

τk
�

(
T

2τk

)
. (32)

The only difference between the LMEx and the LME2
[cf. Eq. (17)] is the exchange-generating function, which is
a scalar correction factor. In following, we will examine the
systems that satisfy Eq. (29).

III. GENERATING EXACT LINDBLADIANS

To construct an exact Lindblad master equation, one must
determine the form of the scalar exchange-generating function
�(T/2τk ). To do this, the condition set by Eq. (29) must
be met and the series of γn eigenvalues must be known. In
the case of exchange between distinguishable exchange pro-
cesses, one can evaluate Eq. (29) directly on an arbitrary Fock
space [cf. Eq. (37)] and find that the series γn takes the form

γn = (−2)n, (33)

which when used in Eq. (31) gives

�

(
T

2τk

)
=

∞∑
n=0

(−2)n

n!

(
T

2τk

)n

= exp

(−T

τk

)
. (34)

Using this result in Eq. (30) gives the LMEx for distin-
guishable exchange processes:

∂

∂t
ρ =

∑
k

L̂kρ

τk
exp

(−T

τk

)
. (35)

Note that the exchange-generating function is an ele-
mentary, scalar function that is included at no additional
computational cost. Casting the system in a basis where the
set of exchange processes are uncorrelated effectively casts
the entire system as a sum of two-site exchange processes
(Fig. 4). In this case, one could readily motivate the form
of the exchange-generating function by accounting for the
probability for any n-exchange event and using that to scale
the likelihood of the system appearing to evolve as L̂ρ.

The case of indistinguishable exchange processes is
slightly more complicated to derive the exchange-generating

function, as all transitions are coupled together. The different
molecular conformations of these systems are often permu-
tational isomers, and thus the operators defining transitions
between the conformations may be described by permutation
groups. The order of the group corresponds to the number of
configurations in the system. In this case, system geometries
that satisfy Eq. (29) for the combinations of transitions that
form different permutation groups of order f , which can be
done rapidly as it only requires the Fock space. To validate
Eq. (29), one need only check to see if L2ρ ∝ Lρ, which
immediately satisfies Eq. (29) for all powers of the Lind-
bladian. For example, the set of operators {Âk} that permit
exchange between three configurations are⎧⎨⎩

⎛⎝0 1 0
1 0 0
0 0 1

⎞⎠,

⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠,

⎛⎝0 0 1
0 1 0
1 0 0

⎞⎠⎫⎬⎭. (36)

These operators correspond to the Fock space, which is
only ever populated on the diagonal elements of the space.
Using an initial arbitrary Fock density matrix of

ρ̂ =
⎛⎝a 0 0

0 b 0
0 0 c

⎞⎠, (37)

one can evaluate the expression∑
i∈k

L̂i

⎛⎝∑
j∈k

L̂ j ρ̂

⎞⎠ = γ1

⎛⎝∑
j∈k

L̂ j ρ̂

⎞⎠ (38)

for when γ1 is a constant, which relates the linear (L̂) and
quadratic (L̂2) Lindbladians. The indices i ∈ k and j ∈ k span
permutations of the exchange operators that connect each
configuration and, importantly, i and j must span the same
permutational set of operators ({i} = { j}). The groups that
satisfy Eq. (29) are ones where every configuration has a tran-
sition to every other configuration. In general, these groups
can be recast into a pseudorotation group defined by a forward
(R̂) and backward (R̂−1) rotation of the Hilbert space, and are
Abelian groups. In this case, the series γn for a permutation
group of order h with N = (h2−h)/2 transitions is

γn =
(−h

N

)n

, (39)

which makes the LMEx for these groups

∂

∂t
ρ = 1

N

N∑
k

L̂kρ

τ
exp

(−hT

2Nτ

)
. (40)

As the rates for indistinguishable processes will be identi-
cal, we replace τk → τ . Each of the distinguishable pathways
of the previous case can simply be thought of a pseudorotation
group of order 2, for which Eq. (39) predicts Eq. (33).

