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Nonadiabatic holonomic quantum computation based on a commutation relation
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Nonadiabatic holonomic quantum computation has received increasing attention due to the merits of both
robustness against control errors and high-speed implementation. A crucial step in realizing nonadiabatic
holonomic quantum computation is to remove the dynamical phase from the total phase. For this reason, previous
schemes of nonadiabatic holonomic quantum computation have to resort to the parallel transport condition, i.e.,
requiring the instantaneous dynamical phase to be always zero. In this paper, we put forward a strategy to design
nonadiabatic holonomic quantum computation, which is based on a commutation relation rather than the parallel
transport condition. Instead of requiring the instantaneous dynamical phase to be always zero, the dynamical
part of the total phase is separated from the geometric part and then removed by properly choosing evolution
parameters. This strategy enhances the flexibility to realize nonadiabatic holonomic quantum computation as the
commutation relation is more relaxed than the parallel transport condition. It provides more options for realizing
nonadiabatic holonomic quantum computation and hence allows us to optimize realizations such as the evolution
time and evolution paths.
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I. INTRODUCTION

Practical applications of circuit-based quantum computa-
tion need to realize a universal set of accurately controllable
quantum gates. However, the errors resulting from the im-
perfect control of a quantum system and the decoherence
caused by the interaction between the quantum system and
its environment inevitably affect quantum gates, which is the
main obstacle to quantum computation. This practical issue
motivates researchers to design quantum gates by utilizing
the features of geometric phases [1–11].

Quantum computation based on nonadiabatic non-Abelian
geometric phases [4] is known as nonadiabatic holonomic
quantum computation [10,11]. Since nonadiabatic non-
Abelian geometric phases are only dependent on evolution
paths but independent of evolution details, nonadiabatic holo-
nomic gates possess a completely geometric property, being
robust against control errors. Furthermore, nonadiabatic non-
Abelian geometric phases avoid the long-run time required
for adiabatic geometric phases and therefore nonadiabatic
holonomic gates allow for high-speed implementation. Due
to the merits of both robustness against control errors and
high-speed implementation, nonadiabatic holonomic quantum
computation has received increasing attention.

The seminal scheme of nonadiabatic holonomic quantum
computation is based on a three-level quantum system driven
by two resonant lasers [10,11], where a general one-qubit
gate is realized by two-loop implementations. To simplify the
operations, the single-shot scheme [12,13] and the single-loop
scheme [14] of nonadiabatic holonomic quantum computation
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were proposed. The latter two schemes allow us to realize
an arbitrary one-qubit gate by a single-shot implementation,
which reduces the exposure time of quantum gates to error
sources. To have more choices of evolution paths, a general
approach of constructing Hamiltonians for nonadiabatic holo-
nomic quantum computation was put forward [15]. By this
approach, one can find the Hamiltonian that makes the quan-
tum system evolve along a desired path, and thus nonadiabatic
holonomic gates can be realized with shortened evolution
paths. Up to now, nonadiabatic holonomic quantum compu-
tation has been well developed in both theories [16–35] and
experiments [36–51].

The merit of nonadiabatic holonomic gates comes from
their purely geometric property. A crucial step in realizing
nonadiabatic holonomic quantum computation is to remove
the dynamical phase from the total phase. In the previous
schemes, the dynamical phase was removed by resorting to
the parallel transport condition, which implies that the instan-
taneous dynamical phase is always zero. However, this strict
requirement limits the realization of nonadiabatic holonomic
quantum computation to a special family of quantum systems.
Actually, it is not necessary to keep the instantaneous dynami-
cal phase always zero for removing the dynamical phase [52].
In this paper, we put forward a strategy to design nonadiabatic
holonomic quantum computation, which is based on a com-
mutation relation rather than the parallel transport condition.
Instead of requiring the instantaneous dynamical phase to be
always zero, the dynamical part of the total phase is sepa-
rated from the geometric part and then removed by properly
choosing evolution parameters. Compared with the previous
ones, the schemes based on this strategy are more flexible
as the commutation relation is more relaxed than the paral-
lel transport condition. The quantum systems satisfying the
commutation relation, containing those satisfying the parallel
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transport condition as a subset, are more general than the
latter.

