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Magic-zero and magic wavelengths of the Ca atom
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The relativistic configuration interaction plus many-body perturbation (RCI + MBPT) method is utilized to
calculate the wave functions, energy levels, and reduced E1 transition matrix elements of Ca atoms in detail.
The static and dynamic polarizabilities of the 4s2 1S0, 4s4p 1P1, and 4s4p 3P0,1,2 states are determined by the
sum-over-states method. A number of magic-zero wavelengths for the ground and 4s4p 3P0 states, as well as
magic wavelengths for the 4s2 1S0 → 4s4p 3P0 and 4s2 1S0 → 4s4p 3P1 transitions, are obtained. We suggest
that the measurements of the magic-zero wavelengths of the 4s4p 3P0 states can be used to determine oscillator
strengths with high precision. In addition, the angle-dependent magic wavelengths of each magnetic sublevel
transition of the 4s2 1S0 → 4s4p 3P1 transition are provided, which are of particular interest for optical frequency
measurements, Bose-Einstein condensate generation, and superradiant laser technology.
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I. INTRODUCTION

The technique of manipulating atoms with lasers is widely
used in high-precision measurements, including atomic clocks
[1–5], atomic magnetometers [6–8], and atomic interferom-
eters [9–12]. However, the accuracy of atomic parameter
measurements can be affected by ac Stark shifts resulting from
the interactions between laser fields and atoms. To address this
issue, magic trapping for a specific transition is utilized, where
the ac Stark shifts caused by the electric dipole interactions
cancel out for the states involved. The laser wavelength used
in this trapping is known as the magic wavelength [13,14].

In addition, the application of a trapping laser at a specific
frequency can result in a zero ac Stark shift of an atomic
state, which is referred to as the magic-zero (or tune-out)
wavelength. High-precision measurements of the magic-zero
wavelengths can be used to test the theory of atomic structure
and determine atomic parameters with high accuracy [15–25].
For example, the transition matrix elements of 5s-6p1/2,3/2

in Rb atoms are determined with an accuracy of 10−3 by
measuring the ac Stark shift around 421- and 423-nm magic-
zero wavelengths [15]. The longest magic-zero wavelength
of the ground state of the K atom is measured with an un-
certainty of 1.5 pm [18], and the ratio of the line strengths
S4s→4p3/2/S4s→4p1/2 is obtained with an accuracy of 0.05%. The
measurement of the 413-nm magic-zero wavelength of the
metastable 2 3S1 state of helium is used to test the quantum
electrodynamics effects [23,24]. The ratio of the 6s1/2 →
6p1/2,3/2 transition matrix elements in Cs atoms is determined
at the 10−4 level by measuring the magic-zero wavelength
near 880 nm [25].
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Ca is an important candidate in the field of precision mea-
surement physics. Numerous studies have been focused on the
ultracold Ca atoms [26–30], Bose-Einstein condensate (BEC)
[31–38], optical frequency standards [39–44], and superra-
diant emission of atoms trapped in an optical cavity [45].
To conduct these experiments, detailed information about
Ca atoms, including the static and dynamic polarizabilities,
magic-zero wavelengths, and magic wavelengths, is highly
required.

In theory, Zhou et al. [46] calculated some magic wave-
lengths for the transitions 4s4p 3P0 → 4s4p 3P1, mj = 0 and
4s4p 3P1, mj = 0 → 4s4p 3P2, mj = 0 using the sum-over-
states method. However, only 30 excited states were used
in their calculations, where the transitions rates are col-
lected from Ref. [42] and National Institute of Standards
and Technology (NIST) tabulations [47] that are derived
from spectrographic analysis of astrophysical data. Re-
cently, Gogyan et al. [48] presented the magic wavelengths
for the 4s2 1S0 → 4s4p 3P1 transition and the magic-zero
wavelengths for the 4s4p 3P1, mj = 0, state using Einstein
coefficients that are the same as Zhou et al. [46]. The
magic-zero wavelengths of the ground state of Ca were
calculated by Cheng et al. [49] using a semiempirical
method.

In this work, the wave functions, energy levels, reduced
E1 transition matrix elements, and static and dynamic dipole
polarizabilities for 4s2 1S0 and 4s4p 3PJ states of Ca atoms
are calculated using the relativistic configuration interaction
plus many-body perturbation method. The magic-zero wave-
lengths of 4s2 1S0 and 4s4p 3P0 states, as well as the magic
wavelengths for 4s2 1S0 → 4s4p 3P0,1 transitions, are deter-
mined. We also propose that measurements of these magic
or magic-zero wavelengths can be used to extract the related
reduced matrix elements. Atomic units are used throughout
this paper unless stated otherwise.
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II. THEORY

A. RCI + MBPT Method

In this work, we obtain the wave function and energies
of Ca atoms using the relativistic configuration interaction
plus second-order many-body perturbation (RCI + MBPT)
method that has been adopted widely into atomic struc-
ture property calculations [61–64]. The basic strategy of this
method is to simplify a many-electron atomic or ionic system
into a frozen core part and valence electron parts. The first step
is to perform the Dirac-Fock (DF) calculation of the frozen
core part to obtain all single-particle orbitals, which are then
used to construct the configuration space. The core-valence
and valence-valence correlations are considered by using a
correlation potential from the second-order many-body pertur-
bation calculation and the configuration interaction method,
respectively.

