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Distortion dipole effect in symmetric molecules
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The theory of frame distortion in polyatomic molecules is reconsidered with the aid of a diagonal
Herman-Wallis-type concept applied to nominally forbidden pure rotational transitions. Watson’s formula for
electric dipole forbidden transition moments is obtained using the formalism of extraneous quantum numbers
[K. V. Kazakov, Quantum Theory of Anharmonic Effects in Molecules (Elsevier, Amsterdam, 2012)]. A similar
consideration is permitted to derive the transition moments for magnetic dipole absorption in account of
rovibrational interaction. The modified rotational selection rules and some numerical estimates are obtained
by taking trial examples of highly symmetric molecules. The distortion electric dipole spectra of methane
simulated for various temperatures are compared with the pertinent experimental data. Particular attention is
given to trihydrium, for which rovibrational effects in both electric and magnetic dipole spectra are examined.
It is shown that, first, the distortion magnetic moment of H3

+ is generated solely by electronic motion if the g
factor is diagonal, while the nuclear motion manifests itself through the off-diagonal inclusion of g, and, second,
the smallness of this magnetic contribution to the line strength is quenched by the strong dependence on the
rotational quantum number.
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I. INTRODUCTION

According to conventional theory for a symmetric top
molecule, the electric dipole rovibrational transitions are pos-
sible obeying the selection rules �J = 0,±1 and �K = 0,
with no change in a nuclear spin and with the wave-function
parity changing [1]. These selection rules have to be subject
to modification, provided nonrigidity of a molecule is taken
into consideration through an accompanying rovibrational in-
teraction. Namely, the so-called distortion dipole effect has
been described theoretically [2,3] and then observed in nu-
merous experiments. Due to the effect of frame distortion,
the nominally forbidden electric dipole transitions become
weakly allowed. Fox [3] showed that the interaction of the
methane infrared-active degenerate vibrations ν3 and ν4 with
molecular rotation yields pure rotational spectra in the ground
vibrational and electronic state. Watson [2] generalized sub-
stantially the relevant theory by use of the technique of
effective operators and predicted the structure of pure rota-
tional spectra for different classes of molecules.

A frame-distortion effect has direct astrophysical applica-
tions. It is known that one of the most abundant molecules
in the universe, H3

+, does not possess a permanent dipole
[4]. Due to rovibrational interaction the D3h symmetry of this
molecule is lifted, which makes possible the formation of a
small dipole moment giving rise to pure rotational transitions,
which would otherwise be forbidden. In laboratory-controlled
conditions a spontaneous emission is negligible, whereas in
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the interstellar environment the role of H3
+ is important.

Laboratory study of the dipole-permitted ν2 fundamental band
[5] stimulated the search for rovibrational transitions of this
band in dense interstellar clouds. Eventually, trihydrium was
discovered in molecular clouds GL2136 and W33A [6]. Spon-
taneous emission of H3

+, which was detected in the Jupiter
ionosphere [7], allowed to identify, in particular, the magnetic
equator of Jupiter [8]. The study of H3

+ is important for
extrasolar atmospheres [9], because this molecule might serve
as an effective cooler.

Much less attention is paid to magnetic dipole transitions
in comparison to electric dipole transitions. The cooperative
motion of electrons and nuclei in a molecule gives birth to
slight magnetic moment, which manifests itself in the line
shift caused by the Zeeman effect [10–15].

Considering a rotational magnetic moment in the body-
fixed frame of reference, we have [13,16]

mrot = mn

h̄
(gxxJx, gyyJy, gzzJz ), (1)

in which mn = eh̄/2mpc denotes the nuclear magneton with
mp being the proton mass; the total angular momentum vector
J has Cartesian projections Jx, Jy, and Jz. A nuclear frame is
constructed on the principal axes of inertia that are fixed with
a molecule. For nonzero components of the rotational tensor
gαα = g(n)

αα + g(e)
αα, in which α = x, y, or z, it was shown in

[12,13,15] that the nuclear contribution is defined as

g(n)
αα = mp

Iαα
∑

k

Zk
(
r2

k − r2
αk

)
(2)
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and the electronic contribution is

g(e)
αα = − 2mp

meIαα
∑
A�=0

|〈χA|Lα|χ0〉|2
EA − E0

. (3)

Here, me is the mass of an electron, Iαα is the molecular
tensor of inertia, and the vector rk = (rxk, ryk, rzk ) is the radius
vector for nucleus k; EA and χA represent, respectively, the
energy and wave function of unperturbed electronic state A
with A equaling zero for the ground state [16]. The nuclear
contribution to the gyromagnetic ratio g(n)

αα is determined by
the number of protons, Zk , in nuclei and their masses Mk .
Typically, g(n)

αα ≈ Zkmp/Mk has an order of magnitude of ∼0.5.
The electronic part is caused by the interaction of total an-
gular momentum J with electronic angular momentum L =
(Lx,Ly,Lz ) [12,16].

Vibrational magnetism arises when excited degenerate vi-
brations give rise to additional magnetic moment. In contrast
to pure rotational magnetism, vibrational magnetism has met
relatively small attention in the literature [14,16–19]. For H3

+,
for instance, both rotational and vibrational contributions to
the electronic g factor are small irrespective of possible iso-
meric structure, D3h or C2υ . Provided the nuclear spins are
laboratory quantized, rotational magnetism is largely defined
by the nuclear g factor (2), which equals +1 in this case.
The electron and nuclear spins of trihydrium should all be
omitted. The former is omitted through the fact that we treat a
closed-shell system. The latter is dropped due to the smallness
of the interaction between the nuclear spin of the molecule and
its orbital motion compared to the differences of rotational
energies.

An interesting phenomenon was reported recently [20]
while interpreting the spectra taken in the Martian atmo-
sphere on board the ExoMars space vehicle. The series of
CO2 rovibrational transitions obeying �J = 0,±1 selection
rules was assigned to magnetic dipole transitions in the region
of the ν2 + ν3 combination band. This preliminary assignment
was confirmed then by observations in laboratory-controlled
conditions [21,22]. In contrast to analysis of the g factor
appropriate to a pure rotational spectrum, the theory of the
rovibrational g factor has to accurately use nonadiabatic ef-
fects [16] while calculating the electronic contribution to
the magnetic transition moment. Moreover, vibrational mag-
netism, being a function of nuclei velocities, is obviously
determined by joint contributions from the angular momen-
tum of a nonvibrating molecule as well as from the momenta
arising in the course of molecular vibrations [23]. A vibra-
tional contribution to the overall magnetic moment in the
body-fixed system can be thus represented as

mvib = (mx,my,mz ) (4)

with

mγ =
∑

s

∂mγ

∂ ps
ps +

∑
rs

∂2mγ

∂qr∂ ps
qr ps + · · · , (5)

in which the derivatives of mγ with respect to normal vi-
brational coordinate q j and momentum ps of mode s are
obtainable from the concept of atomic tensors [24–27],

according to which

mγ =
∑
βks

∂mγ

∂Pβk

∂Pβk

∂ ps
ps, (6)

where Pβk is the momentum of nucleus k in the Cartesian β
direction. The concept of atomic tensors turned out fruitful
while interpreting the phenomenon of a circular dichroism in
chiral molecules [24–26,28]. Interestingly, generating effects
that relate to the body-fixed frame of reference, the pure
vibrational magnetic transitions manifest themselves even in
harmonic approximation [23,27].

In what follows, we concentrate first on showing how the
frame-distortion effect in electric dipole spectra of polyatomic
molecules can be considered in the framework of a diagonal
Herman-Wallis-type concept. The utility of using the theorem
of extraneous quantum numbers [29–32] is demonstrated to
calculate, particularly, the distortion electric dipole moment
and reproduce the relevant spectra for methane. We focus
further on how the rovibrational coupling affects the mag-
netic dipole moment. The alteration in intensities of magnetic
dipole transitions is theoretically described using the theorem
[29]. We show that the deformation of the skeleton and distor-
tion of the electronic cloud in trihydrium induce the currents
producing the distortion magnetic dipole.