II. STRATEGY

Consider an N-dimensional quantum system governed
by the Hamiltonian H (t ), of which the evolution opera-
tor is denoted as U (t ) = T exp[−i

∫ t
0 H (t ′)dt ′] with T being

time ordering. We use {|φk (t )〉}N
k=1 to represent N or-

thonormal solutions of the Schrödinger equation i|φ̇k (t )〉 =
H (t )|φk (t )〉. Assume there is an L-dimensional subspace
S(t ) = Span{|φk (t )〉}L

k=1 evolving cyclically with the period
τ , i.e., S(τ ) = S(0). The computational basis can be then
encoded intoS(0) and the final evolution operator U (τ ) acting
on S(0) is a quantum gate. U (τ ) plays a holonomic gate if the
dynamical part can be removed from it.

To make this point clear, we introduce a set of auxil-
iary orthonormal bases {|νk (t )〉}L

k=1 in the subspace S(t ),
which satisfy |νk (τ )〉 = |νk (0)〉 = |φk (0)〉. Expanding |φk (t )〉
in terms of the auxiliary bases gives

|φk (t )〉 =
L∑

l=1

|νl (t )〉Clk (t ), (1)

where Clk (t ) are time-dependent coefficients. By substituting
Eq. (1) into the Schrödinger equation, the coefficient matrix
can be calculated as

C(t ) = Tei
∫ t

0 [A(t ′ )−K (t ′ )]dt ′
(2)

with

Alk (t ) = i〈νl (t )|ν̇k (t )〉, Klk (t ) = 〈νl (t )|H (t )|νk (t )〉. (3)

After a period of time τ , we have |φk (τ )〉 =∑L
l=1 |νl (τ )〉Clk (τ ) = ∑L

l=1 |φl (0)〉Clk (τ ). Accordingly,
the evolution operator acting on the subspace S(0) is given
by

U (τ ) = C(τ ) = Tei
∫ τ

0 [A(t )−K (t )]dt , (4)

where A(t ) and K (t ) lead to the geometric and dynamical parts
of the evolution operator, respectively.

If the commutation relation,

[A(t ), K (t ′)] = 0, (5)

is fulfilled for t ∈ [0, τ ] and t ′ ∈ [0, τ ], the evolution operator
can be then written as the product of two parts:

U (τ ) = [Tei
∫ τ

0 A(t )dt ][Te−i
∫ τ

0 K (t )dt ]. (6)

The first part T exp[i
∫ τ

0 A(t )dt] corresponds to a non-
Abelian geometric phase factor and the second part
T exp[−i

∫ τ

0 K (t )dt] corresponds to a non-Abelian dynami-
cal phase factor. As the dynamical phase factor is separated
from the geometric phase factor, it can be removed by letting
T exp[−i

∫ τ

0 K (t )dt] = I . In this case, we have the evolution
operator,

U (τ ) = Tei
∫ τ

0 A(t )dt , (7)

which plays a holonomic gate acting on the subspace S(0).
The key to designing nonadiabatic holonomic quantum

computation based on this strategy is to find a quantum system

that possesses a cyclically evolutional subspace and satis-
fies the commutation relation. For this, one can start from
the auxiliary bases {|νk (t )〉}L

k=1. Without loss of generality,
we take N = L + 1 and introduce the (L + 1)th auxil-
iary basis |νL+1(t )〉 = exp[−iγ (t )]|φL+1(t )〉, where γ (t ) is
a time-dependent undetermined parameter with γ (0) = 0.
Since |φk (t )〉 are the solutions of the Schrödinger equation
i|φ̇k (t )〉 = H (t )|φk (t )〉, the Hamiltonian can be expressed as

H (t ) = i
L+1∑
k=1

|φ̇k (t )〉〈φk (t )|. (8)

Substituting |φk (t )〉 = ∑L
l=1 |νl (t )〉Clk (t ) and |φL+1(t )〉 =

exp[iγ (t )]|νL+1(t )〉 into Eq. (8), we can obtain

H (t ) = i
L∑

k=1

〈νk (t )|ν̇L+1(t )〉|νk (t )〉〈νL+1(t )| + H.c.

+
L∑

k,l=1

〈νk (t )|H (t )|νl (t )〉|νk (t )〉〈νl (t )|

+ [i〈νL+1(t )|ν̇L+1(t )〉 − γ̇ (t )]|νL+1(t )〉〈νL+1(t )|, (9)

where H.c. represents the Hermitian conjugate terms. Equa-
tion (9) expresses the relation between the Hamiltonian H (t )
and the auxiliary bases {|νk (t )〉}L+1

k=1 . This relation is useful
to construct the Hamiltonian for realizing nonadiabatic holo-
nomic quantum gates.