Many systems cannot be represented by a pseudorotation
group. The simplest of these systems is a linear (acyclic)
three-state system, which can be thought of as a cyclic three-
state system that belongs to a permutation group of order 3
(G3), but missing two transitions, which belong to a permuta-
tion group of order 2 (G2). As such, this can be thought of as a
system belonging to a G3 − G2 permutation group, which are
strictly non-Abelian permutation groups and cannot be cast as
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a pseudorotation. In general, we can write equation of motion
for the case of a Gh − G f system, where h > f and there are
N and M transitions in Gh and G f , respectively:

∂

∂t
ρ = 1

N

N∑
k

L̂kρ

τ
exp

(−hT

2Nτ

)
− 1

N

M∑
j∈k

L̂ jρ

τ
�′

(
T

2τ

)
.

(41)

For the G3 − G2 example, h = 3, N = 3, f = 2, M = 1.
We will refer to the Gh as the head group, which provides
all potential transitions and determines the number of confor-
mations in the system, and G f as the non-Abelian forming
group, which removes the appropriate transitions to generate
the non-Abelian LMEx. Note that the terms corresponding
to G f in Eq. (41) are scaled to the number of transitions in
the head group, which takes advantage of the linearity of the
Lindblad equation. While G f must be a pseudorotation group
to satisfy Eq. (29), the form of the generating function for
G f , �′(T/2τ ), will not simply be given by Eq. (39) and must
satisfy a modified condition to generate an LMEx given by(∑

k

L̂kρ

)n

−
⎛⎝∑

j∈k

L̂ jρ

⎞⎠n

= γn

⎛⎝∑
k

L̂kρ −
∑
j∈k

L̂ jρ

⎞⎠.

(42)

We find that the set of { j ∈ k} transitions that satisfies
Eq. (42) forms another pseudorotation group. As such, this
formulation of non-Abelian permutation groups must always
be generated by the difference between two pseudorotation
groups. Solving Eq. (42) for the series γn for a generic
Gh − G f system gives

γn =
(−h

N

)n

− h − f

f

[(
−h − f

N

)n

−
(−h

N

)n]
, (43)

which leads to generating functions for the forming group G f ,
given by

�′
(

T

2τ

)
= exp

(−hT

2Nτ

)
− h − f

f

[
1 − exp

(− f T

2Nτ

)]
× exp

(−(h − f )T

2Nτ

)
. (44)

Even though this is more complicated than its counter-
part in Eq. (40), the generating function is still a relatively
simple, scalar equation. Importantly, there can be multiple
non-Abelian forming groups which each contribute a term
as in Eq. (41) with the only restriction that they must span
entirely separate transitions ([G f ,G f ′

] = 0). The behavior of
this generating function is also interesting, as it is bipolar
(Fig. 5). This indicates that the flow of polarization will ac-
tually reverse T/2τ to account for the number of exchange
events through the pathways that are in the head group but
should be absent. Furthermore, we generally find that this
generating function, along with the generating function for
pseudorotation groups [cf. Eq. (40)] decays more slowly as
the order of the head group increases. This can be interpreted
as the system requiring more transitions, and thus more time,
to reach the point where it cannot be described by the leading
term L̂ρ, and rather described by a system that is randomly

FIG. 5. Generating functions for permutation groups of order 4.
�′(T/2τ ) is shown for case of G4−2G2 (solid) compared to generat-
ing function of G4 head group (dashed). Bipolar nature of generating
function for non-Abelian forming group indicates that population
flux through omitted transitions must change directions.

configured with respect to where it started. Finally, it should
be mentioned that this example is not necessarily the only for-
mulation that would permit unique non-Abelian permutation
groups where the exchange processes are indistinguishable.
However, it is an example for how one can develop scalar
exchange-generating functions.