II. BRIEF OUTLOOK OF THE THEORY

To demonstrate the use of our approach in solution of
some quantum-mechanical problems relevant to the cou-
pling among vibrational and rotational degrees of freedom in
molecules, we assume that the eigenenergies EnJ and eigen-
states |nJ ) can be found as a solution of the Schrödinger
equation,

(Hvib + Hrot + ρu)|nJ ) = EnJ |nJ ). (7)

The theorem of extraneous quantum numbers derived in
[29,31,32] can be applied to obtain the vibration-rotational
matrix elements of a pertinent transition function f , which is
independent of u, through a shift operation:

(nJ| f |n′J ′) = exp

(
u
∂

∂u

)
(nJ| f |n′J ′)|u=0 (8)

with

∂

∂u
|nJ ) =

∑
m �=n

(nJ|ρ|mJ )

EnJ − EmJ
|mJ ). (9)

Provided an operator is meant under u and an extraneous
quantum number is J , the shift operation with respect to u
has to be understood as follows:

exp

(
u
∂

∂u

)
(nJ| f |n′J ′)|u=0

=
[

exp

(
u
∂

∂u

)
(nJ|

]
u=0

f

[
exp

(
u
∂

∂u

)
|n′J ′)

]
u=0

,

in which

exp

(
u
∂

∂u

)
|nJ )|u=0= |nJ )|u=0 + u

∂

∂u
|nJ )|u=0 + · · · . (10)
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Here, a pure vibrational Hamiltonian Hvib gives rise to a
pure vibrational energy spectrum En and accompanying set
of vibrational quantum numbers n, and ρ is some function
of normal dimensionless coordinates qs, which are associated
with harmonic vibrational frequencies ωs. The function ρ is
assumed to describe the interaction between vibrational and
rotational motions. The rotational impact is described by a
function u of an extraneous parameter, which can be thought
of to be either rotational quantum number J or even body-
fixed component Jα of the total angular momentum; α = x, y,
or z. For both rovibrational state

�(nJ ) = |nJ )

and pure vibrational state

�vib(n) = |n),

an exact perturbed vector is designated with a parenthesis,
whereas traditional Dirac notation is applicable for an unper-
turbed vector. For instance, the harmonic state vector reads
as |n1, n2, . . . , ns, . . .〉. All matrix elements and other vectors
we also supply with angular brackets. For a pure rotational
problem with Hamiltonian Hrot, as wave vector |J,K,M〉, in
which K and M represent quantum numbers specifying the
projections of the angular momentum vector along the body-
fixed and laboratory-fixed frames of reference, we employ a
complex conjugate Wigner function [33]

�rot (J,K,M ) =
√

2J + 1

8π2
D(J )∗

M,K (φ, θ, χ ) (11)

with Euler angles φ, θ , and χ .
The most popular algorithm to consider vibrational and

rotational motion conjointly was suggested by Herman and
Wallis [34]. Considering a line strength of a diatomic
molecule, they have introduced a vibration-rotational factor
into an expansion of the matrix element of a dipole μ in
powers of

�u = u′ − u = 1
2 (J ′(J ′ + 1) − J (J + 1)).

Theoretically, this factor can be found from (8):

(nJ|μ|n′J ′) = (nJ|μexp

(
�u

∂

∂u

)
|n′J )

= (n|μ|n′)
(

1 + cnn′�u + dnn′
�u2

2
+ · · ·

)
,

in which the factor coefficients [29–32]

cnn′ = 1

(n|μ|n′)

∑
m �=n′

(n|μ|m)
(m|ρ|n′)
En′ − Em

, (12)

dnn′ , . . . are expressible according to (9), where ρ = h̄2I−1

and I is the inertia moment. In a number of papers [35–41],
the theory of the Herman-Wallis factor was extended to poly-
atomic molecules. In [40], theorem (8) was used to obtain
the contribution to the Herman-Wallis factor from Coriolis
coupling that required consideration of an angular momentum
as an extraneous parameter. It is important to note that using
theorem (8) allows one to apply in (9) simultaneously either
ab initio data, or their equilibrium and harmonic analogs, or
even experimental values [31].

III. FRAME-DISTORTION EFFECT ACCORDING TO
CONCEPT OF EXTRANEOUS PARAMETERS

Let us consider how theorem (8) can be used to charac-
terize the effect of frame distortion on the line intensities. In
this case, the role of the extraneous parameter u is performed
formally by an operator. According to [2,3], the Schrödinger
equation accounting for the frame-distortion effect can be
represented in the form(

H + 1

2

∑
αβ

ραβJαJβ

)
�fd(nJ ) = EnJ�fd(nJ ), (13)

in which H = Hvib + Hrot,

ραβ = −
∑

s

√
h̄

ωs
qsρ

e
ααaαβs ρ

e
ββ

= −
∑

s

4BαBβaαβs qs

h̄4

√
h̄

ωs
(14)

is the second term of an expansion of the reciprocal tensor of
inertia tensor Iαβ with respect to the normal coordinates [42]

(I−1)αβ = (Ie
−1)αβ + ραβ + · · · , (15)

Ie is the equilibrium moment of inertia, aαβs are the derivatives
of inertia moment (see Appendix A),�fd and EnJ are the wave
function and eigenenergy, respectively, and

Bα = h̄2

2Iααe

. (16)

The Hamiltonian in (13) is parametrized with the angular
momentum components. Formula (10) enables to express the
wave function in this case as

�fd(nJ ) = |nJ〉 +
∑
αβ

JαJβ |nJ, 1〉 + · · · .

The theorem is focused here on the product of operators but
not on the quantum numbers. Applying formula (9) to the
product of operators JαJβ , one must substitute u by JαJβ and
ρ by 1

2ραβ. As a result,

|nJ, 1〉 = ∂�fd(nJ )

∂ (JαJβ )

∣∣∣∣
JαJβ=0

= 1

2

∑
m �=n

〈m|ραβ |n〉
En − Em

|mJ〉

= �rot (J,K,M )|n, 1〉, (17)

in which �rot is the wave function of a rigid rotor (11) and

|n, 1〉

=
∑

s

Bαβs

h̄ωs
(
√

ns + 1|n1, . . . , ns + 1, ns+1, . . .〉

− √
ns|n1, . . . , ns − 1, ns+1, . . .〉) (18)

with

Bαβs = 2BαBβaαβs

h̄4

√
h̄

2ωs
. (19)

Function (18) can be derived, for instance, in terms of the
polynomials of quantum numbers [31,32,43]. In the first order,
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we hence have

�fd(nJ ) = |nJ〉 +
∑
αβ

JαJβ |nJ, 1〉. (20)

The line intensity of an electric dipole rovibrational transition
is defined by the square of the matrix element of a laboratory-
fixed component of the dipole moment, for instance, the Z
component μLF,

μLF = �xμx +�yμy +�zμz, (21)

in which �γ is the direction cosine between the laboratory-
fixed Z axis and body-fixed γ axis;

μγ = μe
γ +

∑
s

∂μγ

∂qs
qs + · · · (22)

is the body-fixed γ component of the actual dipole moment
with permanent dipole moment μe

γ and γ = x, y, or z. The
sought matrix element is

〈�fd(nJ )|μLF|�fd(n′J ′)〉 = 〈nJ|μLF|n′J ′〉
+ 〈
�rot

i

∣∣wel

∣∣�rot
f

〉 + · · · , (23)

in which the matrix element

〈nJ|μLF|n′J ′〉 = 〈
�rot

i

∣∣〈n|μLF|n′〉∣∣�rot
f

〉
(24)

describes the transition in assumption of the zero rovibrational
interaction,

wel =
∑
αβγ

JαJβ�γ 〈n, 1|μγ |n′〉

+
∑
αβγ

�γ JαJβ〈n|μγ |n′, 1〉, (25)

�rot
i = �rot (J,K,M ) and �rot

f = �rot (J ′,K ′,M ′).

Assuming all the vibrational quantum numbers ns do not
change in the course of a transition, with the aid of (18), we
find

〈n, 1|μγ |n〉 = 〈n|μγ |n, 1〉 =
∑

s

∂μγ

∂Qs

BαBβ
h̄2(h̄ωs)2

aαβs , (26)

hence [2]

〈n|μLF|n〉 =
∑
γ

μe
γ�γ

and

wel = 1

2

∑
γ

(Mγ�γ +�γMγ ), (27)

in which, restricting to the first order in vibration-rotational
coupling,

Mγ = 1

h̄2

∑
αβ

�αβγ JαJβ (28)

and

�αβγ = 2
∑

s

∂μγ

∂Qs

BαBβ
(h̄ωs)2

aαβs (29)

with

∂μγ

∂Qs
=

√
ωs

h̄

∂μγ

∂qs
.

Under a frame distortion, a polyatomic molecule acquires ad-
ditional electric dipole moment that is expressible by Watson’s
formula (27). Representing a diagonal Herman-Wallis result,
this moment stems from the direct application of theorem (8)
to the frame-distortion Hamiltonian, in which the combination
JαJβ of angular projections has to be understood under u. To
arrive at the rotational selection rules for a molecule of a given
symmetry, one must simply define Watson’s coefficients �αβγ
[Eq. (29)] and calculate matrix elements 〈�rot

i |wel|�rot
f 〉.

The application of theorem (8) allows one to expand the
possible use of Watson’s formula. As in (9) there arise exact
energies and matrix elements, one might strengthen |nJ, 1〉
[Eq. (17)] by assigning the ab initio or experimental values
to 〈m|ραβ |n〉, En, and Em. As a result, we proceed to op-
erate with the transition frequencies and vibrational matrix
elements of the reciprocal inertia moment as well as with the
dipole-moment matrix elements; the latter appear instead of
the dipole derivatives. The theorem [31] enables to control
the accuracy of calculation, making Watson’s formula more
flexible.

A. Tetrahedral molecules

Let us calculate the line intensities of branch R for a
molecule like methane. One should find the following sum:

SJ+1,K ′
J,K = 3

∑
M ′M

|〈J + 1,K ′,M ′|wel|J,K,M〉|2. (30)

The result from a permanent dipole moment with compo-
nents μe

γ fails to yield the frame-distortion effect because
a molecule of type Td has no such dipole. The distortion
or simply diagonal Herman-Wallis inclusion owes entirely
to quantities Mγ for which we have only one independent
coupling coefficient,

� = �yz
x = �xz

y = �xy
z .

To calculate the matrix element entering (30) we proceed to
spherical tensor operators M�, in which � = 0,±1, accord-
ing to the relations

M0 = Mz

and

M±1 = 1√
2

(∓Mx − iMy).