In passing, we would like to point out that the commutation
relation [A(t ), K (t ′)] = 0 is naturally satisfied when K (t ) = 0
is taken. In this case, the Hamiltonian in Eq. (9) is reduced to
the special form given in Ref. [15]:

H (t ) = i
L∑

k=1

〈νk (t )|ν̇L+1(t )〉|νk (t )〉〈νL+1(t )| + H.c.

+ [i〈νL+1(t )|ν̇L+1(t )〉 − γ̇ (t )]|νL+1(t )〉〈νL+1(t )|.
(10)

Since K (t ) = 0 means that the parallel transport condition,
〈νl (t )|H (t )|νk (t )〉 = 0 for l, k = 1, · · · , L, is fulfilled, we can
conclude that the commutation relation is more relaxed than
the parallel transport condition. The quantum systems satisfy-
ing the commutation relation, containing those satisfying the
parallel transport condition as a subset, are more general than
the latter, therefore the schemes of nonadiabatic holonomic
quantum computation based on the commutation relation are
more flexible than those based on the parallel transport condi-
tion.

III. SCHEME

We now show the practicability of our strategy, which
is effective to design nonadiabatic holonomic gates indeed.
For a one-qubit nonadiabatic holonomic gate, the quantum
system has at least three dimensions, where a two-dimensional
subspace is used as a computational space while the remanent
one-dimensional subspace acts as an auxiliary space. To this
end, we consider a three-level quantum system consisting of
two ground states |0〉 and |1〉 and an excited state |e〉.
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To construct the quantum system that possesses a cyclically
evolutional subspace and satisfies the commutation relation,
we take the auxiliary bases as

|ν1(t )〉 = cos
θ

2
|0〉 + sin

θ

2
eiϕ |1〉,

|ν2(t )〉 = cos
α(t )

2
sin

θ

2
e−iϕ |0〉 − cos

α(t )

2
cos

θ

2
|1〉,

|ν3(t )〉 = sin
α(t )

2
sin

θ

2
e−i[ϕ+β(t )]|0〉

− sin
α(t )

2
cos

θ

2
e−iβ(t )|1〉 − cos

α(t )

2
|e〉, (11)

where θ and ϕ are time-independent parameters, and α(t )
and β(t ) are evolution parameters, being functions of time
t with α(0) = α(τ ) = 0. One can easily verify that S(t ) =
Span{|ν1(t )〉, |ν2(t )〉} undergoes cyclic variation such that
S(τ ) = S(0) = Span{|0〉, |1〉}. Thus, we can take {|0〉, |1〉} as
the computational basis.

For our purpose, we expect the Hamiltonian to have the
form of

H (t ) = 
(t )|e〉〈e| + [�(t )eiκ (t )|e〉〈b| + H.c.], (12)

where 
(t ) is the detuning of lasers, �(t ) is the pulse
envelope, κ (t ) is a time-dependent phase, and |b〉 =
sin(θ/2) exp(−iϕ)|0〉 − cos(θ/2)|1〉.

To match the Hamiltonian with the auxiliary bases, we
substitute Eqs. (11) and (12) into Eq. (9), and compare the
coefficients of each term |i〉〈 j| on both sides of the resulting
equation [53]. We can obtain


(t ) = −α̇(t ) cot α(t ) cot[κ (t ) − β(t )] − β̇(t ),

�(t )eiκ (t ) = 1
2 {iα̇(t ) + α̇(t ) cot[κ (t ) − β(t )]}eiβ(t ), (13)

and γ̇ (t ) = β̇(t ) + α̇ cot[α(t )/2] cot[κ (t ) − β(t )]/2.
By substituting Eqs. (11) and (12) with the parameters

given in Eq. (13) into Eq. (3), a direct calculation shows

A11(t ) = A12(t ) = A21(t ) = 0,

A22(t ) = − β̇(t )

2
[1 − cos α(t )], (14)

and

K11(t ) = K12(t ) = K21(t ) = 0,

K22(t ) = α̇(t )

2
tan

α(t )

2
cot[κ (t ) − β(t )] − β̇(t ) sin2 α(t )

2
.