For a divalent system, the Dirac-Hamiltonian equation can
be expressed as⎛

⎝ 2∑
i

hi +
2∑

i< j

Vi j

⎞
⎠|�(πJM )〉 = E |�(πJM )〉, (1)

where hi represents the one-particle Hamiltonian and is writ-
ten as

hi = cαi · pi + (βi − 1)c2 + VN (ri ) + Vcore(ri). (2)

Here, α and β are the Dirac matrices, pi is the momentum
operator for the ith electron, and VN (ri) is the Coulomb poten-
tial between the ith electron and the nucleus. Vcore represents
the interaction potential between the core electrons and a
valence electron, which is approximated as a DF potential and
a one-body correlation potential:

Vcore = VDF + �1. (3)

The two-particle interaction Hamiltonian is given by

Vi j = 1

ri j
+ �2, (4)

where the first term represents the electron-electron Coulomb
interaction, and the second term represents the two-body cor-
relation potential.

The wave function |�(πJM )〉 of the system is described as
a linear combination of the configuration-state wave functions
with the same parity π , angular momentum J , and magnetic
quantum number M, namely,

|�(πJM )〉 =
∑
k�l

Ckl |�kl (πJM )〉, (5)

where Ckl are the expansion coefficients. The configuration
wave function is a single-determinant basis state constructed
from single-electron orbitals:

|�kl (πJM )〉 = ηkl

∑
mk ,ml

〈 jkmk, jl ml |JM〉a†
ka†

l |0〉. (6)

The symmetry factor ηkl is defined as

ηkl =
{√

2
2 , k = l,

1, k �= l.
(7)

TABLE I. Comparison of energy (in cm−1) for some low-lying
states of Ca atom.

State Present NIST [47] Diff.

4s2 1S0 −145169.1 −145057.8 0.08%
4s5s 1S0 −111930.5 −111740.5 0.17%
4p2 3P0 −106997.2 −106640.2 0.33%
4s6s 1S0 −104705.1 −104367.3 0.32%
4p2 1S0 −103648.1 −103271.5 0.36%
4s4p 3Po

0 −130024.9 −129899.9 0.10%
4s5p 3Po

0 −108771.9 −108510.1 0.24%
3d4p 3Po

0 −106426.3 −105724.4 0.66%
4s6p 3Po

0 −102778.8 −102542.9 0.23%
4s7p 3Po

0 −100330.4 −100102.1 0.23%

3d4s 3D1 −125322.2 −124722.4 0.48%
4s5s 3S1 −113718.2 −113518.3 0.18%
4s4d 3D1 −107553.2 −107309.6 0.23%
4p2 3P1 −106950.7 −106593.0 0.34%
4s6s 3S1 −104802.1 −104583.5 0.21%
4s5d 3D1 −102555.3 −102314.8 0.24%
4s7s 3S1 −101301.1 −101077.0 0.22%
4s6d 3D1 −100258.7 −100008.7 0.25%
4s8s 3S1 −99545.4 −99319.1 0.23%
4s7d 3D1 −99042.6 −98755.8 0.29%
4s4p 3Po

1 −129972.8 −129847.7 0.10%
4s4p 1Po

1 −121722.3 −121405.5 0.26%
4s5p 3Po

1 −108765.6 −108503.0 0.24%
4s5p 1Po

1 −108623.1 −108326.2 0.27%
3d4p 3Do

1 −107718.1 −106865.4 0.80%

3d4s 3D2 −125307.7 −124708.5 0.48%
3d4s 1D2 −123674.3 −123208.1 0.38%
4s4d 1D2 −108061.1 −107759.5 0.28%
4s4d 3D2 −107549.5 −107305.9 0.23%
4p2 3P2 −106865.4 −106506.2 0.34%
4p2 1D2 −104813.2 −104337.9 0.46%
4s5d 3D2 −102553.5 −102313.1 0.24%
4s5d 1D2 −102532.9 −102138.7 0.39%
3d2 3F2 −102454.0 −101582.9 0.86%
4s6d 1D2 −100365.1 −100067.9 0.30%
4s4p 3Po

2 −129868.1 −129741.8 0.10%
3d4p 3F o

2 −110053.4 −109327.3 0.66%
3d4p 1Do

2 −109952.7 −109222.4 0.67%
4s5p 3Po

2 −108745.0 −108482.7 0.24%

3d4s 3D3 −125285.1 −124686.8 0.48%
4s4d 3D3 −107543.8 −107300.3 0.23%
4s5d 3D3 −102550.6 −102310.4 0.23%
3d2 3F3 −102517.8 −101568.7 0.93%
4s6d 3D3 −100393.0 −100005.4 0.39%

Substituting Eq. (5) into Eq. (1) and applying the variational
principle, we can obtain a general eigenvalue equation. Solv-
ing this eigenvalue equation yields the energies and wave
functions of the system, which can be used to evaluate various
properties.

In the present work, we construct the one-body �1 and
two-body �2 correlation potentials using a second-order
many-body perturbation calculation in the Brillouin-Wigner
variant. The matrix elements of the one-body and two-
body correlation potentials have been given in Ref. [65].
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TABLE II. Comparison of some reduced E1 matrix elements (in a.u.) for principal transitions of Ca. Numbers in parentheses represent the
uncertainties in the last digits.