Hence [44],

wel = 1
2 (M0�0,0 + M−1�0,−1 + M+1�0,+1 +�0,0M0

+�0,−1M−1 +�0,+1M+1), (31)

in which

�0,0 = �z = D(1)∗
0,0

and

�0,±1 = 1√
2

(∓�x + i�y) = D(1)∗
0,±1.
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Using (28), we rewrite components M� as

M0 = i�(J2
+ − J2

−)

and

M±1 = −i�(J±J0 + J0J±)

with J0 = Jzh̄−1 and

J± = 1√
2h̄

(Jx ∓ iJy).

As we focus on the transition J → J + 1, we must involve
only the following matrix elements [44]:

〈J,K,M|J0|J,K,M〉 = K,

〈J,K ± 1,M|J±|J,K,M〉 =
√

(J ∓ K )(J ± K + 1)

2
, (32)

〈J + 1,K,M|�0,0|J,K,M〉 = �J
M

√
(J + K + 1)(J − K + 1)

(33)

and

〈J + 1,K ± 1,M|�0,±1|J,K,M〉

= �J
M

√
(J ± K + 1)(J ± K + 2)

2
, (34)

in which

�J
M = 1

J + 1

√
(J + M + 1)(J − M + 1)

(2J + 1)(2J + 3)
.

Introducing the anticommutator {. . . , . . .}, we calculate the
nonvanishing matrix elements:

〈J + 1,K ± 2,M|{�0,0, J
2
±}|J,K,M〉 = (J ∓ K )�J

M

√
�JK±

(35)

and

〈J + 1,K ± 2,M|{�0,±1, (J±J0 + J0J±)}|J,K,M〉

= 2(K ± 1)�J
M

√
�JK± (36)

with

�JK
± = (J ± K + 1)(J ± K + 2)(J ± K + 3)(J ∓ K ). (37)

For wel [Eq. (31)], we thus have

〈J + 1,K ± 2,M|wel|J,K,M〉

= ± i

2
�(J − 2 ∓ 3K )�J

M

√
�JK± . (38)

Taking into account that∑
MM ′

(
�J

M

)2
δMM ′ = 1

3(J + 1)
, (39)

we find eventually

SJ+1,K±2
J,K = (J − 2 ∓ 3K )2

4(J + 1)
�2�JK

± . (40)

Quantities (40) determine the line strengths of pure rota-
tional transitions �J = +1 from the vibronic ground state
for the molecules with tetrahedral symmetry. The expressions
for transitions �J = 0 or �J = −1 can be obtained in an
analogous manner [2]. Neglecting the nuclear-spin statistical
weight, one might calculate the total line strength SJ+1

J for the
branch R by summation (30) over K and K ′ with (40) properly
taken into account:

SJ+1
J =

∑
K ′K

SJ+1,K ′
J,K

= �2

4(J + 1)

J∑
K=−J

((J − 2 − 3K )2�JK
+

+ (J − 2 + 3K )2�JK
− ) = 2

35
�2j(J ), (41)

in which

j(J ) = J (J + 2)(2J − 1)(2J + 1)(2J + 3)(2J + 5). (42)

This result is identical to that reported previously by
Watson [2].

Among other molecules, the symmetry of which belongs to
point group Td , methane is of special interest. In what follows,
we calculate the distortion dipolar moment of 12CH4 from
first principles. The sought dipole is defined according to (29)
by only one component �xy

z , which we denote as �. Such a
definition differs from that adopted by Fox [3], the explicit
form C34 of which relates to �:

� = −2
√

5C34.

Having applied the sum rule that is derived in Appendix A, we
obtain (axy

3 )2 + (axy
4 )2 = Izz

e . Coriolis coupling parameters ζ23

and ζ24 have to satisfy the normalization condition ζ 2
23 + ζ 2

24 =
1. Keeping this in mind, one can put [45] axy

3 = √
Izz
e ζ23 and

axy
4 = √

Izz
e ζ24. According to (16) and (29), we arrive eventu-

ally at

� = 1

2

∂μz

∂q3

(
2B0

ν3

) 3
2

ζ23 + 1

2

∂μz

∂q4

(
2B0

ν4

) 3
2

ζ24. (43)

We can substitute here the rotational constant B0 =
5.241046 cm−1 [46] in the ground vibrational state as well
as the observed band origin wave numbers ν3 = 3019.2 cm−1

and ν4 = 1310.8 cm−1 [47] for the fundamentals instead of,
respectively, the relevant equilibrium and harmonic values.
This is justified because we rely on theorem (8), in which
the denominators contain exact vibrational energies and the
numerators comprise exact matrix elements. In other words,
it is justified to use simultaneously either all the observed
values or their equilibrium and harmonic analogs. In both
cases, the yielded results have to be almost the same. For the
derivatives of dipole moment, we adopt their up-to-date values
∂μz/∂q3 = −0.075 D and ∂μz/∂q4 = 0.076 D [48]. The per-
tinent Coriolis parameters are ζ23 = −0.797 and ζ24 = 0.603
[47]. As a result,

� = 2.3 × 10−5 D. (44)

This value is in agreement with theoretical estimates 2.6 ×
10−5 D [2], 1.8 × 10−5 D [3], and 2.2 × 10−5 D [49]. Ozier
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TABLE I. Spectral line positions �EJ and their intensities αabs

for nominally forbidden rotational transitions of methane from the
ground vibronic state at temperature 296 K and density 1.2 amagat.

J → J + 1 �EJ (cm−1) αabs (cm−2)

9 → 10 104.38 4.47 × 10−5

10 → 11 114.71 5.66 × 10−5

11 → 12 125.02 6.36 × 10−5

12 → 13 135.30 6.43 × 10−5

13 → 14 145.53 5.92 × 10−5

14 → 15 155.73 4.95 × 10−5

15 → 16 165.90 3.81 × 10−5

16 → 17 176.01 2.73 × 10−5

confirmed experimentally this value twice: first, in [50] by
measuring the Stark shifts using the molecular beam tech-
nique, and second, in [51] from the observation of pure
rotational methane transitions caused by the ground-state
electric dipole moment. Our obtained value (44) is in per-
fect agreement with the latest experimental data reported in
[52], according to which the distortion dipole � is equal to
2.4 × 10−5 D.

To demonstrate the efficiency of our theory, we calculate
the absolute intensities of absorption,

αabs = 8π3NLη

3Zhc
�EJSJ+1

J

(
e− hcEJ

kBT − e− hcEJ+1
kBT

)
. (45)

Here, NL is the Loschmidt constant, h is the Planck constant, c
is the speed of light in vacuum, kB is the Boltzmann constant,
η is the density in amagat, T is the temperature, and Z is
a partition function. The latter can be found applying the
formula [3]

Z = 4

3

√
π

(
kBT

B0hc

) 3
2

e
B0hc
4kBT . (46)

The line strength SJ+1
J in (45) is given by (41), and the transi-

tion energy is

�EJ = EJ+1 − EJ , (47)

where EJ = B0J (J + 1) − D0J2(J + 1)2 is the rotational en-
ergy in cm−1; for 12CH4, D0 = 1.11 × 10−4 cm−1 [46]. Let
us first consider an example of the spectrum borrowed from
[51]. This spectrum has been recorded at room temperature
and density η = 1.2 amagat with an optical path of L =
139 × 102 cm. Eight absorption lines recorded in the spectral
range from 100 to 180 cm−1 were assigned to the nominally
forbidden rotational transitions from R(9) to R(16). Applying
(44), we have calculated the transition frequencies (47) and
intensities (45) at T = 296 K (see Table I).

Figure 1 shows satisfactory agreement of our calcu-
lated methane spectrum (red curve) with that measured in
[51] (black dots). Note that the original spectrum from
[51] is significantly contaminated by unidentified noise. The
collision-induced continuous background, which is certainly
present, is shown by a dashed line, as calculated here using
the FORTRAN suite offered by Borysow [53].

The next example concerns a portion of the methane
spectrum in the spectral range from 20 to 100 cm−1 at

Tr
an
sm
is
si
on

Frequency

FIG. 1. Simulated pure rotational spectral lines of methane (red
curve) obtained at temperature 296 K and density 1.2 amagat.
Collision-induced background is indicated by dashed line; black dots
show observed transmission [51].

T = 113.5 K with η = 2.61 amagat and L = 60 × 102 cm
(see Fig. 2). The calculated line frequencies and intensities
are shown in Table II. Our simulated spectra in Figs. 1 and 2
are constructed assuming the Van Vleck–Weisskopf line shape
with a manually adjusted width.

B. D3h and C3υ symmetric tops

The perturbation caused by a rotation-vibrational interac-
tion in a direction perpendicular to the C3 axis breaks down
the symmetry of a molecule and gives rise to an electric
dipole moment. Such a distortion leads to the principally new
rotational selection rules [1,2]. In the case of a D3h molecule,
we have [54]

axx
ta = −ayy

ta = −axy
tb

Tr
an
sm
is
si
on

Frequency

FIG. 2. Calculated distortion electric dipole rotational spectrum
of methane (red curve) obtained at temperature 113.5 K and density
2.61 amagat. Observed transmission [52] is shown by the black
curve.
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TABLE II. Spectral line positions �EJ and their intensities αabs

for nominally forbidden rotational transitions of methane from the
ground vibronic state at temperature 113.5 K and density 2.61
amagat.