(15)

One can readily verify that [A(t ), K (t ′)] = 0, i.e., the com-
mutation relation (5) is fulfilled. It implies that the dynamical
phase factor T exp[−i

∫ τ

0 K (t )dt] can be extracted from the
evolution operator, as shown in Eq. (6).

The above discussion shows that the quantum system
governed by the Hamiltonian in Eq. (12) with the param-
eters given in Eq. (13) satisfies the requirements that it
possesses a cyclically evolutional subspace and satisfies the
commutation relation. Such quantum system is qualified to re-
alize nonadiabatic holonomic quantum computation. We now
only need to remove the dynamical part of U (τ ) by letting
T exp[−i

∫ τ

0 K (t )dt] = I . From Eq. (15), we see that this is

guaranteed if ∫ τ

0
K22(t )dt = 0. (16)

Obviously, there are many candidates of K22(t ) satisfying
Eq. (16). For instance, we can choose K22(t ) = 0. Alterna-
tively, we can also choose K22(t ) = −β̇(t ) with β(0) = β(τ ).
In any case, as long as

∫ τ

0 K22(t )dt = 0, there is U (τ ) =
T exp[i

∫ τ

0 A(t )dt]. Substituting A(t ) given in Eq. (14) into the
integral, we have

U (τ ) = |ν1(0)〉〈ν1(0)| + e−iφ(τ )|ν2(0)〉〈ν2(0)| (17)

with φ(τ ) = ∫ τ

0 β̇(t )[1 − cos α(t )]dt/2.
Ignoring an unimportant global phase, it can be equiva-

lently rewritten as

U (τ ) = eiφ(τ )n·σ/2, (18)

where n=(sin θ cos ϕ, sin θ sin ϕ, cos θ ) and σ=(σx, σy, σz ).
It is an arbitrary one-qubit gate as the direction of the rotation
axis n and the value of the rotation angle φ(τ ) can be freely
chosen. If α(t ) and β(t ) are taken as the polar angle and
azimuthal angle of a spherical coordinate system, (α(t ), β(t ))
represents a point in a unit two-sphere. It traces a closed path
C in the parameter space when α(t ) varies from α(0) = 0 to
α(τ ) = 0, and φ(τ ) is just equal to half of the solid angle
enclosed by the path C:

φ(τ ) = 1

2

∮
C

(1 − cos α)dβ. (19)

Clearly, φ(τ ) is only dependent on the path in the parameter
space but independent of the changing rate of the parameters.

IV. DISCUSSION

After showing that it is practicable to design nonadiabatic
holonomic quantum computation based on the commutation
relation, we now discuss some details related to the choice of
K22(t ) in the above scheme and illustrate the flexibility of our
strategy, which allows us to optimize the evolution time and
evolution paths.

As stated in the last section, there are many candi-
dates of K22(t ) to realize the holonomic gate U (τ ). For
instance, it can be taken as K22(t ) = 0 or K22(t ) = −β̇(t )
with β(0) = β(τ ). From the expression of K22(t ) in Eq. (15),
we see that K22(t ) = 0 means α̇(t ) = β̇(t ) sin α(t ) tan[κ (t ) −
β(t )]. Inserting this expression into Eq. (13), we have

(t ) = −β̇(t )[1 + cos α(t )] and �(t ) exp[iκ (t )] = [iα̇(t ) +
β̇(t ) sin α(t )] exp[iβ(t )]/2. Then, the Hamiltonian in Eq. (12)
can be explicitly written as

H (t ) = −β̇(t )[1 + cos α(t )]|e〉〈e|
+ {

1
2 [iα̇(t ) + β̇(t ) sin α(t )]eiβ(t )|e〉〈b| + H.c.

}
. (20)

It is just the one given in Ref. [15], some specific
expressions of which has been widely used in the
previous schemes including the two-loop scheme [10,11]
and one-loop scheme [14]. Alternatively, if we take
K22(t ) = −β̇(t ) with β(0) = β(τ ), Eq. (15) results in
α̇(t ) = −2β̇(t ) cot[α(t )/2] cos2[α(t )/2] tan[κ (t ) − β(t )].
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Inserting this expression into Eq. (13), we have 
(t ) =
β̇(t ) cos α(t ) cot2[α(t )/2] − β̇(t ) and �(t ) exp[iκ (t )] =

{iα̇(t ) − 2β̇(t ) cot[α(t )/2] cos2[α(t )/2]} exp[iβ(t )]/2. Then,
the Hamiltonian in Eq. (12) can be explicitly written as

H (t ) =
[
β̇(t ) cos α(t ) cot2 α(t )

2
− β̇(t )

]
|e〉〈e| +

{
1

2

[
iα̇(t ) − 2β̇(t ) cot

α(t )

2
cos2 α(t )

2

]
eiβ(t )|e〉〈b| + H.c.

