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Superresolution of Green’s functions on noisy quantum computers
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Quantum computers, using efficient Hamiltonian evolution routines, have the potential to simulate Green’s
functions of classically intractable quantum systems. However, the decoherence errors of near-term quantum
processors prohibit large evolution times, posing limits to the spectrum resolution. In this paper, we show that
atomic norm minimization, a well-known super-resolution technique, can significantly reduce the minimum
circuit depth for accurate spectrum reconstruction. We demonstrate this technique by recovering the spectral
function of an impurity model from measurements of its Green’s function on an IBM quantum computer.
The reconstruction error with the atomic norm minimization is one order of magnitude smaller than with
more standard signal processing methods. Super-resolution methods can facilitate the simulation of large and
previously unexplored quantum systems, and may constitute a useful nonvariational tool to establish a quantum
advantage in the near future.
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I. INTRODUCTION

The simulation of quantum systems beyond the capabil-
ities of classical computers is one of the oldest and most
important promises of quantum computing. Since the seminal
ideas of Manin [1] and Feynman [2], quantum algorithms
have been designed for Hamiltonian evolution [3], estimat-
ing eigenvalues [4], preparing ground states [5,6], computing
transition probabilities [7], and studying equilibrium proper-
ties [8]. More recently, there has been a growing interest in
quantum algorithms for calculating Green’s functions [9–18].
These dynamic pair-correlation functions play a central role
in quantum theory, with applications in chemistry [19], con-
densed matter [20], and high-energy physics [21].

Unfortunately, the Green’s functions of many-body
strongly correlated systems are notoriously hard to compute
classically [22]. Leveraging quantum computers’ capacity to
store and time evolve large wave functions, Refs. [9–14]
propose measuring Green’s functions in the real time do-
main. Other approaches exploit Lehmann’s representation
[14–16] and the continued fraction representation [17,18]
of Green’s functions. Other works [13–17] consider varia-
tional methods, which are better suited to the current era
of noisy intermediate-scale quantum (NISQ) computers than
Hamiltonian evolution or phase estimation based algorithms.
However, it is difficult to characterize the computational scal-
ing of such variational algorithms, since in general they may
be offloading the hardness of the problem onto the opti-
mization step [23]. Moreover, methods relying on Lehmann’s
representation may need to prepare an exponentially large
number of excited states [15].

One important feature of the Green’s functions is that they
hold information about the single-particle excitation spec-
trum. In particular, the (single-particle) spectral function is
proportional to the imaginary part of the Fourier transform of
the retarded Green’s function [24]. In this paper, we consider

the problem of recovering the spectral function from real time
measurements of Green’s functions.

The previous literature [9–14] has always approached the
problem essentially the same way. One measures a Green’s
function at different times (possibly with multiple runs of
a quantum circuit), takes the discrete Fourier transform
(DFT) of the measurements, and associates its peaks with
the single-particle excitation energies. From Gabor’s uncer-
tainty principle [25], the spectral resolution δ f is inversely
proportional to the maximum measured time tmax, that is,
δ f � 1/tmax. So, it becomes challenging for NISQ computers
to produce accurate estimates, as we are in practice restricted
to very small time windows due to decoherence errors.

We argue that the aforementioned strategy is not optimal
for this problem. We know there is a finite number of spec-
tral lines, but the Fourier transform does not incorporate this
assumption. The situation is similar to reconstructing a sparse
signal in the discrete Fourier basis. In this setting, compressive
sensing methods [26], seeking the sparsest possible represen-
tation of the signal in terms of the said basis, recover the signal
with fewer measurements than what we would otherwise
expect from the Nyquist-Shannon sampling theorem [27].
However, for the same time window, the standard theory of
compressive sensing [28] does not guarantee a better spectral
line resolution compared with the discrete Fourier transform.
In essence, we are still discretizing the continuous parameter
space as a finite grid, while in general the true spectral lines
do not fall into the grid—this is known as the basis mismatch
problem [29].

In a breakthrough in signal processing theory, Refs. [30,31]
showed that under certain conditions it is possible to go be-
yond Gabor’s uncertainty limit for the spectral line estimation
problem, a result often referred to as super-resolution. These
methods work directly on the continuous parameter space,
circumventing the limitations imposed by discretization (and
so they are also sometimes referred to as “off-the-grid” com-
pressive sensing).
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Applying the atomic norm minimization (ANM) technique
developed in Refs. [31–34], we show that we can reach a
super-resolution performance for the reconstruction of the
spectral function from measurements of Green’s functions on
quantum computers. As a demonstration of this technique, we
recover the spectral function of a single-impurity model from
measurements of the real time evolution on one of IBM’s
quantum processors. We benchmark our results against the
“naive” discrete Fourier transform method, showing that only
the super-resolution method provides an accurate reconstruc-
tion.