〈i‖D‖n〉
Transition Present CI + MBPT Others Expt.

4s2 1S0 → 4s4p 1P1 4.932(15) 4.91(7) [50] 4.951 [51] 4.967(9) [52]
4.892 [53] 4.94 [49] 4.99(4) [54]
4.930 [55] 4.93(11) [56]

4s2 1S0 → 4s4p 3P1 0.034(3) 0.034(4) [50] 0.0357(4) [57]
0.0323 [53] 0.0352(10) [58]

0.03571(16) [59]
4s2 1S0 → 4s5p 1P1 0.030(2) 0.089a [47]
4s2 1S0 → 4s5p 3P1 0.008(1)
4s4p 3P0 → 3d4s 3D1 2.196(5)
4s4p 3P0 → 4s4d 3D1 2.473(6) 2.529a [47]
4s4p 3P0 → 4p2 3P1 2.622(6) 2.658a [47]

2.642(66)a [60]
4s4p 3P0 → 4s5s 3S1 1.767(4) 1.793a [47]

1.766(53)a [60]
4s4p 3P0 → 4s6s 3S1 0.496(5) 0.552a [47]
4s4p 3P0 → 4s7s 3S1 0.275(23) 0.283a [47]
4s4p 3P0 → 4s5d 3D1 1.177(98) 1.221a [47]
4s4p 3P0 → 4s6d 3D1 0.743(97) 0.915a [47]
4s4p 3P1 → 3d4s 3D2 3.294(78)
4s4p 3P1 → 3d4s 3D1 1.904(59)
4s4p 3P1 → 4s4d 3D2 3.714(88) 3.802a [47]
4s4p 3P1 → 4s5s 3S1 3.066(72) 3.121a [47]

3.046(76)a [60]
4s4p 3P1 → 4p2 3P0 2.640(62) 2.806a [47]

2.609(65)a [60]
4s4p 3P2 → 3d4s 3D3 4.508(60)
4s4p 3P2 → 4s4d 3D3 5.507(72) 5.139a [47]
4s4p 1P1 → 3d4s 1D2 1.009(84) 1.2(3) [50]
4s4p 1P1 → 4s5s 3S1 0.041(3) 0.043(5) [50]
4s4p 1P1 → 4p2 1D2 5.843(63) 5.743a [47]

aThe experimental matrix element of Refs. [47,60] are derived from the absorbed oscillator strength using Eq. (12), in which the transition
energies are from NIST tabulations [47].

Additionally, to minimize the omitted higher-order MBPT ef-
fects, we introduce a rescaling parameter ρκ and the one-body
correlation potential �1 is replaced by ρκ�1. The rescaling
parameter ρκ is tuned to reproduce the experimental energy
of the lowest state for each angular quantum number κ of a
monovalent atomic system. It should be noted that the calcula-
tion of the transition matrix elements should take into account
the core polarization correction. Here, the core polarization
correction was considered using the random phase approxi-
mation [66,67].

Similar to Refs. [68–70], we use the no-pair Dirac Hamil-
tonian as the starting point and treat both the Coulomb and
the Breit interactions on an equal footing. The large and small
components of the Dirac wave functions are expanded using
the k-order B-spline basis. We use 50 B-spline bases of order
k = 13 and the box size Rmax = 240. The partial waves are
limited to �max = 5 and the lowest 39 orbitals sets of each par-
tial wave are used to construct the configuration space. In the
second-order many-body perturbation calculations, the sum-
mation is carried out over the entire basis set. The rescaling
parameters are ρ−1 = 0.913, ρ1 = 0.953, ρ−2 = 0.955, ρ2 =
0.950, ρ−3 = 0.951, and ρothers = 1.0, respectively.

B. Polarizabilities

The dynamic polarizability of an atomic state i can be
written as [87–90]

αi(ω) = αS
i (ω) + A cos θk

MJi

2Ji
αV

i (ω)

+3 cos2 θp − 1

2

3M2
Ji

− Ji(Ji + 1)

Ji(2Ji − 1)
αT

i (ω), (8)

where αS
i (ω), αV

i (ω), and αT
i (ω) are the scalar, vector, and

tensor polarizabilities, respectively. MJi is the component of
the total angular momentum Ji, and A represents the degree
of polarization (A = 0 is linearly polarized light, A = +1 and
−1 are the right-handed and left-handed circularly polarized
light, respectively). θk is the angle between the wave vector
k̂ and the direction of the magnetic field (quantization axis
êz), cos θk = k̂ · êz, and θp refers to the direction of laser
polarization (the polarization vector ε̂) with respect to the êz

axis. Geometrically, θk and θp satisfy the relation cos2 θk +
cos2 θp � 1. The more general geometric interpretation of θp
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and θk has been discussed in detail in Refs. [88,91]. The scalar,
vector, and tensor polarizabilities can be expressed as

αS
i (ω) =

∑
n

fin

ε2
in − ω2

, (9)

αV
i (ω) = −3

√
(6Ji )(2Ji + 1)