J → J + 1 �EJ (cm−1) αabs (cm−2)

3 → 4 41.90 0.25 × 10−5

4 → 5 52.35 0.92 × 10−5

5 → 6 62.80 1.98 × 10−5

6 → 7 73.22 2.99 × 10−5

7 → 8 83.63 3.22 × 10−5

8 → 9 94.02 2.83 × 10−5

with a and b labeling the components of doubly degenerate
vibration νt ; the z axis is along the C3 axis and the x axis lies
in one of the συ vertical planes. Consequently,

θ = �xx
x = −�yy

x = −�xy
y ,

that is, M0 = 0,

M±1 = 1√
2

(∓Mx − iMy) = ∓
√

2θJ2
±

and

wel = 1

2

∑
γ

(Mγ�γ +�γMγ )

=
√

2θ (�0,−1J2
− −�0,+1J2

+), (48)

because of

�0,±1J± − J±�0,±1 = 0. (49)

The calculation of the pertinent matrix elements

〈J ′,K ′,M ′|wel|J,K,M〉
defining the line strength

SJ ′,K ′
J,K = 3

∑
M ′M

|〈J ′,K ′,M ′|wel|J,K,M〉|2 (50)

is obvious. By use of (32), (34), and (39), for the R branch we
obtain

SJ+1,K±3
J,K = θ2

4(J + 1)
(J ± K + 1)(J ± K + 2)(J ± K + 3)

× (J ± K + 4)(J ∓ K − 1)(J ∓ K ). (51)

As [44]

〈J,K ± 1,M|�0,±1|J,K,M〉

= ∓M

J (J + 1)

√
(J ∓ K )(J ± K + 1)

2
(52)

and

〈J − 1,K ± 1,M|�0,±1|J,K,M〉

= −�J−1
M

√
(J ∓ K )(J ∓ K − 1)

2
, (53)

we readily find [2]

SJ,K±3
J,K = θ2(2J + 1)

4J (J + 1)
(J ± K + 1)(J ± K + 2)

× (J ± K + 3)(J ∓ K − 2)(J ∓ K − 1)(J ∓ K )

(54)

and

SJ−1,K±3
J,K = θ2

4J
(J ± K + 1)(J ± K + 2)

× (J ∓ K − 3)(J ∓ K − 2)(J ∓ K − 1)(J ∓ K )

(55)

for branches Q and P, respectively.
For a molecule of type C3υ , we have the rotational

Hamiltonian

H3υ
rot = BxJ2h̄−2 + (Bz − Bx )J2

0 + V

with the frame-distortion perturbation

V = h̄4τ√
2

({J0, J
3
−} + {J0, J

3
+}),

in which we retain only the term with the quartic centrifu-
gal constant τ = τxxxz (see Appendix B) because only this
contribution is responsible for the frame-distortion effect [2].
Applying a convenient perturbation theory to V , one finds

|J, 1〉 = h̄4τ√
2

∑
K ′ �=K

〈J,K ′,M|V |J,K,M〉
EJK − EJK ′

|J,K ′,M〉

= h̄4τ

3
√

2(Bx − Bz )

(
J3
+ − J3

−
)|J,K,M〉, (56)

in which

EJK = BxJ (J + 1) + (Bz − Bx )K2.

One should calculate the matrix elements of the permanent
dipole moment in the first order in τ with functions (56). As
only the z component μe

z produces a nonzero result, we have
to find the following matrix elements:

〈J ′,K ′,M|[�0,0, J
3
±]|J,K,M〉. (57)

Through the commutator relation

J±�0,0 −�0,0J± = �0,±1

and formulas (49), it is legitimate that

[�0,0, J
3
±] = −3�0,±1J2

±.

We hence arrive at the dipole moment (48) with new parame-
ter θ ′, namely,

θ ′ = θ + h̄4τμe
z

2(Bx − Bz )
. (58)

We see that the result for Watson’s parameter θ ′ is here exactly
the same as in [2]. For ammonia, using (29) and (B2), formula
(58) yields

θ ′ = 2
∑
t=3,4

axx
t

(
B0

νt

)2[
∂μx

∂Qt
− axz

t μ
e
z

Izz
e − Ixx

e

]
, (59)
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in which t numbers degenerate vibrations; B0 and νt are in
cm−1. Distortion dipole (59) permits an estimate [55]

θ ′ = −1.247 × 10−4 D,

in which B0 = 9.9443 cm−1, ν3 = 3444 cm−1, ν4 =
1627 cm−1, Ixx

e = 1.6957, and Izz
e = 2.7215 in amu Å2

[56]; axx
3 = −1.056, axz

3 = −0.813, axx
4 = 1.242, and

axz
4 = −0.691 in amu1/2 Å [57]; μe

z = −1.468 D, and
∂μx/∂Q3 = 0.186 and ∂μx/∂Q4 = −0.54 in D/(amu Å2)1/2

[58,59]. The obtained dipole agrees very well with the value
|θ ′|=(1.241±0.07)× 10−4 D measured by Ozier and Meerts
[60]. The spectra of ammonia in an interstellar environment
give clear evidence of the frame-distortion effect [1].

In the case of H3
+, the second term in (58) drops out so

that this equation transforms to

θ ′ = θ = 2

(
B0

ν2

) 3
2 ∂μx

∂q2
= 1.08 × 10−3 D, (60)

in which ∂μx/∂q2 = 0.238 D [61], B0 = 43.568 cm−1, and
ν2 = 2521.56 cm−1 [5]. The obtained value for the electric-
distortion dipole (60) is in good agreement with that reported
previously in [1,62], although some elucidations are required
according to [63,64]. Being an equilateral triangular for-
mation, trihydrium has no permanent electric dipole and
therefore has no allowed rotational spectrum. Nevertheless,
the distortion of the molecular frame in the course of rotation
gives rise to electric dipole generation, which causes pure
rotational transitions. The intensities of these transitions in-
crease substantially with rotational quantum number J . Poor
convergence has to be emphasized, however, for the rotational
energy expansion in a series against J . In addition, having
large amplitudes of vibrations, H3

+ fails to fit fully into
a concept of a rigid-rotor-harmonic oscillator. Despite this
obstacle, the application involving the model of normal co-
ordinates proved to be fruitful [63]. The harmonic frequency
of vibration ν2 equaling 2814 cm−1 [61] exceeds significantly
its value for the fundamental to yield θ = 9.2 × 10−4 D; Be

is very close to B0 [65]. The difference with (60) does not
look enormous. It points out that, while using a perturbation
approach [31] or a formalism of effective operators [2], one
needs to monitor carefully the impact of anharmonicity. The
estimation (60) makes possible to conclude that at least for
astrophysical applications the effect of frame distortion in
H3

+ is more pronounced than, e.g., that in NH3. In H3
+, θ ′

and transition frequency ν are greater than those in ammonia
by approximately an order of magnitude. Consequently, the
Einstein coefficient of spontaneous emission,

A ∼ |�EJK |3θ ′2,

appears to be significantly greater [1]. As far as direct cal-
culation of the H3

+ frame-distortion spectrum and Einstein
coefficients are concerned, they were considered in a number
of researches, e.g., in [9], following the pioneering investiga-
tion by Pan and Oka [62]. Notwithstanding the observation
of the H3

+ fundamental band ν2 in [5], the pure rotational
transitions borrowing an intensity from the allowed band ν2

have not yet been detected [1,9].

IV. NOMINALLY FORBIDDEN MAGNETIC TRANSITIONS

Many brilliant investigations have been focused in the
past on the problem of molecular magnetism caused by
pure vibration-rotational motion of a molecule [10–15,
17–19,24,25,66]. In most cases, it was assumed in these works
that electronic shielding has to be taken into consideration
along with the nuclear motion. This shielding is able to affect
substantially the resulting magnetic moment in such a way
that the electronic contribution begins to play a prominent
role, correcting the apparent nuclear dominance. The problem
of pure rotational magnetism has been considered by Eshbach
and Strandberg in their work [12]. According to [12,13,16],
the nuclear [Eq. (2)] and electronic [Eq. (3)] contributions to
the g factor are in such a relation that they partly compensate
each other.

Following the concept developed in [16] let us consider a
general electronic-vibrational problem for a molecule obeying
the Schrödinger equation,

(H e + T n)� = W�, (61)

in which H e is the Hamiltonian of electrons parametrized with
nuclear coordinates, W is an energy,

T n =
∑
βk

P2
βk

2Mk
=

∑
βk

(−ih̄)2

2Mk

∂2

∂r2
βk

is the kinetic-energy operator for the nuclei with rβk and
Pβk being the Cartesian position and momentum of nucleus
k, the greek subscripts relate to Cartesian directions x, y,
and z; k = 1, 2, . . . ,N . According to [16,17,24], to involve
correctly the electronic shielding, one must overstep the Born-
Oppenheimer approximation characterized by wave function
χ0 and energy E0(r). Assuming�n be the nuclear state vector
and ζ0 be the nonadiabatic correction, we can substitute the
wave function to Eq. (61) in the form � = �n(χ0 + ζ0). As a
result, we have

(H e + T n − W )�nχ0 + (H e + T n − W )�nζ0 = 0. (62)

Neglecting the nonadiabatic effect for the pure vibrational
problem, we have H eχ0 = E0(r)χ0 and (T n + E0(r))�n =
W�n. Consequently, in the first order,∑

βk

1

Mk
(Pβk�

n)(Pβkχ0) + (H e − E0(r))�nζ0 = 0, (63)

because

T n�nχ0 =
∑
βk

(−h̄2)

Mk

∂�n

∂rβk

∂χ0

∂rβk
+ · · · .