}
. (21)

Such Hamiltonian has never been used in previous schemes of
nonadiabatic holonomic quantum computation.

Each choice of K22(t ) has its own advantages and we can
optimize the realization by a proper choice. To illustrate this
point, we compare the evolution time in the above two choices
by using the pulse area as a measure of evolution time. We
take the evolution path which starts from the north pole along
the great circle with β(t ) = 0 to the point (α, 0), then along
the circle with α(t ) = α for a round, and finally along the great
circle with β(t ) = 0 to the north pole. That is, the path con-
sists of three segments, as shown in Fig. 1, corresponding to
the time intervals t ∈ [0, τ1], (τ1,τ2], and (τ2,τ ], respectively.

If we use the Hamiltonian in Eq. (20), which corresponds
to K22 = 0, to realize the nonadiabatic holonomic gate, its
piecewise expression reads H (t ) = iα̇(t )/2|e〉〈b| + H.c. for
t ∈ [0, τ1], −β̇(t )(1 + cos α)|e〉〈e| + [β̇(t ) sin α exp[iβ(t )]/
2|e〉〈b| + H.c.] for t ∈ (τ1, τ2], and iα̇(t )/2|e〉〈b| + H.c. for
t ∈ (τ2, τ ]. Therefore, the pulse envelope, denoted as �(t ), is
�(t ) = α̇(t )/2 for t ∈ [0, τ1], [β̇(t ) sin α]/2 for t ∈ (τ1, τ2],
and −α̇(t )/2 for t ∈ (τ2, τ ]. We then can calculate the pulse
area asA1 = ∫ τ

0 �(t )dt = π sin α + α.
If we use the Hamiltonian in Eq. (21), which corresponds

to K22(t ) = −β̇(t ), to realize the nonadiabatic holonomic
gate, its piecewise expression is H (t ) = iα̇(t )/2|e〉〈b| + H.c.
for t ∈ [0, τ1], β̇(t )[cos α cot2(α/2) − 1]|e〉〈e| − {β̇(t ) cot
(α/2) cos2(α/2) exp[iβ(t )]|e〉〈b| + H.c.} for t ∈ (τ1, τ2],
and iα̇(t )/2|e〉〈b| + H.c. for t ∈ (τ2, τ ]. Correspond-
ingly, the pulse envelope reads �(t ) = α̇(t )/2 for
t ∈ [0, τ1], β̇(t ) cot(α/2) cos2(α/2) for t ∈ (τ1, τ2], and

1

2
3

y

x

z
|

|

FIG. 1. The Bloch sphere representation of the evolution path
that starts from the north pole along the great circle with β(t ) = 0
to the point (α, 0), then along the circle with α(t ) = α for a round,
and finally along the great circle with β(t ) = 0 to the north pole.

−α̇(t )/2 for t ∈ (τ2, τ ]. In this case, the pulse area reads
A2 = ∫ τ

0 �(t )dt = 2π cot(α/2) cos2(α/2) + α.
Comparing the two cases, we have A1 < A2 for α ∈

[0, π/2) and A2 < A1 for α ∈ (π/2, π ]. Since φ(τ ) =
π (1 − cos α), we see that it needs a shorter time to realize the
quantum gate with φ(τ ) ∈ [0, π ) by using the Hamiltonian in
Eq. (20) than that in Eq. (21). Conversely, it needs a shorter
time to realize the quantum gate with φ(τ ) ∈ (π, 2π ] by using
the Hamiltonian in Eq. (21) than that in Eq. (20). Therefore,
our strategy allows us to optimize the evolution time of real-
izing a nonadiabatic holonomic gate.