Ji + 1

∑
n

(−1)Ji+Jn

×
{

1 1 1
Ji Ji Jn

}
ω fin

εin

1

ε2
in − ω2

, (10)

and

αT
i (ω) = 6

(
5Ji(2Ji − 1)(2Ji + 1)

6(Ji + 1)(2Ji + 3)

)1/2

×
∑

n

(−1)Ji+Jn

{
1 1 2
Ji Ji Jn

}
fin

ε2
in − ω2

, (11)

where εin = En − Ei is excitation energy, The oscillator
strength is expressed as

fin = 2εni〈�n‖D‖�i〉2

3(2Ji + 1)
. (12)

〈�n‖D‖�i〉 is the reduced E1 transition matrix element.
When the magnetic field is parallel to the wave vector k̂,

i.e., cos θk = 1 and cos2 θp = 0, Eq. (8) is simplified as

αi(ω) = αS
i (ω) + AMJi

2Ji
αV

i (ω)

−3M2
Ji

− Ji(Ji + 1)

2Ji(2Ji − 1)
αT

i (ω), (13)

and when the magnetic field is perpendicular to the wave
vector k̂, i.e., cos θk = 0, Eq. (8) is

αi(ω) = αS
i (ω) + 3 cos2 θp − 1

2

3M2
Ji

− Ji(Ji + 1)

Ji(2Ji − 1)
αT

i (ω).

(14)

The static polarizabilities can be obtained from the above
equations by setting ω = 0. The experimental transition en-
ergies are used and all of the intermediate states are included
in our calculation of polarizabilities. For example, NJ−=1 =
16 499 states (− represents the odd parity) are used to evaluate
the polarizability of the 4s2 1S0 state, and NJ+=1 = 14 424
states (+ represents the even parity) are used to evaluate the
polarizability of the 4s4p 3P0 state.

III. RESULTS AND DISCUSSION

A. Energy levels and reduced E1 transition matrix elements

To test the correctness and reliability of our method, we
made detailed comparisons of the energies and reduced matrix
elements in Tables I and II with available experimental and
theoretical information. As shown in Table I, the present RCI
+ MBPT results show excellent agreement with the NIST en-
ergies [47], with the differences less than 0.5% for most of the
states. The only exception is for some 3d-related states, where
the difference is 0.5%–1%. From Table II, we find that, for the
resonant transition 4s2 1S0 → 4s4p 1P1, our result is in good
agreement with the experimental [56] and theoretical results

TABLE III. Comparison of the static scalar and tensor dipole
polarizabilities (a.u.) of the 4s2 1S0, 4s4p 1P1, and 4s4p 3P0,1,2 states
of the Ca atoms with available experimental and theoretical results.
The core polarizability of 3.26 a.u. [71] is adopted in the present
calculations.

Methods αS αT

4s2 1S0

Present 159.43(97)
Finite-field [72] 157
ab initio [73] 154.7
CPP [74] 156.0
Semiempirical [75] 159.4
RCCSD [76] 158.00
CI + MBPT [77] 159.0
CICP [49] 159.4
CI [78] 159.4
Expt. [79] 168.7(13.5)
Expt. [80] 169(17)

4s4p 3P0

Present 280.8(1.2)
RMBPT [81] 290.3(1.5)
TDGI [82] 276

4s4p 1P1

Present 244.6(1.5) −53.86(33)
CI [78] 242.4 −55.54
Expt. [83] −54.7(1.2)

4s4p 3P1

Present 282.4(1.7) 13.32(8)
CI [78] 14.2
Expt. [84] 12.9(3.2)
Expt. [85] 10.54(6)
Expt. [86] 12.1(8)

4s4p 3P2

Present 286.2(1.8) −27.26(16)

[49,50,55], with a difference of about 1%. For the transitions
4s4p 1P1 → 3d4s 1D2 and 4s4p 1P1 → 4s5s 3S1, which are
important for the calculations of the polarizabilities for the
4s4p 3P1 and 4s4p 1P1 states, the present results agree well
with the theoretical calculations of Ref. [50], with a difference
of about 15%. There are no experimental results available for
these transitions. For the transition of 4s4p 3P2 → 4s4d 3D3,
the present result agrees with the experimental result [47],
with a difference of about 10%. Particularly, for some transi-
tions, the present results are in better agreement with the latest
reported results [60]. The uncertainties of the present matrix
elements given in the Table II are estimated using the same
method as for Cs atoms in Ref. [92].

B. The static dipole polarizabilities of 4s2 1S0, 4s4p 1P1,
and 4s4p 3PJ states

Table III lists the static scalar and tensor dipole polariz-
abilities of the 4s2 1S0, 4s4p 1P1, and 4s4p 3P0,1,2 states of
Ca atoms. The present results are compared with available
theoretical results [49,72–78,82,93] and experimental values
[79,80,83–86,94]. For the ground state 4s2 1S0, our RCI +
MBPT result of 159.43(97) a.u. is in excellent agreement with
the semiempirical [75], configuration interaction plus core
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FIG. 1. The dynamical polarizabilities of 4s2 1S0 and 4s4p 3P0 states. The vertical dashed lines indicate the position of the resonant
transition. To facilitate the expression, only the upper states for resonances from the 4s4p 3P0 state are given on the top of the figures. The
magic-zero wavelength of a state is determined when the polarizability is zero, and the magic wavelength for a specific transition is located at
the crossing points of polarizabilities for the states involved. They are all identified by arrows in this figure.