Representing the nonadiabatic correction ζ0 as an expansion
of adiabatic vectors χA, where A designates an excited elec-
tronic state and taking into account that H eχA = EA(r)χA, we
arrive at

ζ0�
n = −

∑
βk

(Pβk�
n)

Mk

∑
A�=0

〈χA|Pβk|χ0〉
EA − E0

χA. (64)

The electronic magnetic dipole can be written
conventionally as

me = − e

2mec
(〈χ0|L|χ0〉 + [〈χ0|L|ζ0〉 + c.c.] + · · · ), (65)
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in which c.c. denotes a complex conjugate contribution. It is
well known that only the imaginary part of function� yields a
nonvanishing result [16,17]. As χ0 is real and ζ0 is imaginary,
then 〈χ0|L|χ0〉 equals zero and

me
γ = e

mec

∑
βk

∑
A�=0

〈χ0|Lγ |χA〉〈χA|Pβk|χ0〉
EA − E0

Pβk

Mk
. (66)

As the nuclear contribution is equal to

mn
γ = e

2c

∑
kαβ

Zk

Mk
eγαβrαkPβk (67)

and the total magnetic moment comprising both contributions
is mvib = mn + me, then [24,25]

∂mγ

∂Pβk
= e

2Mkc

( ∑
α

eγαβZkrαk − ιkγ β
)
, (68)

in which a vibrational shielding tensor ιkγ β is defined as

ιkγ β = − 2

me

∑
A�=0

〈χ0|Lγ |χA〉〈χA|Pβk|χ0〉
EA − E0

; (69)

eγαβ is the Levi-Cività symbol. The pure vibrational effect
is thus described by magnetic moment with the components
of the form (6). Provided the coefficients before ps are ex-
pressible via qs, such a definition of a vibrational magnetic
moment coincides exactly with conventional concept (5). The
electronic shielding occurs only if the pertinent matrix ele-
ment for Pβk between the electronic wave functions χA and
χ0 fails to equal zero; otherwise the total magnetic moment
turns out purely nuclear. In addition, insofar as functions χA

and energies EA depend on normal vibrational coordinates, the
tensor ιkγ β is a function of nuclear variables as well.

A. Rotational magnetism

The magnetic moment of a rotating molecule is determined
according to (1). Because of a frame distortion effect, the
slight perturbation of rotational motion may give rise to the
appearance of principally new transitions. To elucidate how
rovibrational interaction enables nominally forbidden mag-
netic transitions to be permitted, we calculate the matrix
elements of the rotational magnetic moment with the aid of
functions (20).

The pertinent projection of a magnetic moment in the
laboratory-fixed system can be written as

mLF = mn

2h̄

∑
γ

gγ γ (Jγ�γ +�γ Jγ ). (70)

For the matrix elements, as Jγ�γ = �γ Jγ , we have the fol-
lowing expression:

〈�fd(nJ )|mLF|�fd(n′J ′)〉
= 〈nJ|mLF|n′J ′〉 + 〈

�rot
i

∣∣wrot
mag

∣∣�rot
f

〉 + · · · , (71)

in which the matrix element

〈nJ|mLF|n′J ′〉 = 〈
�rot

i

∣∣〈n|mLF|n′〉∣∣�rot
f

〉
(72)

corresponds to the transition in the absence of rovibrational
coupling, and

wrot
mag = mn

h̄

∑
αβγ

JαJβJγ�γ 〈n, 1|gγ γ |n′〉

+ mn

h̄

∑
αβγ

�γ Jγ JαJβ〈n|gγ γ |n′, 1〉. (73)

The components of factor gγ γ can be represented as a series
expansion with respect to normal coordinates,

gγ γ = ge
γ γ +

∑
s

∂gγ γ
∂qs

qs +
∑

sr

∂2gγ γ
∂qs∂qr

qsqr + · · · , (74)

with ge
γ γ being the equilibrium value of gγ γ . To consider the

pure rotational transitions, one has to examine only the terms
(73), which are diagonal in vibrational quantum numbers.
Retaining linear terms, we have

〈n, 1|gγ γ |n〉 = 〈n|gγ γ |n, 1〉 =
∑

s

∂gγ γ
∂Qs

BαBβaαβs

h̄2(h̄ωs)2
.

Hence,

wrot
mag = mn

2h̄

∑
γ

(Jγ Jγ�γ +�γ JγJγ ), (75)

in which

Jγ = 1

h̄2

∑
αβ

ϕαβγ JαJβ (76)

with

ϕαβγ = 2
∑

s

∂gγ γ
∂Qs

BαBβ
(h̄ωs)2

aαβs . (77)

The combination of the terms comprising the first series in
(74) and the frame-distortion wave functions (20) is thus
responsible for the formation of a distortion magnetic dipole
(75). This dipole induced by rovibrational interaction gives
rise to the pure rotational transitions. The difference from the
electrical case lies in the appearance of an extra operator Jγ
at the moment function (75) that leads to extra transitions for
which the quantum number K may be altered by 4, whereas in
the case of moment function (27) K is allowed to change only
by 3. The absolute intensity is defined by the first derivative of
gγ γ with respect to Qs. To evaluate analytically this derivative,
we examine the general expression for the g factor that con-
sists of nuclear [Eq. (2)] and electronic [Eq. (3)] contributions.
For the nuclear factor, we have a contribution

∂g(n)
γ γ

∂Qs
= D(n)

1 + D(n)
2 (78)

with

D(n)
1 = −aγ γs

Iγ γe
g(n)
γ γ

∣∣
e (79)

stemming from a moment of inertia and

D(n)
2 = 2mp

Iγ γe
eγ υεeγ ξε

∑
k

Zk√
mk

re
υklξk,s (80)
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resulting from relation (A2). Both terms in (78) are in such
a relation that, provided explicit values of Zk are taken, these
terms virtually compensate each other. In fact, combining (79)
with (A2) and (80), we conclude that the nuclear weight in
∂gγ γ /∂Qs is roughly specified by the factors of type (MiZk −
MkZi ). For instance, examining H2 or H2

+ or H3
+, we have

Zk = 1; consequently,

∂g(n)
γ γ

∂Qs
= 0. (81)

In other words, a pure hydrogen system is characterized by the
fact that nuclear contribution (78) vanishes. For the electronic
part, we have

∂g(e)
γ γ

∂Qs
= D(e)

1 + D(e)
2 , (82)

in which

D(e)
1 = −aγ γs

Iγ γe
g(e)
γ γ

∣∣
e
. (83)

Regarding D(e)
2 , one should note that this additional contribu-

tion, which is highly nonadiabatic by its nature, is caused by
variation of the electronic energies EA and wave functions χA

as a function of normal vibrational coordinates [16]. Finally,
collecting all contributions to ∂gγ γ /∂Qs, one might calculate
quantity ϕαβγ [Eq. (77)], which defines the sought distortion
magnetic dipole moment in nuclear magneton units.

In some cases, it may be necessary to involve the off-
diagonal components of the g factor. Then an additional
magnetic moment [12]

�mLF = mn

2h̄

∑
γ γ ′

′
(gγ γ ′Jγ ′�γ + g∗

γ γ ′�γ Jγ ′ ) (84)

should be added to the diagonal one [Eq. (70)]; the prime on
the summation symbol denotes that γ �= γ ′. In an analogous
manner with (71)–(73), one can derive that the off-diagonal
contribution to the frame-distortion effect is defined by the
matrix element 〈

�rot
i

∣∣�wrot
mag

∣∣�rot
f

〉
.

If

gγ γ ′ =
∑

s

∂gγ γ ′

∂qs
qs + · · · (85)

and the vibrational quantum numbers ns all are not altered in
the course of a transition, then

�wrot
mag = mn

4h̄

∑
γ γ ′

′
(Jγ ′�γJγ γ ′ + Jγ γ ′Jγ ′�γ

+�γ Jγ ′
∗
J γ γ ′ + ∗

J γ γ ′ �γ Jγ ′ ), (86)

in which

Jγ γ ′ = 1

h̄2

∑
αβ

ϕ
αβ

γ γ ′JαJβ (87)

and
∗
J γ γ ′= 1

h̄2

∑
αβ

ϕ
αβ∗
γ γ ′ JαJβ (88)

with

ϕ
αβ

γ γ ′ = 2
∑

s

∂gγ γ ′

∂Qs

BαBβ
(h̄ωs)2

aαβs . (89)

Here ϕαβ∗
γ γ ′ is defined by (89) provided gγ γ ′ is substituted

with g∗
γ γ ′ . Summarizing, one might state that molecular vibra-

tions can induce an additional magnetic moment (84) which
can generate a nominally forbidden spectrum. To derive the
pertinent derivatives ∂gγ γ ′/∂Qs, in which gγ γ ′ = g(n)

γ γ ′ + g(e)
γ γ ′

with [12]

g(n)
γ γ ′ = mp

Iγ ′γ ′ eγ σεeγ ′ξε

∑
k

Zkrσkrξk (90)

and

g(e)
γ γ ′ = − 2mp

meIγ ′γ ′

∑
A�=0

〈χ0|Lγ |χA〉〈χA|Lγ ′ |χ0〉
EA − E0

, (91)

an analysis similar to (78) and (82) is applicable.
Through the symmetry properties that require a mag-

netic moment to be a pseudovector, the second derivatives
of the g factor can happen to be relatively big. Consequently,
the terms comprising the second series in (74) can affect the
fundamental transitions. Actually, if we disregard the frame-
distortion effect and restrict our consideration to harmonic
approximation only, the fundamental vibrational matrix ele-
ments of type 〈ns, nl |qsql |ns, nl + 1〉 vanish completely. This
means, notwithstanding that the overtone or combination
transitions can manifest themselves through nonzero matrix
elements 〈ns, nl |qsql |ns + 1, nl + 1〉 or 〈nl |ql