II. A SPECTRAL LINE ESTIMATION PROBLEM

The Green’s function, denoted here as G(t ), is a two-point
correlation function that plays a central role in the theory
of many-body systems. Computing it for strongly correlated
systems with many particles is a very demanding task for
classical computers [22]. In contrast, if there is an efficient
qubit encoding of the fermionic degrees of freedom, and if the
corresponding Hamiltonian H is efficiently simulatable [35],
we can approximate G(t ) by evaluating the expected value
of suitable observables on quantum circuits [9–14]. The key
routine for these methods is the efficient implementation of
the unitary exp(−iHt ). However, large simulation times will
generally require greater circuit depths, which becomes an
obstacle in devices with limited coherence times such as the
ones in the NISQ computers era. Therefore, in practice we are
limited to computing G(t ) for very small values of t .

We can write the Green’s function as

G(t ) = −i�(t )
s∑

l=1

cle
iωl t (1)

for some s ∈ N and a suitable choice of positive real ampli-
tudes c1, . . . , cs and distinct real energies ω1 . . . , ωs. Closely
related to the Green’s function is the spectral function A(ω),
which can be written as a finite sum of weighted Dirac deltas.
Physically, it conveys information about the single-particle
excitation spectrum. From the values of the c’s and ω’s we
can directly infer the weights and the locations of the poles of
the spectral function:

A(ω) =
s∑

l=1

clδ(ω − ωl ). (2)

In the language of signal processing theory, we say that we
“sample the signal” G(t ) at n discrete times, t0, t1, . . . , tmax.
Ideally, the samples would constitute an n-dimensional vec-
tor x∗ such that x∗

j = G(t j ). In practice, the sampled signal
deviates from the exact Green’s function because of approx-
imation errors, hardware noise, and the fact that expectation
values of observables are estimated with a finite number of
measurements. Then, we say that we record a noisy signal y =
x∗ + ε, where ε is additive noise. The spectral line estimation
problem is to recover the amplitudes and energies {(cl , ωl )}s

l=1
using as few resources as possible. We mean that we would
like to minimize the number of measurements n and, most
importantly in the context of NISQ quantum simulation, the
maximum sampling time, tmax.

In previous proposals on quantum simulation of the
Green’s function in real time [9–14], the spectral lines are

always recovered via the discrete Fourier transform of the
signal. The discretization of the frequency space introduces
an error in the frequency estimation, δ f . With this approach,
both the number of samples, n, and the maximum sampling
time, tmax, scale as 1/δ f (the latter being a manifestation of
Gabor’s uncertainty principle). Fortunately, as we will see, it
is possible to circumvent the tmax ≈ 1/δ f scaling by working
directly on the continuous parameter space, entering the so-
called super-resolution regime.

III. ATOMIC NORM MINIMIZATION

We now succinctly introduce the super-resolution methods
developed in Refs. [31–34], centered on the concept of the
atomic norm. The key idea is to seek the decomposition of
the signal y involving the smallest possible number of atoms,
to be made precise in what follows. For concreteness, choose
the sampling times as t j = j with j ∈ {0, . . . , n − 1}. Then,
define the atoms a( f ) ∈ Cn as

a( f )| j := ei2π f j, j ∈ {0, . . . , n − 1}. (3)

The atomic set

A := {a( f ) : f ∈ [0, 1)} (4)

constitutes the building blocks of our signals. After proper
rescaling (see Appendix A), we can write the noiseless signal,
x∗, as a combination of such atoms. In fact, there is an infinite
number of ways to express x∗ as a sum of elements of A. But,
in the spirit of Occam’s razor, we aim for the simplest de-
scription of the signal in terms of this atomic set. This notion
is quantified in terms of the atomic norm ‖ · ‖A, defined by
identifying its unit ball with the convex hull of A, denoted as
conv(A) [32]. For any x ∈ Cn, define

‖x‖A := inf
t>0

{t : x ∈ t conv(A)} (5)

= inf
ck ∈ C

fk ∈ [0, 1)

{∑
k

|ck| : x =
∑

k

ck a( fk )

}
. (6)

A decomposition
∑

k ck a( fk ) that achieves the infimum is
called an atomic decomposition of x. See Fig. 1 for an illus-
tration of this concept. While it is not immediately clear from
the definition that solving Eq. (5) is computationally feasible,
Refs. [31,33] show that this can be reduced to a semidefinite
program with a reasonably efficient solution.

Having measured a noisy signal y, we produce an estimate
x̂(y) of x∗ as

x̂(y) = arg min
x∈Cn

{
1
2‖y − x‖2

2 + τ‖x‖A
}
, (7)

where τ > 0 is a suitably chosen regularization parameter
[33]. Effectively, by solving Eq. (7) we are denoising the
measured signal. This method can be seen as a generalization
of least absolute shrinkage and selection operator (LASSO)
regression, with the l1 norm replaced by our atomic norm.
Note that, while our atomic set A is infinite, the l1 norm
used in LASSO can be induced by a discrete atomic set—for
example, the canonical basis vectors together with their reflec-
tions about the origin.