polarization (CICP) [49], and configuration interaction (CI)
[78] calculations, with differences of no more than 0.05%,
while the differences with core polarization potential (CPP)
[74] calculations and the relativistic single coupled-cluster
approach with single-double excitations (RCCSD) [76] are
no more than 2%. Moreover, our result is also within the
experimental error bar [79,80,94]. For the 4s4p 3P0 state,
the present scalar polarizability of 280.8 a.u. lies between the
relativistic many-body perturbation theory (RMBPT) [81] and
the time-dependent gauge invariant (TDGI) results [82]. For
the 4s4p 1P1 state, our polarizability is in good agreement with
the experimental value [83] and the theoretical result [78],
with differences of no more than 3% for both the scalar and the
tensor polarizabilities. For the 4s4p 3P1 state, our tensor po-
larizability is within the uncertainty range of the experimental
result [84] and agrees well with the CI result [78]. There are
no experimental or theoretical results available for the scalar
polarizabilities of the 4s4p 3P1 and 4s4p 3P2 states.

C. The dynamic dipole polarizabilities of 4s2 1S0

and 4s4p 3P0 states

Figure 1 shows the dynamic polarizabilities of the 4s2 1S0

and 4s4p 3P0 states. For the ground state 4s2 1S0, three
magic-zero wavelengths are found at 272.255, 273.560,
and 657.446 nm [see the Figs. 1(a) and 1(e)], re-
spectively. Table IV lists the breakdown of the con-
tributions to the dynamic polarizabilities at these three
magic-zero wavelengths, as well as the magic-zero wave-
lengths calculated using a semiempirical method [49]. The
present results are in excellent agreement with the cal-
culations of the semiempirical method [49]. As noted in
Ref. [49], high-precision measurements of these three magic-
zero wavelengths can effectively determine the values of
f4s2 1S0→4s4p 1P1

/ f4s2 1S0→4s5p 1P1
, f4s2 1S0→4s4p 1P1

/ f4s2 1S0→4s5p 3P1
,

and f4s2 1S0→4s4p 1P1
/ f4s2 1S0→4s4p 3P1

.
There are ten magic-zero wavelengths in the range of

315 to 1500 nm for the 4s4p 3P0 state, as listed in Table V.
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TABLE IV. Magic-zero wavelengths (in nm) of the 4s2 1S0 state
and breakdowns of the contributions to the dynamic polarizabilities
(a.u.).

λzero (nm) 657.446 273.560 272.255
Ref. [49] 657.446 273.563 272.287

4s4p 1P1 256.557 −108.352 −106.591
4s4p 3P1 −269.936 −0.0023 −0.0023
4s6p 1P1 1.900 7.558 7.828
4s5p 1P1 0.042 0.367 86.206
4s5p 3P1 0.00031 88.069 −0.027
Remainder 4.919 8.813 9.388
αcore 3.166 3.197 3.198
Total 0 0 0

It can be seen that a finite number of lower-level transi-
tions dominate the contributions, as highlighted in bold in
Table V. High-precision measurements of these magic-zero
wavelengths are recommended to determine the correspond-
ing oscillator strengths.

First, we recommend that the measurement of the 436-
nm magic-zero wavelength can be used to determine the
ratio of f4s4p 3P0→4s4d 3D1

/ f4s4p 3P0→4p2 3P1
. As can be seen in

Table V, the dynamic polarizability is largely offset by these
two transitions at this magic-zero wavelength. Consequently,
the dynamic polarizability can be expressed as

0 = f4s4p 3P0→4s4d 3D1

ε2
4s4p 3P0→4s4d 3D1

− ω2
+ f4s4p 3P0→4p2 3P1

ε2
4s4p 3P0→4p2 3P1

− ω2

+αrem(ω), (15)

where αrem(ω) denotes the contribution from the remainder
transitions except the 4s4p 3P0 → 4s4d 3D1 and 4s4p 3P0 →
4p2 3P1 transitions. By combining with the recent experimen-
tal value of the oscillator strength f4s4p 3P0→4p2 3P1

[60] listed
in Table II, the ratio of f4s4p 3P0→4s4d 3D1

/ f4s4p 3P0→4p2 3P1
can

be determined using the measured magic-zero wavelength
near 436 nm. If the uncertainty of the measured magic-zero
wavelength is at a level of 0.001 nm, then the uncertainty

of this ratio determined by Eq. (15) is about 0.1%. The
porlarizabilities at the 576- and 436-nm magic-zero wave-
lengths are dominated by three transitions, i.e., 4s4p 3P0 →
4s5s 3S1, 4s4p 3P0 → 4s4d 3D1, and 4s4p 3P0 → 4p2 3P1. By
combining the experimental value of f4s4p 3P0→4s5s 3S1

[60] with
measurements of these two magic-zero wavelengths, the val-
ues of f4s4p 3P0→4s4d 3D1

and f4s4p 3P0→4p2 3P1
can be determined.