2|nl + 2〉, the
fundamental transitions are forbidden because

〈n|mLF|n′〉 = 0

in this case. However, provided the rovibrational interaction
is taken into account, the situation drastically changes, so that
the nominally forbidden fundamental transitions may become
permitted. To demonstrate this, let us apply the correction (18)
to calculate wrot

mag [Eq. (73)] for the fundamental transition
nl → nl + 1. Restricting ourselves by the only first nonvan-
ishing terms from

ql

∑
s �=l

∂2gγ γ
∂qs∂ql

qs

in (74), we obtain

Gαβγrot = 〈n, 1|gγ γ |n′〉 =
√

nl + 1

2

∑
s �=l

∂2gγ γ
∂qs∂ql

Bαβs

h̄ωs

with n′ = n1, n2, . . . , nl + 1, . . .. Note that

〈n, 1|gγ γ |n′〉 = 〈n|gγ γ |n′, 1〉,
whereas element 〈n, 1|gγ γ |n′〉 is not in general identical to
〈n|gγ γ |n′, 1〉. Consequently,

wrot
mag = mn

h̄

∑
αβγ

Gαβγrot {JαJβ, Jγ�γ }. (92)

The line strength is defined by 〈�rot
i |wrot

mag|�rot
f 〉. This pre-

sumably small contribution of purely magnetic nature can
be expected to be masked by more intense allowed lines.
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Nevertheless, it can become perceptible in the far infrared for
transitions in which �K exceeds 2.

B. Vibrational magnetism

A vibrational magnetic moment owes to a motion of nuclei
relative to each other. Along with a pure nuclear skeleton
contribution, there exists an electronic one, stemming from
the currents in the electronic shell induced by vibrations of
nuclei. Involving a nonadiabatic concept [16–18,24,25], one
might conclude that electrons from external shells should fail
to screen a nuclear core. At the same time, the inner electrons,
which follow the nuclei, are apt to shield significantly nuclear
charges and cancel thus the nuclear contribution to magnetic
moment. The effect of cancellation is included in the com-
ponents of atomic tensor (68) which define the vibrational
magnetic moment (4) in the body-fixed frame of reference.
It should be noted that in order to accurately compute the
vibrational transition moments, one has to express the mag-
netic moment in the form of an expansion with respect to both
normal coordinates and momenta (5). In this concern, the idea
suggested in [67] to have the magnetic moment expanded only
with respect to normal coordinates is erroneous. To establish
the selection rules affected by the frame distortion, one has to
proceed to the laboratory-fixed frame of reference, in which
the vibrational magnetic moment is expressed by projection,

mLF =
∑
γ

mγ�γ , (93)

and calculate then the nonvanishing matrix elements of mLF

employing frame-distortion wave functions (20). As a result,

〈�fd(nJ )|mLF|�fd(n′J ′)〉
= 〈nJ|mLF|n′J ′〉 + 〈

�rot
i

∣∣wvib
mag

∣∣�rot
f

〉 + · · · , (94)

where

wvib
mag =

∑
αβγ

JαJβ�γ 〈n, 1|mγ |n′〉

+
∑
αβγ

�γ JαJβ〈n|mγ |n′, 1〉. (95)

The effect analogous to the rotational one [Eq. (75)] in this
case is defined by the terms linear in momenta corresponding
to the first series members in (5). Having calculated a diagonal
vibrational matrix element, we have

wvib
mag =

∑
αβγ

καβγ [JαJβ,�γ ], (96)

where

καβγ = 〈n, 1|mγ |n〉 = −〈n|mγ |n, 1〉

= i
√

2
∑

s

Bαβs

h̄ωs

∂mγ

∂ ps

(
ns + 1

2

)
. (97)

Provided the terms bilinear with respect to qr and ps are
involved while considering expression (5) for magnetic mo-
ment, the fundamental transitions become allowed through
a frame-distortion mechanism. Taking into account for

simplicity the only contribution

ql

∑
s �=l

∂2mγ

∂ql∂ ps
ps, (98)

we readily find for the fundamental transition nl → nl + 1
with the aid of (18)

Gαβγvib = 〈n, 1|mγ |n′〉 = −〈n|mγ |n′, 1〉

= i
√

nl + 1
∑
s �=l

Bαβs

h̄ωs

∂2mγ

∂ql∂ ps

(
ns + 1

2

)
. (99)

Hence,

wvib
mag =

∑
αβγ

Gαβγvib [JαJβ,�γ ]. (100)

Both (96) and (100) prove that the rotational matrix elements
from commutator [JαJβ,�γ ] govern the distortion-induced
transitions. Because there is no additional angular momentum
in (95), it may seem that the rotational structure of a spectrum
would resemble that predicted by Watson for electric dipole
forbidden spectra [2]. However, this is not quite true, because
the anticommutator {JαJβ,�γ } appears in (27) instead of a
commutator.

C. Application to H3
+

The rotational g factor of trihydrium is mainly defined by
nuclear contribution (2). The electronic contribution [68] turns
out significantly less important due to the absence of low-
lying electronic states which could mix with the ground state,
contributing to the sum in (3). According to [18], g(e)

xx,rot =
g(e)

yy,rot = −0.0634 and g(e)
zz,rot = −0.0198. Note that, along

with the factor g having a rotational nature in H3
+, a pure

vibrational mechanism of the molecular magnetic moment
formation is also possible. The point is that doubly degenerate
vibration induces the currents in the electronic shell in such
a way that nuclear vibrational magnetic moment becomes
partly compensated. For many closed-shell molecules [12,13,
17–19], the electronic contribution having a nonadiabatic na-
ture [16,17] dominates entirely over the nuclear-core magnetic
moment. This is not the case for H3

+, however, by the same
reason as it takes place for pure rotational magnetism, i.e., by
the lack of low-lying eigenenergy terms.

Because H3
+ has D3h symmetry, the distortion effect is

defined by only coefficient (19) with α = β = x and s = 2;
that is,

Bxx
2 = 2B2

xaxx
2

h̄4

√
h̄

2ω2
. (101)

According to (79), (80), and (83), the first derivative of gγ γ
with respect to Qs is defined by the corresponding coefficient
aγ γs . Through the relations for nonzero aγ γs (see Appendix A),
we have

∂gxx,rot

∂Q2a
= −∂gyy,rot

∂Q2a
�= 0

and
∂gzz,rot

∂Q2a
= ∂gxx,rot

∂Q2b
= ∂gyy,rot

∂Q2b
= ∂gzz,rot

∂Q2b
= 0.
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We consider how the deformation doubly degenerate vibra-
tion Q2 = (Q2a,Q2b) affects the sought magnetic moment;
the dependence on the fully symmetric vibration Q1 can be
neglected here. The frame-distortion effect is thus determined
by this quantity,

ϕ = 2B2
xaxx

2

(h̄ω2)2

∂gxx,rot

∂Q2
, (102)

ϕ = ϕxx
x = ϕyy

y = −ϕyy
x = −ϕxx

y .

As we have already established in (81), the nuclear contribu-
tion (78) to ∂gxx,rot/∂Q2 for H3

+ is equal to zero exactly. In
fact,

∂g(n)
γ γ

∂Qs
= ∂

∂Qs

(
mp

Iγ γ
∑

k

(
r2

k − r2
γ k

)) = ∂

∂Qs
1 = 0.

Because of this, the sought effect is defined by electronic con-
tribution (82) only. We use (16) to estimate ϕ and, according
to (A5), we put axx

2 = axx
2a = √

2Ixx
e . As a result, we have

ϕ = −
(

2B0

ν2

)2

g(e)
xx,rot. (103)

For H3
+, we can adopt the following values: B0 =

43.568 cm−1 [5], ν2 = 2521.56 cm−1 [5], and g(e)
xx,rot =

−0.0634 [18]. Note that the rotational constant in the ground
vibrational state and observed frequency are chosen here in-
stead of Be and harmonic frequency. Thus,

ϕ = 0.8 × 10−4. (104)

Depending on the impact of nonadiabatic effects, which man-
ifest themselves in additional terms containing the derivatives
of the electronic energies and wave functions with respect to
Q2, the outcome for ϕ can vary. It is important to empha-
size that the magnetic moment is determined almost entirely
by a nuclear contribution, provided rotational magnetism of
trihydrium is considered [18,68]. This is not a case for the
distortion magnetic dipole, which is produced exclusively
by electronic contribution [Eq. (103)]. Inspecting ϕ, a direct
analogy can be pointed out with a distortion dipole electrical
effect, for which Pan and Oka [62] found the Watson coef-
ficient in the form (60). In a magnetic case, instead of the
derivative of electric dipole μx we have the derivative of the g
factor with respect to q2.

The rotational structure of magnetic transitions is governed
by matrix elements of (75) for which the operators

Jx = ϕ(J2
− + J2

+) and Jy = −ϕ(J2
− + J2

+)

represent the distortion dipole. The line strength is given by
the expression

SJ ′,K ′
J,K = 3

∑
M ′M

|〈J ′,K ′,M ′|wrot
mag|J,K,M〉|2.