FIG. 6. Modeling distinguishable exchange processes within
LMEx formalism. (a) Signal amplification by reversible exchange
(SABRE) is a hyperpolarization technique at forefront of magnetic
resonance. Nuclear spin polarization is distilled from singlet order
of parahydrogen (p-H2) during reversible exchange interactions with
an organometallic catalyst (green). (b) Root-mean-squared deviation
(RMSD, σ) between traditional (blue) and LMEx (red) solutions. We
find superior convergence of solution at no additional computational
cost. σ = 1% line is demarcated to guide the eye, representing 99%
solution convergence.
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FIG. 7. Exploring performance of LMEx models for systems with indistinguishable exchange processes. Convergence of solutions (left)
was all calculated using same coherent interaction parameter set, for consistency. Furthermore, system parameters were iterated 3200 times
at T/τ = 20% to examine robustness of this performance. Histograms of ratio between LMEx and traditional errors are shown to the right.
(a) G3 system can be cast as a pseudorotation and has a relatively simple exchange-generating function, given by a single exponential factor
�(T/τ ) = exp(−T/τ ). For this case, we see that solution has a convergence radius that is approximately a factor of 10 larger than traditional
solution and is robust as system parameters are varied. However, (b) G3−G2 and (c) G4−G3 systems have more complicated generating
functions that have to be constructed according to Eqs. (41) and (44). Despite this, they exhibit solution convergences that are on order of or
even exceed the G3 system and have similar robustness to changes in coherent interactions.

IV. PERFORMANCE OF EXACT LINDBLAD
MASTER EQUATIONS

To highlight the importance of utilizing exact Lindblad
master equations for chemical exchange, we will explore
the convergence radius of the solution of the master equa-
tions presented here in comparison to the traditional master
equation for chemical exchange in Lindblad form, Eq. (17).
Importantly, we will use a first-order integration technique
to emphasize the improvement in the solution convergence
offered by the exchange-generating function. Specifically, we
will calculate the solution at a time t + T to be

ρ̂(t + T ) = Û ρ̂(t )Û † + T

τ
L̂ρ(t )�

(
T

2τ

)
. (45)

In this case, Û = exp(−iĤT ), where Ĥ is the system
Hamiltonian that is changed to test the robustness to changes
in the coherent system parameters. For all of the following
cases, we will compare the solutions to an LMEx simulation
calculated with T � τ , which we will denote as the ground-
truth simulation. Unless noted otherwise, T/τ = 1% for the
ground-truth simulation, which limits the probability of even

two exchange events (the fourth-order Dyson term) to be
0.01% during this period. For systems that multiple exchange
rates, this condition was set based on the fastest rate.

We will first examine the case of distinguishable molecu-
lar processes, for which we can use Eq. (35). To emphasize
the broad generality of this technique, we will simulate
a technique at the forefront of magnetic resonance, signal
amplification by reversible exchange [22–28], or SABRE
[Fig. 6(a)]. In this method, nuclear spin polarization is trans-
ferred from the singlet order of parahydrogen (p-H2) to
artificially induce large magnetic resonance signals that are
orders of magnitude larger than in conventional magnetic
resonance. This system exists in a regime where the dominant
couplings and resonance frequency differences are often on
the order of the exchange rates of the system. Furthermore,
nonlinear effects dominate this system and are dictated by the
chemical exchange, making this system a sensitive reporter of
the performance of the simulation. Full details of the physical
model for SABRE have been reported elsewhere.

For the case of distinguishable exchange processes, we
find the convergence radius of the LMEx equation can be up
to an order of magnitude larger than that of the traditional,
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second-order exchange term in Lindblad form [Fig. 6(b)].
While the traditional formulation exceeds a 1% error when
T/τ ≈ 2.5%, the LMEx formulation does not exceed this
error until T/τ ≈ 38.5%, which represents an approximately
15-fold increase in the convergence radius of this system for
no additional computational cost.