If the uncertainty of the measured magic-zero wavelength is at
a level of 0.001 nm, the final uncertainties of f4s4p 3P0→4s4d 3D1

and f4s4p 3P0→4p2 3P1
will not exceed 1%, which is mainly

caused by the uncertainties of αrem
575 (ω), αrem

436 (ω), and the os-
cillator strength f4s4p 3P0→4s5s 3S1

.
The dynamic polarizability at the 1414-nm magic-zero

wavelength is dominated by the first four transitions. Except
for the first transition 4s4p 3P0 → 3d4s 3D1, the matrix el-
ements for the other three transitions can be found in the
NIST tabulations, as shown in Table II. Therefore, by com-
bining these tabulations, the measurement of this magic-zero
wavelength can be used to determine the matrix element of
the 4s4p 3P0 → 3d4s 3D1 transition. The accuracy of the de-
termined matrix elements should be the same as that of the
NIST tabulations. However, to obtain more accurate results,
we recommend extracting these matrix elements by jointly
measuring the 1414, 576, and 436 nm magic-zero wave-
lengths. With this method, the matrix elements of 4s4p 3P0 →
3d4s 3D1, 4s4p 3P0 → 4s5s 3S1, 4s4p 3P0 → 4s4d 3D1, and
4s4p 3P0 → 4p2 3P1 can be determined at the same time, and
the accuracy could be significantly improved. Furthermore, if
the remaining seven magic-zero wavelengths can be measured
one by one, the remaining seven oscillator strengths can be
extracted successively.

Table VI lists ten magic wavelengths in the range of 315 to
1500 nm for the 4s2 1S0 → 4s4p 3P0 transition, as well as the
contributions to the dynamic polarizabilities. It is worth not-
ing that the present magic wavelength of 736(10) nm agrees
very well with the predicted value of 735.5(20) nm from
Ref. [42], where the polarizability was derived from experi-
mentally measured transition wavelengths and line strengths.
However, the results calculated by Santra et al. using the
one-particle model potential and finite-element basis method,

TABLE V. Magic-zero wavelengths (in nm) and the breakdowns of contributions (in a.u.) to the dynamic polarizabilities of the 4s4p 3P0

state of Ca atoms. The first 11 rows give the contributions from the transitions indicated. “Remainder” is the contributions from all other
transitions. The dominant contributions relevant to extracting the matrix elements are highlighted in bold.

λzero 1414(12) 576(1) 436.296(4) 395.824(32) 369.96(26) 347.38(4) 338.13(17) 327.24(5) 322.93(5) 316.73(3)

3d4s 3D1 −157.49 −13.28 −7.32 −5.97 −5.18 −4.55 −4.31 −4.02 −3.91 −3.76
4s5s 3S1 34.24 −225.06 −29.11 −20.22 −16.20 −13.35 −12.36 −11.24 −10.80 −10.26
4s4d 3D1 43.90 96.84 −1346.82 −158.02 −92.00 −63.52 −55.68 −47.71 −44.86 −41.52
4p2 3P1 47.51 97.00 1310.80 −246.63 −125.46 −82.13 −70.99 −60.04 −56.11 −51.63
4s6s 3S1 1.52 2.64 7.76 336.27 −9.83 −4.77 −3.86 −3.06 −2.80 −2.52
4s5d 3D1 7.86 12.17 23.73 45.57 184.32 −82.69 −49.75 −32.31 −27.96 −23.67
4s7s 3S1 0.41 0.60 1.04 1.65 3.16 152.34 −7.48 −3.08 −2.53 −1.91
4s6d 3D1 2.86 4.08 6.56 9.46 14.77 37.19 128.26 −60.24 −38.33 −20.60
4s8s 3S1 0.17 0.24 0.38 0.52 0.76 1.45 2.63 111.50 −7.24 −2.48
4s7d 3D1 1.21 1.66 2.50 3.35 4.67 7.88 11.66 30.93 100.67 −43.05
4s9s 3S1 0.09 0.13 0.19 0.25 0.33 0.53 0.71 1.38 2.14 78.71
Remainder 17.72 22.98 30.29 33.77 40.66 51.62 61.17 77.89 91.73 122.69
Total 0 0 0 0 0 0 0 0 0 0
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TABLE VI. Magic wavelengths (in nm) for the 4s2 1S0 → 4s4p 3P0 transition and the breakdown of contributions to the dynamic
polarizabilities (a.u.) of the 4s2 1S0 and 4s4p 3P0 states. The dominant contributions relevant to extracting the matrix elements are highlighted
in bold.

λmagic 736(10) 657.49(1) 456.10(2) 431.06(1) 394.60(1) 357.44(3) 346.52(2) 331.56(6) 326.76(1) 319.63(3)
Expt. 735.5(20) [42]

4s2 1S0

4s4p 1P1 224.20 256.49 1067.59 3956.11 −1016.60 −376.91 −307.97 −241.17 −223.26 −201.45
4s4p 3P1 0.05 108.99 −1.04 −8.45 −6.31 −4.71 −0.004 −0.003 −0.004 −0.003
3d4p 1P1 1.97 2.02 2.38 2.48 2.69 3.02 3.17 3.41 3.51 3.67
4s6p 1P1 1.73 1.79 2.14 2.24 2.46 2.82 2.97 3.25 3.36 3.54
Remainder 2.56 2.61 3.93 10.66 9.44 8.10 3.50 3.65 3.73 3.82
Total 230.51 371.90 1075.00 3963.81 −1008.32 −367.68 −298.33 −230.86 −212.66 −190.42