The transitions for which �K = ±4 warrant our scrutiny. We
have

〈J ′,K ± 4,M|wrot
mag|J,K,M〉

= ∓ϕmn〈J ′,K ± 4,M|J3
±�0,±1|J,K,M〉, (105)

and, consequently,

SJ ′,K±4
J,K = (ϕmn)2

16
XJ ′,K±4

J,K . (106)

Applying (32), (34), and (39), for the R branch we find

XJ+1,K±4
J,K = (J + 1)−1(J ∓ K − 2)(J ∓ K − 1)

× (J ∓ K )(J ± K + 1)(J ± K + 2)

× (J ± K + 3)(J ± K + 4)(J ± K + 5). (107)

In an analogous manner, involving (52) and (53), one might
derive that

XJ,K±4
J,K = (2J + 1)J−1(J + 1)−1(J ± K + 1)

× (J ± K + 2)(J ± K + 3)(J ± K + 4)

× (J ∓ K − 3)(J ∓ K − 2)(J ∓ K − 1)(J ∓ K )

(108)

and

XJ−1,K±4
J,K = J−1(J ∓ K − 4)(J ∓ K − 3)

× (J ∓ K − 2)(J ∓ K − 1)(J ∓ K ).

× (J ± K + 1)(J ± K + 2)(J ± K + 3) (109)

for Q and P branches, respectively. We conclude, first, if the
rules for the electrical distortion effect of H3

+ are �K = ±3,
the transitions with the magnetic mechanism might occur
with �K = ±4. Second, the strong J dependence neutral-
izes partly the smallness of the distortion magnetic dipole
ϕmn. To illustrate the latter, we calculate line strengths
SJ+1,K+4

J,K for J = 10 and J = 20. Assuming K = 1 in (106),

for instance, we obtain S11,5
10,1 = (10−1mn)2 and S21,5

20,1 = m2
n.

As is not surprising, the distortion magnetic dipole can drive
transitions for which the intensities are comparable to those of
the conventional magnetic dipole transitions.

The frame-distortion effect for H3
+ becomes even more

pronounced if we include the off-diagonal g components.
We deal here with nuclear terms only, because the elec-
tronic contribution (91) vanishes through ∂g(e)

γ γ ′/∂Qs =
−(aγ

′γ ′
s /Iγ

′γ ′
e )g(e)

γ γ ′ |e = 0; for γ �= γ ′, g(e)
γ γ ′ |e = 0. The nuclear

contribution is formed by terms comprising g(n)
xy or g(n)

yx . Ac-
cording to (90),

g(n)
xy = g(n)∗

xy = g(n)
yx = g(n)∗

yx = Ixy/Ixx
e .

Only the derivative of g(n)
xy with respect to Q2b fails to equal

zero; hence

�ϕ = 2B2
xaxy

2

(h̄ω2)2

∂g(n)
xy

∂Q2b
=

(
2B0

ν2

)2

= 1.2 × 10−3. (110)

�ϕ = ϕ
xy
xy = ϕ

xy
yx , whereas other ϕαβγ γ ′ (89) are equal to zero.

The off-diagonal nuclear distortion dipole is defined by

Jxy = Jyx = i�ϕ(J2
+ − J2

−).

According to (86), we have

�wrot
mag = mn

4h̄
{{Jy,�x} + {Jx,�y}, Jxy}.
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Taking Jy�x + Jx�y = �xJy +�yJx into account, one
may readily find that transitions with �K = ±4 are
characterized by

〈J ′,K ± 4,M|�wrot
mag|J,K,M〉

= ±�ϕmn〈J ′,K ± 4,M|J3
±�0,±1|J,K,M〉. (111)

The line strength turns out thus analogous to that of the diag-
onal electronic one [Eq. (106)]:

�SJ ′,K±4
J,K = (�ϕmn)2

16
XJ ′,K±4

J,K , (112)

in which relations (107)–(109) determine XJ ′,K±4
J,K . Two

numerical examples �S11,5
10,1 = 2(mn)2 and �S21,5

20,1 =
2(10 × mn)2 demonstrate convincingly how significant
the frame-distortion effect can be.

Since the components of the g factor behave like the com-
ponents of the inertia tensor, let us examine whether the totally
symmetric vibration Q1 can affect the transition magnetic mo-
ments in principle. Assuming Bx = By and axx

1 = ayy
1 [69], one

might readily obtain that J sym
γ , being the contribution from Q1

into Jγ [Eq. (76)], is equal to

2

(h̄ω1)2

∂gγ γ ,rot

∂Q1

(
B2

xaxx
1 {J−, J+} + B2

z azz
1 J2

0

)
, (113)

in which we imply ∂gxx,rot/∂Q1 = ∂gyy,rot/∂Q1. On acting on
|J,K,M〉, the operators J sym

x , J sym
y , and J sym

z do not change
J and K , because they consist only of {J−, J+} and J2

0 . Con-
sequently, the impact of the symmetric vibration can lead to
the small corrections for the conventional magnetic matrix
elements, but fails to generate the transitions beyond allowed.

V. DISCUSSION

Highly symmetrical molecules in the universe are often
barely detectable by spectroscopic techniques because at least
some of the rovibrational transitions are strictly forbidden by
selection rules. One way to study such astrophysical molec-
ular systems is to search for the spectral regions in which
the collision-induced transitions are capable to manifest them-
selves. Molecular collisions result in distortion of charge
distribution in a molecule, thus giving rise to the appearance
of an induced electric dipole [70,71]. This mechanism can be
dominant in relatively dense atmospheres of some planets or
cold stars, for which the effect of intermolecular interaction is
significant. With decreasing gas density, the role of collisions
wanes sharply, whereas the relative role of a frame-distortion
effect permanently increases. Consequently, in rarefied media,
the role of effects induced by molecular collisions becomes
negligible, whereas the effects caused by rovibrational inter-
action in a single molecule persist. Spontaneous transitions
offer thus an alternative which can help in the remote de-
tection of monomers, the symmetry of which is broken by
a centrifugal force [1]. Even in the ground vibrational state,
the nominally forbidden pure rotational spectrum can be de-
tected. One might imagine that vibrations have nothing to
do with getting rotational transitions slightly allowed. Oka
[1] notes after Watson’s pioneering work [2], however, that
this effect owes in fact to a vibration-rotational interaction.
A frame-distortion effect represents itself as a diagonal result

of a Herman-Wallis factor, which enters the expansion of a
vibration-rotational matrix element of an electric dipole. In
our work, we reproduce the Watson formula for the distortion
electric dipole with the aid of the theorem of extraneous quan-
tum numbers [Eq. (8)] [29–31] and expand the possibilities of
its use; this theorem can also be called a theorem for shifting
matrix elements. Taking spherical and oblate symmetric tops
as examples, we showed that the use of the theorem makes it
possible to simplify significantly the derivation of the sought
matrix elements corresponding to the forbidden transitions.

In a row of molecular species for which a frame-distortion
effect can be substantial, the most striking candidate is the
methane molecule. Applying the up-to-date spectral param-
eters, we were able to calculate the distortion electric dipole
for 12CH4 and then to simulate the pertinent spectra, which are
shown in Figs. 1 and 2. In the line strength (41), the relatively
small value of the distortion dipole (44) is quenched by the
strong dependence on J [Eq. (42)]. At room temperature, for
instance, the most intensive lines are R(11) and R(12); for
J > 12, the spectral lines deplete quite sharply because of the
Boltzmann factor (see Fig. 1).

The present work is focused mainly on consideration of the
pure rotational forbidden transitions in molecules having zero
permanent dipole. The question can be raised as to whether
in the molecules the higher-order anharmonic terms, if any,
could give rise to a transition probability comparable to that of
a distortion dipole effect. To resolve this problem, we have to
compare the strengths of two mechanisms inducing rotational
transitions. The first one relates to variation of inertia terms
in the course of molecular vibrations, whereas the second
one is driven by anharmonic terms in expansions of the po-
tential and electric dipole functions. The contribution of the
latter effect can be estimated, for example, by calculating the
diagonal vibrational matrix elements within the framework
of the formalism of polynomials of quantum numbers [31].
Note that the selection rules, line positions, and relative inten-
sities in this case are significantly at variance with respect to
those caused by the frame-distortion mechanism. Moreover,
the anharmonic vibration-induced rotational spectrum is al-
lowed, whereas the frame-distortion spectrum is nominally
forbidden. As a result, the frame-distortion effect manifests
itself most strikingly in the spectral regions free from allowed
absorption lines. Pan and Oka [62] calculated the vibration-
induced dipole of trihydrium. The sought dipole moment is
determined by the cubic anharmonic term in the potential as
well as by two first dipole moment derivatives. The obtained
value for the induced dipole turned out to be ∼10−3 D. Al-
though the order of the vibrational dipole is similar to that of θ
[Eq. (60)], the absorption cross section of the frame-distortion
effect is much greater than that of the vibration induced effect.
In addition, the vibration-induced transitions are governed by
selection rules of a different type, namely, �K = ±1 and
�l = ∓2, in which l is the vibrational angular momentum
quantum number. In the course of a transition the l quantum
number changes, so that it looks more adequate to call a tran-
sition rovibrational rather than pure rotational. As a final note
we have to emphasize that the frame-distortion dipole gives
rise to the nominally forbidden rotational lines, the intensity
of which increases rapidly with growing rotational quantum
number. In contrast, the electric dipole induced by anharmonic
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terms is sufficiently weak irrespective of values J , thus giving
rise to rovibrational lines of a negligible intensity.