The relevance of the denoised estimate x̂(y) for the spectral
line estimation problem becomes clear in light of Lagrangian
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FIG. 1. For any nonempty, compact, and centrally symmetric
subset A of some vector space V , we can induce a norm by iden-
tifying the 1-ball with the convex hull of A [32]. The atomic norm
of any element x ∈ V is the smallest dilation factor t � 0 such that
x ∈ t · conv(A). In this figure (considering a two-dimensional vector
space), the red line represents an arbitrary atomic set A, the blue
region is conv(A), and the yellow region is the t-ball of ‖·‖A.

dual theory [33]. For all f ∈ [0, 1), we define the dual poly-
nomial Q as

Qy( f ) := 1

τ
|〈a( f ), y − x̂(y)〉|, (8)

where 〈·, ·〉 denotes the real inner product. One can show
that Q is upper bounded by 1. Moreover, we can write x̂(y)
as a sum of atoms a( f ) only with frequencies for which
Qy( f ) = 1. In other words, the line spectrum is identified with
the peaks of the dual polynomial, offering a completely dif-
ferent perspective on the problem compared with traditional
approaches.

Now the pending question is how close is {(ĉl , f̂l )}l to the
true signal {(cl , fl )}l [or, indirectly, how good an estimate
of x∗ is x̂(y)]. An answer was provided in Ref. [34] (and
later improved by Ref. [36]), asserting that the reconstruction
performance critically depends on the minimal separation be-
tween the frequencies, known as the frequency gap, � f :=
min j �=l | f j − fl |, where | · | is understood as the wraparound
distance around the unit circle. Then, under some reasonable
assumptions on the error, the distribution of the coefficients,
and the signal-to-noise ratio [36], there is an assignment of
τ in Eq. (7) for which the estimate is close to the true signal
(with high probability), as long as

tmax � 2.5/� f . (9)

This behavior is strikingly different from the discrete
Fourier transform. For a given error bound δ f , with the atomic
norm minimization method we only need to sample up to
tmax ≈ 1/� f , as opposed to the tmax ≈ 1/δ f required with
the discrete Fourier transform. Note that in order to resolve
all the spectral lines we need δ f � � f and, in practice, we
usually want δ f 	 � f . For these cases, the atomic norm min-
imization will significantly outperform the discrete Fourier
transform.

IV. QUANTUM SIMULATIONS

As a demonstration of our technique, We apply the ANM
method to the single-impurity model (also known as the An-
derson model) [37], which has received wide attention in

a H •

e−iHt

• H

1

g

X X

2

FIG. 2. Quantum circuit used to compute the Green’s function. It
is a variation of the single-qubit interferometry scheme (commonly
referred to as the Hadamard test) employed in Ref. [11]. H is the
Hadamard gate and the g gate denotes the ground-state preparation
circuit. As shown in Appendix E, we can use the fact that we are only
interested in the expected value of an observable defined on the top
qubit to simplify the circuit to only two qubits.

the context of quantum simulation for its role in dynamical
mean-field theory and its relation with the Hubbard model.
Due to quantum hardware limitations, we consider only one
fermionic bath site. For a suitable choice of parameters (corre-
sponding to a fixed point of the dynamical mean-field theory
loop [38]), the single-impurity Hamiltonian can be encoded
into the Hilbert space of three qubits with the Bravyi-Kitaev
transformation as (see Appendix B)

H = Z1Z2 + 0.75X2 + 0.37(1 + Za)X1. (10)

Letting C be the unitary encoded in the quantum circuit of
Fig. 2, the impurity’s Green’s function can be expressed as

Gimp(t ) = −i�(t )〈C†ZaC〉, (11)

where the expectation value is over the all-zero state.
For several times t , we evaluate Gimp(t ) with the circuit

represented in Fig. 2 using IBM’s ibmq_manila device, fol-
lowing Ref. [11]. The details of our implementation, including
a strategy to exploit the symmetries of the spectral func-
tion, are explained in Appendices C–F. But the core routine
of the computation remains the time evolution of the sys-
tem’s ground state. For this, we approximate the operator
exp(−iHt ) with a second-order Suzuki expansion [35,39],
which we simplify down to a circuit that only contains two
two-qubit gates. In our simulations, we assume that we know
a priori the ground state, which can be determined with a
simple classical calculation and prepared with a short sub-
circuit. In a scenario where the ground state is unknown,
we could prepare it, for example, using variational quantum
algorithms [40]. We opt not to do this here, as our focus is
in the performance of the ANM method. Finally, we resort
to some standard error mitigation techniques to improve the
precision of the measurements.

With the measured values of Gimp, we reconstruct the spec-
tral function with two distinct methods.