Similarly, we can demonstrate that our strategy also allows
us to optimize the evolution path of realizing a nonadiabatic
holonomic gate, as many paths can be chosen for realizing the
same nonadiabatic holonomic gate. For example, when using
resonant coupling to realize nonadiabatic holonomic gates,
the previous schemes based on the parallel transport condition
only permit us to take the great circle and orange-slice-shaped
loop, while the scheme based on the commutation relation
permits us to take many available paths but not limited to
the great circle and orange-slice-shaped loop. Here, resonant
coupling means that the detuning of lasers is equal to zero.

The Hamiltonian in Eqs. (20) and (21) is achievable in
physical systems. To see this, we can generally express
them as the form H (t ) = 
(t )|e〉〈e| + [�̃(t )|e〉〈b| + H.c.].
By substituting |b〉 = sin(θ/2) exp(−iϕ)|0〉 − cos(θ/2)|1〉
into the expression, H (t ) can be further written as H (t ) =

(t )|e〉〈e| + [�̃(t ) sin(θ/2) exp(iϕ)|e〉〈0| − �̃(t ) cos(θ/2)|e〉
〈1| + H.c.]. Obviously, such Hamiltonian describes a
three-level quantum system driven by two off-resonant
lasers with common detuning 
(t ) and different Rabi
frequencies �̃(t ) sin(θ/2) exp(iϕ) and −�̃(t ) cos(θ/2). It
can be implemented in many physical systems, such as
superconducting circuits [49] and nitrogen-vacancy centers
in diamond [54]. Here, θ and ϕ completely determine the
direction of the rotation axis n, and they are constants for
a specific quantum gate. 
(t ) and �̃(t ) are determined
by α(t ) and β(t ). For a given evolution path traced by
(α(t ), β(t )), 
(t ) and �̃(t ) can be fixed and thus H (t )
is completely determined. For example, if the evolution
path traced by (α(t ), β(t )) is taken as the one in Fig. 1,
the Hamiltonian in Eq. (20) yields H (t ) = iα̇(t )/2|e〉〈b| +
H.c. for t ∈ [0, τ1], −β̇(t )(1 + cos α)|e〉〈e| + [β̇(t ) sin α

exp[iβ(t )]/2|e〉〈b| + H.c.] for t ∈ (τ1, τ2], and iα̇(t )/2|e〉
〈b| + H.c. for t ∈ (τ2, τ ]. Here, 
(t ) = 0 and �̃(t ) = iα̇(t )/2
for t ∈ [0, τ1] ∪ (τ2, τ ], and 
(t ) = −β̇(t )(1 + cos α) and
�̃(t ) = β̇(t ) sin α exp[iβ(t )]/2 for t ∈ (τ1, τ2].

The success of our scheme is dependent on the condition
stated in Eq. (16), which guarantees the removal of the dy-
namical part. If the Hamiltonian of the quantum system is
exactly controlled, the condition determined by (α(t ), β(t ))
is strictly satisfied and the holonomic gate can be accurately
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realized. However, if the control parameters, such as 
(t ) and
�̃(t ) in the Hamiltonian, contain errors due to some inevitable
noises, the evolution path traced by (α(t ), β(t )) will not be the
desired one and thus the accuracy of the quantum gate may be
affected. For this, we numerically simulate the performance
of our scheme under imperfect parameters 
(t ) and �̃(t ) by
taking the widely used Hadamard gate H as an example. The
Hadamard gate H is a rotation operation with the rotation
axis (σx + σz )/

√
2 and rotation angle π , which correspond

to θ = π/4, ϕ = 0, and φ(τ ) = π . For our purpose, we take
the input state as |0〉, the Hamiltonian as that in Eq. (20), and
the evolution path traced by (α(t ), β(t )) as the one in Fig. 1.
Furthermore, we set α(t ) = π sin[πt/(2τ1)]/2 and β(t ) =
0 for t ∈ [0, τ1], α(t ) = π/2 and β(t ) = 2π (t − τ1)/(τ2 −
τ1) for t ∈ (τ1, τ2], and α(t ) = π sin{π (τ − t )/[2(τ − τ2)]}/2
and β(t ) = 0 for t ∈ (τ2, τ ]. Then, we have φ(τ ) = ∮

C (1 −
cos α)dβ/2 = π and thus the Hadamard gate H can be
realized. In this case, the parameters should be taken as