There are many coupled exchange mechanisms in the
SABRE system, namely the exchange of parahydrogen and
the target ligand with the catalyst. This would appear to
violate the restriction that was imposed that exchange pro-
cesses were only self-correlated. However, we circumvent this
by formulating the exchange pathways in a way where the
pathways are uncoupled. The parahydrogen exchange (F̂k)
and target ligand exchange (F̂j) pathways are transformed
to give the joint probability of either ligand exchange with
parahydrogen exchange (F̂j + F̂k) or ligand exchange without
parahydrogen exchange (F̂j − F̂k). Then, these two pathways
are effectively orthogonal and satisfy the self-correlation re-
quirement. In total, there are 13 different exchange processes
that are all accounted for within the scope of this LMEx
master equation, highlighting the flexibility of this framework
for improving the performance of chemical exchange simula-
tions.

In addition to the case of distinguishable exchange
processes, there is a vast scope of systems that have indis-
tinguishable exchange processes. Broadly, these are systems
with permutation symmetry, for which an extensive amount
of work has been devoted to calculating the dynamic NMR
spectra for such systems. Here, we examine the case of
a 4 spin-1/2 system that has permutation group symmetry
belonging to a G3 pseudorotation group, a G3 − G2 permu-
tation group, as well as a G4 − G3 permutation group, using
the notation that we described previously. While the first of
these may be cast as an Abelian pseudorotation group, the
latter two cases cannot and are incompatible with our previ-
ous superoperator-based methods for chemical exchange. In
addition to examining the convergence of the solutions for
these systems, we are able to iterate over the parameters that
define the coherent interactions (resonance frequencies and
couplings) to assess the robustness of the improvement that
the LMEx provides over the traditional implementation.

We find that an appropriately formulated exchange-
generating function can yield a vast improvement in the
convergence radius of the solution for no additional computa-
tional cost, even for the non-Abelian permutation groups that
were tested here (Fig. 7). In every case, the LMEx exhibits
a robust improvement in the solution convergence that is ap-
proximately an order of magnitude. Furthermore, we find that
the improvement that is obtained from the LMEx formulation
is robust to variations in the system parameters. Using the case
T/τ = 20%, we find that 〈σLMEx/σLindblad〉 = (21 ± 12)% for
the G3 system, at 〈σLMEx/σLindblad〉 = (22 ± 13)% for the
G3 − G2 system, and at 〈σLMEx/σLindblad〉 = (11.4 ± 5.3)%
for the G4 − G3 system. Out of the 9600 different system
parametrizations that were tested over these three cases, there
was only a single instance where the LMEx did not yield a
superior convergence over the traditional master equation for
chemical exchange.

Both the cases for distinguishable and indistinguishable
exchange processes show that accounting for all higher

FIG. 8. Improving performances of systems that do not yield
scalar generating functions. (a) Fivefold rotation of permethylfer-
rocene undergoes single-jump (k1) and double-jump (k2) rotations
about symmetry axis of this system. These pathways are distinguish-
able from one another, but each has five indistinguishable exchange
processes that form the group of exchange operators. (b) We find that
calculating first three nonzero terms of Dyson series (LME6) offers
a relatively inexpensive route to improving convergence radius of
solution. Here, we show a 5.4× improvement in convergence radius
at cost of an additional 60% computational time, on average.

moments of the chemical exchange interaction in the equation
of motion yields a vastly improved convergence radius of the
solution. We regularly found instances where the convergence
radius had increased by an order of magnitude and that this
was robust to changes in the system parameters. However,
there are limits to which systems will have scalar exchange-
generating functions. One such example is rotation of fivefold
symmetric systems as is observed in permethylferrocene [29]
(Fig. 8). This system has two distinguishable sets of processes
that comprise single-jump (2π/5) or double-jump (4π/5)
rotations about the C5 axis of this system. While these ex-
change processes are distinguishable from one another, there
are five individual indistinguishable processes that are re-
quired to fully describe this system. The particular fivefold
cyclic geometry that is discussed in this case yields no scalar
exchange-generating function, at least to the point that has
developed in this work. However, in rare cases such as this, the
Fock-space representation of this problem offers a convenient
solution to calculate the powers of the Lindbladian, and the
rest of the Dyson series is already summarized in its most
general form for chemical exchange in Eq. (28). This is most
efficient to compute symbolically, such that various symbolic
variables may be replaced with the appropriate density matrix
during the calculation. Thus, it is possible to simply calculate
the first few terms of the series as a last resort for special cases.