(1) DFT: We apply a standard DFT-based method. We use
zero padding [41] to help determine the location of the peaks,
noting that this does not actually increase the resolution. We
estimate the amplitudes and energies {(ĉl , ω̂l )}l by matching
each observed peak with the expected theoretical form of
a sinc function. To discern the contribution of the different
peaks, we iteratively remove the observed peaks from the
spectrum, going from the peak with the highest to the lowest
amplitude.
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FIG. 3. Spectrum reconstruction error (12) as a function of tmax

for the ANM and the DFT methods—full and dashed lines, re-
spectively. The blue lines correspond to a perfect simulation of
exp(−iHt ) and exact evaluation of the observables. The orange lines
also originate from simulated data, but include only the error from
the second order Suzuki formula (no circuit or observable estimation
errors). Finally, the green lines are obtained from the demonstration
on IBM’s ibmq_manila device (see Appendix G). For the demon-
stration, we took 105 shots of the quantum circuit for each value
of t . For tmax = 0.27 the ANM reaches a reconstruction error of
0.5%. Nevertheless, for larger values of tmax the ANM begins to
worsen because the product formula that we use starts to deviate
from the exact time evolution. Independently of the value of tmax,
the DFT never achieves a reconstruction error below ≈10%, even
in a noiseless scenario. The black dotted vertical line signals the
value of tmax past which the ANM theory guarantees a successful
reconstruction [see Eq. (9)]. We observe that in practice we need
much shorter time windows.

(2) ANM: After proper rescaling of time (see Appendix A),
we denoise the observed signal with ANM, solving Eq. (7).
The frequencies { f̂l}l are identified with the peaks of the
dual polynomial Q( f ) of the denoised signal, and are then
converted to the energies {ω̂l}l . Finally, the amplitudes {ĉl}l
are retrieved via least-squares minimization.

In Fig. 3, we compare the performance of the DFT and the
ANM methods for various values of tmax. For this purpose, we
define the reconstruction error to be

ε :=
∑

l |cl | · |ωl − ω̂l | + |cl − ĉl |∑
j |c j | · |ω j | + |c j | , (12)

thereby encapsulating the error in the estimation of both the
frequencies and the amplitudes.

For a perfect reconstruction, we would expect four poles,
{(cl , ωl )}l = {(0.525,±0.548), (0.475,±3.042)}. The DFT
never reaches a reconstruction error below 9.7%, obtain-
ing the poles {(0.528,±0.265), (0.460,±2.836)}. This is
because when the time window becomes large enough to
allow a precise spectral location, the low-order Suzuki ex-
pansion has already deviated significantly from the exact
time evolution operator. In contrast, the error of the ANM
method decreases sharply for small values of time, reaching
ε = 0.5% for tmax = 0.27, and obtaining {(cl , ωl )}l =
{(0.524,±0.562), (0.475,±3.025)}. After that value of tmax

the ANM error also grows due to the time-evolution approx-
imation errors. This order-of-magnitude difference between

the results of the ANM and the DFT constitutes evidence that
the former can offer an important advantage in reconstructing
spectral functions on real noisy quantum devices.

V. DISCUSSION

We have proposed the atomic norm minimization, a super-
resolution technique well known in signal processing theory,
as a tool for studying the single-particle excitation spectrum
of quantum systems with quantum computers. In previous
works, the reconstruction of the spectral function from mea-
surements of the Green’s function at discrete times was
approached with the discrete Fourier transform. In this case,
by Gabor’s uncertainty principle, the resolution of the spectral
lines scales with the inverse of the maximum sampling time.
In contrast, with the atomic norm minimization this resolution
scales with the inverse of the spectral gap, which in practice
greatly reduces the depth requirements of the quantum cir-
cuits used to compute the Green’s function. Applying these
techniques, we were able to reconstruct the spectral function
of the single-impurity model with one bath site using IBM’s
ibmq_manila with an error one order of magnitude smaller
than with standard signal reconstruction methods (based on
the discrete Fourier transform).

With super-resolution techniques, we can reach tolerable
reconstruction errors by sampling the Green’s function up
to a tmax that is one order of magnitude lower than what
is required with more standard methods. The less stringent
requirements allow using lower-order product formulas that
deviate from the exact time evolution quicker, but also require
fewer quantum gates to implement. With fewer gates, the
simulations are less affected by the high error rates associated
with currently available NISQ hardware. Ultimately, these
ideas may enable the simulation of previously unexplored sys-
tems, and possibly showcase quantum advantage in the near
future.

As far as we are aware, ours constituted the most accurate
reconstruction of the spectral function of the single-impurity
model with one bath site based on measurements of the
real time Green’s function using real quantum hardware.
We note that Ref. [13] succeeded in this task only for the
case V = 0, which is essentially a single site problem. The
other experimental calculations of the spectral function found
in the literature [14–16] were based on Lehmann’s repre-
sentation and resorted to variational quantum eigensolvers.
Compared with these variational methods, the computational
scaling of our approach is better characterized, with proven
efficiency in the limit of many particles, as long as the spec-
tral gap remains sufficiently large. Our paper differs from
most publications in the field for being a successful quantum
simulation that is not intrinsically based on variational algo-
rithms. Moreover, unlike previous approaches, ours does not
require knowing in advance the number of poles in the spectral
function.