An increasing interest to explore various effects rele-
vant to weak molecular absorption prompted us to extend
the frame-distortion theory to magnetic dipole transitions,
which are nominally prohibited. From first glance, the
vibration-rotational magnetism does not seem as important
as, e.g., the magnetism related to the electron spin effects.
In reality, magnetic dipole absorption even in a spinless
molecule is rather significant as it was demonstrated recently
through observation of the magnetic dipole CO2 band in the
Martian atmosphere [20] and in laboratory-controlled con-
ditions [21,22]. The solid theory [23] proved, first, the
dominance of magnetic-dipole absorption over the quadrupole
one, and second, the sufficiency of a magnetic dipole value
not exceeding one nuclear magneton to produce an observable
spectrum. A prospective direction for further investigation
could consist in involvement of higher-order terms in ex-
pansion (5) to allow to step over the first-order perturbation
theory. The higher-order corrections lead to a vibration-
induced magnetic dipole, which can contribute the intensity
of allowed rovibrational spectral lines. It is important to
mention that these lines do not overlap with forbidden pure
rotational lines, nor are they characterized by strong J de-
pendence. Thus, the effect of vibration-induced magnetic
moment, which has not been studied enough yet, does not
compete with the frame-distortion effect.

Developing the theory of distortion dipole in the frame-
work of theorem (8) we arrived at the general expressions
for matrix elements of the magnetic dipole, which can be
of either pure rotational or vibrational nature. The pure rota-
tional effect comprises four operators changing a rotational
state of a molecule [Eq. (73)]; hence, the formally forbid-
den transitions might occur in the far-infrared region with
�K = ±4, whereas for the electrical case we have �K =
±3. Particular attention has been given to trihydrium, for
which we have computed the magnetic moment caused by
vibration-rotational interaction. According to (103), in the
approximation of the diagonal g factor, only electronic mo-
tion generates the distortion magnetic dipole, whereas the
nuclear contribution vanishes entirely. This result gives rise
to an interesting conclusion: while the permanent magnetic
dipole moment of a rigid trihydrium is largely formed by
the motion of nuclei [18,68], the magnetic moment caused
by distortion of the molecular frame is conditioned exclu-
sively by electronic contribution. As a measure of the absolute
value of the distortion magnetic dipole ϕmn in H3

+, we have
estimated ϕ ≈ 0.8 × 10−4. Provided the off-diagonal compo-
nents of g are induced, we observe the reverse picture: the
nuclear contribution with �ϕ ≈ 1.2 × 10−3 prevails over the
electronic. The seeming smallness of both ϕmn and �ϕmn is
largely compensated by the strong J dependence [Eqs. (106)
and (112)].

Such a small value for ϕ in H3
+, first, is likely due to

the lack of an estimate for nonadiabatic contribution to the
magnetic moment derivative with respect to the normal co-
ordinate. The CO2 molecule represents a good example in
this respect because it has no significant average magnetic
moment, but has a substantial moment of ν2 + ν3 magnetic
transition. Second, in the sum (3) over electronic states, there

are no low-lying terms mixing with the ground state. This
is at variance with the case of CH+, for example, for which
there exist low-lying levels and the g factor turns out to be
substantial [72,73].

The selection rules for distortion magnetic dipole vibra-
tional effect [Eq. (95)] resemble partly their conventional
electric dipole analogs described by Watson in the form of
(27). The main distinction is conditioned by the need to
expand the magnetic moment function with respect to both
normal coordinates and conjugated momenta, while the elec-
trical dipole is a function of coordinates only. Finally, we
can speculate that additional absorption of a chiral molecule
arising from a frame-distortion contribution [Eq. (95)] might
be interesting to explore in upcoming investigations.
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APPENDIX A: SUM RULE FOR THE
DERIVATIVES OF INERTIA MOMENT

The derivatives

aαβs = ∂Iαβ

∂Qs

∣∣∣∣
e

=
(

h̄

ωs

)− 1
2 ∂Iαβ

∂qs

∣∣∣∣
e

of inertia-moment tensor

Iαβ = eασεeβξε
∑

i

mirσ irξ i

for a molecule comprising N atoms with masses mi are defined
as [33,42]

aαβs = aβαs = 2eαυεeβξε
∑

j

√
mjr

e
υ j lξ j,s, (A1)

in which according to relation

�rαi = rαi − re
αi =

∑
s

(
h̄

miωs

) 1
2

lαi,sqs (A2)

matrix lαi,s sets the transformation between Cartesian dis-
placements �rαi of atoms and dimensionless normal vibra-
tional coordinates qs; eαβγ is the antisymmetric unit tensor by
Levi-Cività. Latin indices indicating atoms run values from
1 to N . Greek indices correspond to spatial Cartesian coor-
dinates x, y, and z. Following Einstein’s rule of summation,
whenever a greek index arises twice and only twice, one
should understand the summation over this index. Note that
the atomic masses are used here, not the masses of nuclei
as we have assumed in (2) and (3); the difference fails to be
principal.

We must find the sum∑
s

aαβs aγπs = 4eαυεeβξεeγ υ ′ε′eπξ ′ε′,

×
∑

j

√
mjr

e
υ j

∑
j′

√
mj′r

e
υ ′ j′

∑
s

lξ j,slξ ′ j′,s.
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As [42]

∑
s

lξ j,slξ ′ j′,s = δξξ ′δ j j′ − δξξ ′
√

mjmj′

(∑
i

mi

)−1

− eξκλeξ ′ρσ
(
I−1
e

)
λσ

√
mjmj′r

e
κ jr

e
ρ j′ , (A3)

one obtains ∑
s

aαβs aγπs =  1 + 2 + 3,

where three consecutive contributions  1,  2, and  3 stem
from the corresponding moieties in (A3). We compute them
separately.

For the first part, taking eαυεeβξε = δαβδυξ − δαξ δυβ and
eγ υ ′ε′eπξε′ = δγπδυ ′ξ − δγ ξ δυ ′π into account, we have

 1 = 4
(
δαβδγπKe

υυ − δγπKe
αβ − δαβKe

γπ + δαγKe
βπ

)
,

in which

Ke
υυ ′ =

∑
j

m jr
e
υ j r

e
υ ′ j .

Through the relation ∑
i

mir
e
υi = 0,

the second contribution  2 equals zero. To calculate
 3, we involve formulas eβξεeξκλ = δβλδεκ − δβκδελ and
eπξ ′ε′eξ ′ρσ = δπσ δε′ρ − δπρδε′σ ; as a result,

 3 = −4eαυλeγ υ ′σKe
βυKe

πυ ′
(
I−1
e

)
λσ
.

The sought sum rule for the derivatives of inertia moment is
thus∑

s

aαβs aγπs = 4
(
δαβδγπKe

υυ − δγπKe
αβ − δαβKe

γπ + δαγKe
βπ

)
− 4eαυλeγ υ ′σKe

βυKe
πυ ′

(
I−1
e

)
λσ
. (A4)

We adduce the proof of this rule based on the general scenario
proposed in [41], just for completeness. Equation (A4) has
been proved in the seminal works [74] and [75], in which it has
been presented in parts. Our derived form matches exactly that
obtained previously by Watson [42]. For rule (A4), of course,
there exist many alternative representations.

Applying this rule to H3
+ for which axx

2a = −ayy
2a = −axy

2b,
axy

1 = 0, Iαβe = Iααe δαβ , and (I−1
e )αβ = (Iααe )−1δαβ [45,54],

one might obtain [62]∑
s

(
axy

s

)2 = Izz
e ,

in which index 1 denotes the totally symmetric vibration ν1,
whereas 2a and 2b belong to the doubly degenerate vibration
ν2; as Izz

e = Ixx
e + Iyy

e = 2Ixx
e , then

axx
2a = √

2Ixx
e . (A5)

The nonvanishing derivatives of inertia moment with respect
to the normal coordinates can be of course calculated directly
using the explicit form of lαi,s [69,76]; putting the mass of
hydrogen to be mp, one might readily find that azz

1 = 2axx
1 =

2ayy
1 = 2Re

√
mp and axx

2a = −ayy
2a = −axy

2b = Re
√

mp, in which
Re is the internuclear distance that corresponds to the equilib-
rium equilateral geometry.

APPENDIX B: QUARTIC CENTRIFUGAL EXPANSION

The parameters ταβγ δ of centrifugal distortion are intro-
duced according to [77]

V = 1

4

∑
αβγ δ

ταβγ δJαJβJγ Jδ.

These parameters can be found by use of (13) and (20). The
diagonal calculation for

1

2

∑
αβ

ραβJαJβ

in the second order by perturbation theory with (20) yields

V = 1

4

∑
αβγ δ

(〈n|ραβ |n, 1〉 + 〈n, 1|ραβ |n〉)JαJβJγ Jδ.

Taking (14), (18), and (19) into account, we readily
obtain [75]

ταβγ δ = − 1

Iααe Iββe Iγ γe Iδδe

∑
s

aαβs aγ δs

2ω2
s

. (B1)

Applying (B1) to NH3, for instance, we have

τ = τxxxz = − 2h̄−2

Ixx
e Izz

e

∑
t

(
Bx

h̄ωt

)2

axx
t axz

t , (B2)

in which, running over degenerate vibrations, t = 3 or 4. The
parameter τ defines the contribution into the frame-distortion
effect that borrows the intensity from the rotational transition
[see formula (58)].
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