4s4p 3P0

3d4s 3D1 −23.17 −17.86 −8.05 −7.14 −5.94 −4.83 −4.53 −4.14 −4.01 −3.84
4s5s 3S1 89.42 201.95 −35.23 −27.72 −20.00 −14.54 −13.25 −11.69 −11.19 −10.55
4s4d 3D1 62.07 72.49 681.35 −725.81 −153.25 −74.22 −62.70 −50.78 −47.44 −43.29
4p2 3P1 65.27 75.15 374.41 4651.07 −236.71 −97.87 −80.96 −64.18 −59.61 −54.01
4s6s 3S1 2.00 2.23 5.69 8.72 −688.98 −6.32 −4.67 −3.35 −3.03 −2.67
4s5d 3D1 9.69 10.56 19.95 25.10 47.71 −250.94 −80.92 −37.93 −31.87 −25.86
4s7s 3S1 0.49 0.53 0.91 1.09 1.69 6.63 −156.46 −4.10 −3.02 −2.18
4s6d 3D1 3.41 3.66 5.85 6.75 9.61 21.90 39.72 −149.31 −56.27 −28.84
4s8s 3S1 0.21 0.22 0.34 0.39 0.53 1.01 1.50 5.74 −110.24 −3.66
4s7d 3D1 1.41 1.50 2.27 2.57 3.39 5.94 8.10 18.05 33.11 −125.15
Remainder 19.71 21.47 27.51 28.79 33.63 45.56 52.84 70.82 80.91 109.63
Total 230.51 371.90 1075.00 3963.81 −1008.32 −367.68 −298.33 −230.86 −212.66 −190.42

FIG. 2. The dynamical polarizabilities of 1S0 and 3P1 states. The vertical dashed lines indicate the position of the resonant transition. The
upper states for resonances from the 4s4p 3P1 state are given on the top of the figures, and the magic wavelengths are determined by locating
points where the 4s4p 3P1 and 4s2 1S0 polarizabilities are equal to each other. They are all identified by arrows in this figure.
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TABLE VII. Magic wavelengths (in nm) for the 4s2 1S0 → 4s4p 3P1 transition of Ca atoms in the case of the magnetic field being parallel
to the wave vector k̂, that is cos θk = 1.

A = 0 A = −1

MJ = 0 MJ = 1 MJ = 1 MJ = −1

Resonances λres (nm) Present Refs. Present Present Refs. Present

4s4p 3P1 → 3d4s 1D2 1506.12
799.2a [46] 710.0(8.7) 955(24) 983(12)a [42]

802(11) 800.8(22)b [42]
799.17a [48]

4s4p 3P1 → 4s2 1S0 657.46
4s4p 3P1 → 4s5s 1S0 552.27

455.71(2) 456.20a [48] 459.39(67) 454.91(44) 464.0(2.2)
4s4p 3P1 → 4s4d 1D2 452.73
4s4p 3P1 → 4s4d 3D2 443.62

431.10(1) 431.10a [48] 432.85(7) 434.94(2)
4s4p 3P1 → 4p2 3P0 430.90

430.21(2) 430.22(2)
4s4p 3P1 → 4p2 3P1 430.02

428.80(1) 428.82a [48] 428.83(2) 428.51(1) 429.67(5)
4s4p 3P1 → 4p2 3P1 428.42
4s4p 3P1 → 4s6s 3S1 395.82

395.26(1) 395.52(1) 395.14(2)
4s4p 3P1 → 4s6s 1S0 392.46
4s4p 3P1 → 4s5d 3D2 363.18

358.11(15) 358.12(2) 359.70(9) 356.85(26)
4s4p 3P1 → 3d2 3F2 353.80

aTheoretical value.
bExperimental value.

700 nm [95], are quite different from our results and the
predictions of Degenhardt et al. [42]. It can be seen from
this table that the breakdowns are similar to those at the
magic-zero wavelengths; i.e., a finite number of lower-level
transitions dominate the contributions. Measuring these magic
wavelengths can further enable the extraction of oscillator
strengths. For example, the values of f4s4p 3P0→4s4d 3D1

and
f4s4p 3P0→4p2 3P1

can be determined by measuring the 456- and
431-nm magic wavelengths, respectively.

D. The magic wavelengths for the 4s2 1S0 → 4s4p 3P1 transition

The ultranarrow-bandwidth 4s2 1S0 → 4s4p 3P1 intercom-
bination transition is of great interest in the technologies of
optical frequency metrology, the generation of a BEC, and the
superradiant lasers [38,40,45]. For the 4s4p 3P1 state, the dy-
namic polarizability is associated with the magnetic quantum
number mji , the degree of polarization A, and the angles θk

and θp, as illustrated in Eq. (8).
When the magnetic field is parallel to the wave vector

k̂, that is, cos θk = 1 and cos2 θp = 0. Figure 2 shows the
dynamic polarizabilities of the ground state and each of the
magnetic sublevels of the 4s4p 3P1 states with A = 0 and
−1. The magic wavelengths are identified with arrows. Ta-
ble VII lists these magic wavelengths and compares with other
available results. For linearly polarized light (i.e., A = 0), the
longest magic wavelength of MJ = 0 magnetic sublevel tran-
sitions, 802(11) nm, agrees well with the experimental result
of 800.8(22) nm [42] and the calculations of Refs. [46,48].