We have observed that we can reconstruct the spec-
tral function with time windows significantly shorter than
what is guaranteed by the atomic norm minimization theory
[Eq. (9)]. This can be partially explained by the theory of
super-resolution of positive sources [42,43], which considers
the restricted version of the problem where the coefficients
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cl in Eq. (1) are real positive numbers. Up to a global phase
factor, the spectral function fits this constraint. In this case,
one can show that we can perfectly reconstruct the signal from
any s + 1 noiseless samples, independently of the spectral
gap. As far as we know, these results have not been extended
to a noisy setting. Therefore, although the guarantees that we
present are fully rigorous, they may be overly conservative
and it may be possible to tighten them significantly.

The theorems of Refs. [34,36] about the performance of
the atomic norm minimization assumed the noise to be com-
posed of independently and identically distributed complex
Gaussian random variables, which is not the case in our
demonstration. Despite this, the reconstruction was success-
ful, reaching an error of 0.5%. An interesting question is how
close is the signal that we measure to this assumption, or how
can the theoretical guarantees be generalized to other noise
models.

While we have considered the atomic norm minimization
for the study of the single-particle excitation spectrum, our
methods may benefit other problems. Examples of possible
applications include probing many-body localization [44],
learning the structure of entanglement Hamiltonians [45], and
studying Floquet systems [46]. In general, super-resolution
techniques can be used when the signal read from the quantum
processor can be framed as a sum of a few atoms from a pos-
sibly infinite atomic set (not just the Fourier basis). Hopefully,
future works will unveil the full potential of the atomic norm
minimization for quantum computing.
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APPENDIX A: RESCALING THE SIGNAL

In order to implement atomic norm minimization, we as-
sume a signal of the form

x j =
∑

l

cl e
i2π fl j, (A1)

where fl ∈ [0, 1) and j ∈ {0, . . . , n − 1}. To cast the signal
in this form, we may need to perform energy and time shifts.
For this, we require an estimate of the energy range [ωa, ωb]
where the peaks of the spectral function are found, and an
estimate of the smallest spectral gap. We know that, for a

Hamiltonian

H =
∑

k

hk (Pk,1 ⊗ Pk,2 ⊗ · · · ), with Pk, j ∈ {I, X,Y, Z},

(A2)

its minimum and maximum eigenenergies are bounded by

Emin � −
∑

k

|hk|, Emax �
∑

k

|hk|. (A3)

Consequently, the highest peak (in absolute value) for the
spectral function is bounded by Emax − Emin . If no better
estimate of the energy range is known, then we may set

ωa = −2
∑

k

|hk|, ωb = +2
∑

k

|hk|. (A4)

Assuming that the spectral function has at least K nonzero
peaks, then we may set an upper bound �ω for the spectral
gap as

�ω = ωb − ωa

K − 1
. (A5)

If more information is known about the quantum system
at hand, the energy range [ωa, ωb] may be tightened, and
the spectral gap estimate �ω lowered from these general
estimates. Due to the wraparound nature of the energy and
frequency range in the context of atomic norm minimization,
we must first pad the energy range to ensure the wraparound
region does not introduce an artificially small energy gap. As
a result, the effective energy range considered is[

ωa − �ω

2
, ωb + �ω

2

]
(A6)

and so the effective frequency range is

	max := 1

2π
(ωb − ωa + �ω ). (A7)

Now suppose that we take n samples of Gμ(t ) at times

T = {t j}n−1
j=0, (A8)

t j := t0 + j

	max
, (A9)

obtaining the signal

xreal
j = Gμ(t j ). (A10)

Then, to reach the desired form for atomic norm minimization,
we perform the mappings

{t j}n−1
j=0 �−→ {0, . . . , n − 1}, (A11)[

ωa − �ω

2
, ωb + �ω

2

]
�−→ [0, 2π ], (A12)

for the time and energy variables, respectively. The latter
mapping ensures that the frequencies are contained in [0, 1),
since ω = 2π f . Let

φ := 1

2π	max

(
ωa − �ω

2

)
. (A13)

φ represents a phase shift. For example, φ = 0 indicates that
our energy range already starts at zero (so no shift is required),
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while φ = −1/2 indicates an originally symmetric energy
range, of the form [−ω,ω]. Applying the correction

x j = xreal
j e−i2πφ	maxt j , (A14)

the rescaled signal x j satisfies Eq. (A1), as desired. Applying
atomic norm minimization to the signal x j , we obtain the
estimate {(ĉl , f̂l )}s

l=1. By undoing the rescaling with

creal
l = ĉl e

−i2π f̂l 	maxt0 , (A15)

ωreal
l = 2π f real

l = 2π	max ( f̂l + φ), (A16)

we obtain the spectrum {(creal
l , ωreal

l )}s
l=1 associated with our

original signal xreal
j .