(t ) = 0 and �̃(t ) = iπ2 cos[πt/(2τ1)]/(8τ1) for t ∈ [0, τ1],

(t ) = −2π/(τ2 − τ1) and �̃(t ) = π exp[i2π (t − τ1)/(τ2 −
τ1)]/(τ2 − τ1) for t ∈ [τ1, τ2], and 
(t ) = 0 and �̃(t ) =
−iπ2 cos{π (τ − t )/[2(τ − τ2)}/[8(τ − τ2)] for t ∈ [τ2, τ ].
Let us now assume that there exist systematic errors for the
parameters such that 
(t ) → (1 + ε)
(t ) and �̃(t ) → (1 +
ε)�̃(t ), where ε is a small number. With the aid of numerical
simulation, we calculate the fidelity F = |〈φd |φr〉|2 between
the desired output state |φd〉 and the real output state |φr〉. The
result indicates that the fidelities corresponding to ε = 0.05,
0.10, 0.15, 0.20, 0.25, and 0.30 can be up to 99.99, 99.91,
99.56, 98.74,97.27, and 95.09%, respectively, as depicted in
Fig. 2.

Besides arbitrary one-qubit gates, a nontrivial two-qubit
gate is also needed for nonadiabatic holonomic quantum
computation. To realize a two-qubit gate, one can take the
auxiliary bases as

|ν1(t )〉 = |00〉, |ν2(t )〉 = |01〉,
|ν3(t )〉 = cos

θ

2
|10〉 + sin

θ

2
eiϕ |11〉,

|ν4(t )〉 = cos
α(t )

2
sin

θ

2
e−iϕ |10〉 − cos

α(t )

2
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2
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FIG. 2. The population P(t ) = |〈φd |φr (t )〉|2 as a function of t/τ ,
where |φr (t )〉 is the real evolution state at time t . The fidelity is equal
to the population at the final time τ , i.e., F = P(τ ).

|ν4(t )〉 = cos
α(t )

2
sin

θ

2
e−iϕ |10〉 − cos

α(t )

2
cos

θ

2
|11〉

+ sin
α(t )

2
eiβ(t )|ee〉,

|ν5(t )〉 = sin
α(t )

2
sin

θ

2
e−i[ϕ+β(t )]|10〉

− sin
α(t )

2
cos

θ

2
e−iβ(t )|11〉 − cos

α(t )

2
|ee〉, (22)

where θ and ϕ are time-independent parameters and
α(t ) and β(t ) are time-dependent parameters with α(0) =
α(τ ) = 0. Note that {|ν1(t )〉, |ν2(t )〉} are invariant and
{|ν3(t )〉, |ν4(t )〉, |ν5(t )〉} have the same form as Eq. (11).
Therefore, we can use a similar approach to one-qubit gates
to realize the two-qubit gate.

So far, we have demonstrated that besides requiring the
instantaneous dynamical part to be always zero, nonadia-
batic holonomic quantum computation can be also realized
by separating the dynamical part of the total phase from the
geometric part and then removing the dynamical part. This is
similar to the case of nonadiabatic geometric quantum com-
putation [8,9], where the dynamical phase can be removed
by requiring the instantaneous dynamical part to be always
zero or by a dynamical compensation method with multiple
evolution paths [55]. Furthermore, nonadiabatic geometric
quantum computation can be realized too without removing
the dynamical phase but with requiring the dynamical phase
to be proportional to the geometric phase [56,57]. However,
it is an open problem for realizing nonadiabatic holonomic
quantum computation without removing the dynamical phase.

V. CONCLUSION

In conclusion, by introducing the commutation relation
defined in Eq. (5), we put forward a strategy to design nonadi-
abatic holonomic quantum computation. The key to realizing
a nonadiabatic holonomic gate based on this strategy is to con-
struct the Hamiltonian of the quantum system that possesses
a cyclically evolutional subspace and satisfies the commuta-
tion relation. The commutation relation guarantees that the
dynamical part of the evolution operator is separated from
the geometric part, which can be removed by properly choos-
ing evolution parameters. To show the practicability of our
strategy, a set of Hamiltonians that can realize nonadiabatic
holonomic quantum computation is given too.

The schemes of nonadiabatic holonomic quantum compu-
tation based on the commutation relation are more flexible
than the previous ones as the commutation relation is more
relaxed than the parallel transport condition. The quantum
systems satisfying the commutation relation, containing those
satisfying the parallel transport condition as a subset, are
more general than the latter. They provide more options for
realizing nonadiabatic holonomic quantum computation, and
hence allow us to optimize realizations such as the evolution
time and evolution paths.
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