Our magic wavelengths of 455.71, 431.10, and 428.80 nm
are in good agreement with the results of Ref. [48], with
differences of no more than 0.2%. Seven magic wavelengths
are found for the MJ = 1 transition, and there are no other
results available for this transition. For the left-handed cir-
cularly polarized light (i.e., A = −1), the polarizabilities of
the MJ = 0 magnetic sublevel are the same as those for the
A = 0 case. Therefore, in Table VI, we only list the magic
wavelengths for the MJ = 1 and −1 transitions for the case of
A = −1. The presently calculated longest magic wavelength
for the MJ = 1 magnetic sublevel transition, 955 nm, is in
good agreement with the predicted result of 983(12) nm [42],
with the difference being less than 3%. Three magic wave-
lengths are found for the MJ = −1 sublevel transition.

When the magnetic field is perpendicular to the wave
vector k̂, i.e., cos θk = 0, the dynamic polarizability and the
determination of magic wavelengths only depend on cos2 θp,
as given in Eq. (14). Note that for linearly polarized light,
θp is the angle between the direction of polarization and the
magnetic field (quantization axis êz). For a given A, cos2 θp

satisfies

1

2
−

√
1 − A2

2
� cos2 θp � 1

2
+

√
1 − A2

2
. (16)

Figure 3 shows the dependence of the magic wavelengths
upon cos θp. Based on the sensitivity of the magic wave-
lengths to cos θp, they can be separated into three groups.
The first group includes the magic wavelengths near 800 nm,
which lie between the transition wavelengths of 4s4p 3P1 →
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FIG. 3. The dependence of magic wavelengths of each of the magnetic sublevel transitions on cos θp in the case of the magnetic field being
perpendicular to the wave vector k̂, i.e., cos θk = 0.

3d4s 1D2 and 4s4p 3P1 → 4s2 1S0. These magic wavelengths
are very sensitive to cos θp, varying significantly with changes
in cos θp. The second group includes the magic wavelengths
near 455 and 431 nm, which are less sensitive than the first
group. For example, the difference in the magic wavelengths
near 459 nm of the 1S0 → 3P1, MJ = 1, transition is only
about 4 nm for cos2 θp = 0 and cos2 θp = 1. The third group
includes those near 428, 395, and 358 nm, which are insensi-
tive to the cos θp. As cos θp varies, the change in these magic
wavelengths is within the range of 0.5 nm. It can also be found
in this figure that when cos2 θp = 1/3, which is related to the
magic angle [96], the magic wavelengths become independent
of the magnetic sublevels.

IV. CONCLUSIONS

Using the RCI + MBPT method, we have calculated the
energy levels, the reduced E1 transition matrix elements, and
the polarizabilities of the 4s2 1S0, 4s4p 1P1, and 4s4p 3P1,2

states of Ca atoms. Our results show good agreement with
experimental and other theoretical results.

Ten magic-zero wavelengths of the 4s4p 3P0 state and
ten magic wavelengths of the 4s2 1S0 → 4s4p 3P0 transition
ranging from 315 to 1500 nm are identified. Since a finite
number of lower-level transitions dominate the contributions
of the polarizabilities at magic-zero wavelengths, we propose

a method for extracting the oscillator strengths using precise
measurements of the magic-zero wavelengths of the 4s4p 3P0

state. The ratio of f4s4p 3P0→4s4d 3D1
/ f4s4p 3P0→4p2 3P1

can be de-
termined by measuring the 436-nm magic-zero wavelength.
By combining the measurements of the 576- and 436-nm
magic-zero wavelengths with the recent experimental value
of the oscillator strength of f4s4p 3P0→4s5s 3S1

[60], the values
of f4s4p 3P0→4s4d 3D1

and f4s4p 3P0→4p2 3P1
can be determined. If

the magic-zero wavelengths can be measured one by one,
the transition oscillator strengths from the 4s4p 3P0 state to
higher excited states can be extracted successively. Similarly,
the oscillator strength can also be extracted by measuring the
magic wavelength of the 4s2 1S0 → 4s4p 3P0 transition. For
example, f4s4p 3P0→4s4d 3D1

and f4s4p 3P0→4p2 3P1
can be deter-

mined by measuring the 456- and 431-nm magic wavelengths.
In addition, the magic wavelengths of the 4s2 1S0 →

4s4p 3P1 transition are identified. These magic wavelengths
depend on the degree of polarization A and the angles of θk

and θp. When the magnetic field is parallel to the wave vector
k̂, our results agree well with some available experimental
results [42] and predictions [46,48]. When the magnetic field
is perpendicular to the wave vector k̂, the magic wavelength
is related to the polarization angle θp. The dependence of the
magic wavelengths on cos2 θp is analyzed. We found that the
magic wavelengths near 802, 455, and 431 nm are sensitive
to cos2 θp. However, the magic wavelengths near 428, 395,
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and 358 nm are insensitive to cos2 θp, and the variation of the
magic wavelengths is in the range of 0.5 nm.
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