For the discrete Fourier transform, the frequencies are con-
sidered to belong to the [−1/2, 1/2] range, instead of the
[0, 1). We use the previous approach, but now the phase shift

φDFT = φ + 1
2 (A17)

increases by 1/2, when compared with the atomic norm min-
imization phase shift of Eq. (A13). Note that, in this case, the
spectral gap �ω no longer plays the same role. Nonetheless, it
may still be set to a nonzero value for the rescaling, to improve
resolution for the energies near ωa and ωb.

APPENDIX B: DERIVATION OF
THE EFFECTIVE HAMILTONIAN

A general impurity Hamiltonian can be written as

H = Himp + Hbath + Hmix, (B1)

Himp =
∑

α

(εα − μ)c†
αcα +

∑
αβγ δ

Uαβγ δ c†
αc†

βcγ cδ, (B2)

Hmix =
∑
αi

Vαi c†
αci + H.c., (B3)

Hbath =
∑

i

εi c†
i ci, (B4)

where the Greek and Latin indices correspond to the impurity
and bath fermionic degrees of freedom, respectively, covering
both the different sites and their spins. μ is the chemical
potential; εα and εi denote the on-site energies of the impurity
and bath, respectively; Uαβγ δ denotes the electron interaction
energies; and Vαi denotes the hopping elements between the
impurity and the bath.

We consider the single-impurity model for one bath site,
with εα = εi = 0, μ = U/2. There are two spin values associ-
ated to the impurity and bath site. Applying the Bravyi-Kitaev
transform we get

c0,↑ = X1 + iY1

2
X2X4, (B5)

HBK = U

4
Z1Z3 + V

2
(X1 − X1Z2 + X3 − Z2X3Z4), (B6)

where 0,↑ refers to the spin-up case in the impurity site.
Thanks to particle number conservation and particle-hole
symmetry, for the ground state, the second and fourth qubits
always read 1 and 0, respectively. Consequently, for the state
|EX〉 := X1X2X4|GS〉 the second and fourth qubits must al-
ways read 0 and 1, respectively, as they are simply the negated

|φ1〉 |φ2〉
a H • • H

1

GS

σα

e−iHBKt

σβ

2 X X

3

4 X X

FIG. 4. Original single-qubit interferometry scheme used to
compute the Green’s function, before the simplifications that led
to the one in Fig. 2. σα/β means an X or a Y Pauli gate, H is
the Hadamard gate, and the GS operator denotes the ground-state
preparation circuit.

values associated with the ground state. The Green’s function
of interest can be written as

G0,↑(t ) = −i�(t )〈GS|{U†c0,↑U , c†
0,↑}|GS〉. (B7)

For the particular Hamiltonian we are considering, the
Green’s function is symmetric, so we only need to consider
the case σα = σβ = X in Fig. 4 [see Appendix C, where this
result is derived, and the resulting Eq. (11)]. Looking at Fig. 4,
we may conclude that

|φ1〉 = 1√
2
|0〉a|GS〉1234 + 1√

2
|1〉a|EX〉1234 (B8)

= 1√
2
|0〉a|g〉13|10〉24 + 1√

2
|1〉a|e〉13|01〉24, (B9)

with |g〉 and |e〉 some quantum states in the 1 and 3 subspace.
Since HBK acts as either the identity or Z in qubits 2 and 4,
then we have, from Fig. 4,

|φ2〉 = 1√
2
|0〉a|g f 〉13|10〉24 + 1√

2
|1〉a|e f 〉13|01〉24, (B10)

with |g f 〉 and |e f 〉 some quantum states in the 1 and 3 sub-
space. We observe that the values of qubits 2 and 4 are

a H • • •

1
g

σα

e−iHBK,GSt e−iHBK,EX t

σβ

2

a H •

e−iHBK,efft

•

= 1
g

σα
σβ

2

FIG. 5. The circuit in Fig. 4 can be partly reduced to this circuit.
The controlled evolutions of HBK,GS and HBK,EX can be further
simplified into the evolution of an effective Hamiltonian HBK,eff. The
gate g denotes the preparation of the state |g〉, which is the reduced
form of |GS〉, once the original qubits 2 and 4 have been tapered off.
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preserved throughout the Hamiltonian evolution. Conse-
quently, these qubits may be tapered off. Renaming the third
qubit as the second one, we reach two distinct Hamiltonians,

HBK,GS = U

4
Z1Z2 + V (X1 + X2), (B11)

HBK,EX = U

4
Z1Z2 + V X2, (B12)

for the time evolutions of |GS〉 and |EX〉, respectively. These
are the Hamiltonians such that

|g f 〉12 = e−iHBK,GSt |g〉12, (B13)

|e f 〉12 = e−iHBK,EXt |e〉12. (B14)