Here, we demonstrate the improved convergence radius
of an LME6 simulation, which utilizes the first three terms
of Eq. (28) (to sixth order in the Dyson series), yields an
approximately 5.4-fold improvement in the convergence ra-
dius compared to the traditional master equation and only
requires approximately 60% more computational time to
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TABLE I. Exact Lindblad equations derived in this work, where h corresponds to the number of sites and N = (h2−h)/2.

Process type Dissipator Eq.

Distinguishable(all types)
∑

k
L̂kρ

τk
exp

(
−T
τk

)
(35)

Indistinguishable pseudorotation 1
N

∑N
k

L̂kρ

τ
exp

(−hT
2Nτ

)
(40)

Indistinguishable non-Abelian permutation 1
N

∑N
k

L̂kρ

τ
exp

(−hT
2Nτ

)− 1
N

∑M
j∈k

L̂ jρ

τ
�′( T

2τ

)
(41),(44)

Other indistinguishable processes; order-K correction
∑K

n=0

(∑
k

L̂k
τk

)n+1
1
n!

(
T
2

)n
(28)

evaluate, which ultimately yields superior performance of the
solution. The mth-order Lindbladian for the single- (L̂(m)

1 ) and
double- (L̂(m)

2 ) jump exchange pathways applied to the site n
for this case are given by[

L̂(1)
1 ρ̂

]
n = 1

5 (ρ̂n−1 + ρ̂n+1 − 2ρ̂n)[
L̂(2)

1 ρ̂
]

n = 1
25 (6ρ̂n − 4(ρ̂n−1 + ρ̂n+1) + ρ̂n−2 + ρ̂n+2)[

L̂(3)
1 ρ̂

]
n = 1

25 (3(ρ̂n−1 + ρ̂n+1) − ρ̂n−2 − ρ̂n+2 − 4ρ̂n)[
L̂(1)

2 ρ̂
]

n = 1
5 (ρ̂n−2 + ρ̂n+2 − 2ρ̂n)[

L̂(2)
2 ρ̂

]
n

= 1
25 (6ρ̂n − 4(ρ̂n−2 + ρ̂n+2) + ρ̂n−1 + ρ̂n+1)[

L̂(3)
2 ρ̂

]
n

= 1
25 (3(ρ̂n−2 + ρ̂n+2) − ρ̂n−1 − ρ̂n+1 − 4ρ̂n).

Additionally, there is no significant difference in the perfor-
mance of the LME6 solution in comparison to a solution that
utilizes the first 40 terms of the Dyson expansion. While it is
not ideal to have to result to brute-force evaluation of Eq. (28),
here we demonstrate that in the rare cases that are not already
described here that the first few terms of the Dyson series can
significantly improve computational performance at modest
cost.

In this section, we have examined the performance of var-
ious exact Lindblad master equations for chemical exchange.
To summarize the various dissipators that should be used for
the type of exchange processes, the various cases are in Table I
below along with references to the equations in which they
were derived. All distinguishable exchange processes may be

treated within this formalism, and we have introduced various
methods to handle indistinguishable exchange processes in an
exact fashion. Finally, we have shown that the Dyson series
may be brute-force evaluated up to order K and can still
generate significant computational improvements.

V. CONCLUSIONS

Here, we have generalized and extended the exact master
equation treatment of chemical exchange phenomena within
the Lindblad formalism. We have developed methods for
identifying exact master equations for a variety of systems
and have presented solutions for any system with distinguish-
able exchange processes and a vast scope of systems with
indistinguishable exchange processes. We have found that
the exact Lindblad master equation approach generates an
approximately order of magnitude larger convergence radius
for the variety of systems that we studied at no additional
computational cost. Furthermore, this improvement is robust
to changes in the system-specific parameters. This result is
trivial to implement into any existing chemical exchange sim-
ulation and has shown to vastly improve the convergence of
the solution.
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