As a result of this simplification, the simulation procedure
can be performed using just three qubits, instead of the initial
five (when counting with the extra ancilla qubit). Unfortu-
nately, this requires evolving the Hamiltonian HBK,GS when
the ancilla qubit is |0〉 and HBK,EX when the ancilla qubit is
|1〉, thereby requiring the evolution operator to be condition-
ally performed (see Fig. 5). At first glance, it might seem like
this could significantly worsen the simulation performance.
However, an equivalent evolution to the one intended can be
obtained by simulating the effective Hamiltonian

HBK,eff = U

4
Z1Z2 + V X2 + V

(
1 + Za

2

)
X1 (B15)

using not only the two site qubits, but also the ancilla qubit
a. Within this setting, without the original qubits 2 and 4,
the annihilation operator c0,↑ can be implemented simply as
X1+iY1

2 .
For our simulations, we choose U = 4 and V = 0.745,

corresponding to a fixed point of the dynamical mean-field
theory loop [38].

APPENDIX C: COMPUTING THE GREEN’S FUNCTION

For the circuit in Fig. 2, using Pauli matrices σα/β , if we
measure the ancilla qubit in the Z and −Y basis, respectively,
we obtain the expectation values

Eαβ
Z = Re〈U†σβUσα〉, Eαβ

−Y = Im 〈U†σβUσα〉, (C1)

corresponding to the real and imaginary parts of 〈U†σβUσα〉.
The Green’s function is

Gμ(t ) = −i�(t )〈GS|{cμ(t ), c†
μ(0)}|GS〉 (C2)

= −i�(t )〈GS|{U†cμ(0)U , c†
μ(0)}|GS〉, (C3)

where {·, ·} is the anticommutator. Without loss of generality,
we consider that cμ = X+iY

2 in this section. Its conclusions can
be trivially extended to cases where cμ = X+iY

2 P, with P some
combination of Pauli operators, as in Eq. (B5).

The impurity’s Green’s function is then given by

Gμ(t ) = −i�(t )

4
[〈U†XUX 〉 + 〈XU†XU〉
− i〈U†XUY 〉 − i〈YU†XU〉
+ i〈U†YUX 〉 + i〈XU†YU〉
+ 〈U†YUY 〉 + 〈YU†YU〉]. (C4)

For any Hermitian operator A, and eigenstates |l〉 of H , we
can see that

〈GS|U†AUA|GS〉 = eiE0t 〈GS|AUA|GS〉 (C5)

= eiE0t 〈ψ |U |ψ〉, (C6)

with |ψ〉 = A|GS〉. (C7)

Writing |ψ〉 = ∑
l al |l〉 using the |l〉 eigenstates then leads to

〈GS|U†AUA|GS〉 = eiE0t
∑

l

|al |2〈l|U |l〉 (C8)

=
∑

l

|al |2e−iωl t , (C9)

with ωl := El − E0 � 0. (C10)

Therefore 〈U†XUX 〉 and 〈U†YUY 〉 always have real, positive
coefficients. Similarly, we may show that

〈GS|U†YUX |GS〉 = −〈GS|U†XUY |GS〉 (C11)

=
∑

l

i|al |2e−iωl t 〈l|Z|l〉. (C12)

Since the expectation value of Z is always real, these com-
ponents’ coefficients are always imaginary (but possibly
negative, if 〈Z〉 is negative), and vice versa. Then, we only
need to compute one of these terms for Eq. (C4). Any gen-
eral impurity Hamiltonian (B1) is particle number preserving,
and can be decomposed into (n + 1) invariant subspaces Sk ,
each associated with an occupation number k from zero
to n. Therefore, X transforms the ground state |GS〉 ∈ Sg

into some state |E0〉 := αg−1|eg−1〉 + αg+1|eg+1〉, with |ek〉 ∈
Sk . Applying Z leads to |E1〉 := αg−1|eg−1〉 − αg+1|eg+1〉. We
have 〈E0|U |E0〉 = 〈E1|U |E1〉, since H acts independently on
the two subspaces Sg±1. As Y = −iZX , we conclude that

〈GS|U†XUX |GS〉 = 〈GS|U†YUY |GS〉, (C13)

for Hamiltonians as in Eq. (B1). For the case considered in
Eq. (10) of one fermionic bath site, we may go one step
further: thanks to particle-hole symmetry, 〈l|Z|l〉 = 0 for all l ,
and so cross-term components are zero. These simplifications
result in Eq. (11).

Using Eqs. (C10) and (C12), the Green’s function can be
written as

Gμ(t ) = −i�(t )
∑

l

|al |2(Re{e−iωl t } + i〈l|Z|l〉Re{ie−iωl t }), (C14)

= −i�(t )
∑

l

|al |2[cos(ωl t ) + i〈l|Z|l〉 sin(ωl t )], (C15)

= −i�(t )
∑

l

|al |2
2

[(1 + 〈l|Z|l〉)eiωl t + (1 − 〈l|Z|l〉)e−iωl t ]. (C16)
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Note that the Green’s function without the �(t ) component
is symmetric if 〈l|Z|l〉 = 0. In general, it is simpler to work
with

G̃μ(t ) :=
∑

l

|al |2
2

[
(1 + 〈l|Z|l〉)eiωl t + (1 − 〈l|Z|l〉)e−iωl t

]
,

(C17)

since it holds information at t < 0 [for a nonsymmetric G(t )].
This is useful as we may also time evolve the system in the
negative direction, but are limited to evolution times with
short absolute values. The identical peaks and amplitudes of
G̃μ(t ) and Gμ(t ) then allow us to fully reconstruct Gμ(t ). In
the case of a symmetric Gμ(t ), to avoid having to find two
peaks for every ω j value, we may compute instead

G̃sym(t ) =
∑

l

|al |2eiωl t (C18)

= 〈U†XUX 〉† (C19)

= Exx
Z − iExx

−Y , (C20)

from which Gμ(t ) can be obtained.

APPENDIX D: GROUND-STATE PREPARATION CIRCUIT

Using the reduced Hamiltonian HBK,eff for the single-
impurity model with one bath site, the ground state is of the
form

|g〉 = cos

(
θ

2

)( |00〉 + |11〉√
2

)
+ sin

(
θ

2

)( |01〉 + |10〉√
2

)

(D1)

with θ := −2 arccos(1/
√

1 + a2) and a := (U +√
U 2 + (8V )2)/(8V ). This state can be efficiently created by

the circuit

CNOT2,1[H2 ⊗ Ry(θ )1], (D2)

where CNOT1,2 denotes the controlled-NOT (CNOT) operator
between qubits 1 and 2, as represented in the circuit below:

1 Ry(θ)

2 H •
.

APPENDIX E: SIMPLIFYING
TROTTERIZATION CIRCUIT

For the one-site SIAM model, we use the second-order
Suzuki-Trotter formula, with two time steps. We implement
the unitary

e−iHt �
2∏

i=1

e−i t
4

V
2 ZaX1 e−i t

4 V X2 e−i t
4

U
4 Z1Z2 e−i t

4
V
2 X1

× e−i t
4

V
2 X1 e−i t

4
U
4 Z1Z2 e−i t

4 V X2 e−i t
4

V
2 ZaX1 . (E1)

A naïve implementation of this unitary and the rest of the
circuit would require 19 CNOT gates (16 for the unitary, one for
the ground state, and two to compute the Green’s function).
However, surprisingly, this circuit may be simplified down to
only two qubits and two CNOT gates, making it amenable to
current, and still very noisy, quantum hardware.

Collapsing the middle V ZaX1 exponentials reduces the
CNOT count of the unitary from 16 down to 14. Furthermore,
note that

e−i t
4

U
4 Z1Z2 e−i t

2
V
2 X1 e−i t

4
U
4 Z1Z2 (E2)

(E3)

(E4)

so the unitary CNOT count gets further reduced to 10. The full 13 CNOT gate circuit is then

(E5)

(E6)

The final CNOT and Rx are redundant, since we are only measuring the ancilla qubit. Therefore, the circuit is composed of
consecutive two-qubit blocks of three, four, and five CNOT gates. Each of these two-qubit unitaries can be rewritten using just
two CNOT gates, resulting in a circuit with six CNOT gates.

This circuit now has the form

(E7)
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where Ai, Bi, and Ci are single-qubit gates. Again, note that
the B6 and C6 gates do not need to be implemented. For
our particular circuit, the gates B2 and B4 may be written
solely using Rz and X gates. This means that qubit 2 is
never in superposition (in the Z basis) throughout the whole
circuit. Therefore, the Rz gates in this qubit are redundant,
as they only add a global phase, and the X gates may be
preprocessed and removed. As a result, we know a priori
if the CNOT gates controlled by qubit 2 apply an X gate or
not to qubit 1, and we may replace them directly by these
X gates.

The final circuit, consequently, only has gates in the first
two qubits. Rewriting this two-qubit circuit once more, we end
up with a circuit of the form

(E8)

where the D6 gate need not be applied. These gates will
change as we change the value of t , but the circuit structure
is always similar.

APPENDIX F: ERROR MITIGATION

The measurements in the real quantum hardware are sub-
ject to various sources of noise, and so error mitigation
techniques are desirable. The goal is to obtain converted data
that most closely match the exact Gμ(t ). For real data, the
deviation from the correct values is mostly due to four error
sources: the stochasticity of the measurements, time-evolution
errors, readout errors, and gate errors.

We estimate expectation values by performing a finite
number of measurements and taking the corresponding mean.
Therefore, our estimate has an associated variance. Fortu-
nately, the number of measurements necessary to reduce the
error below εM is in general O(1/ε2

M ), so it can be made arbi-
trarily small. Moreover, this error can be modeled as Gaussian
noise in the limit of many measurements, which is the setting
assumed for the theoretical guarantees of the atomic norm
minimization [34,36].

We approximate the time evolution with a product formula.
The validity of this approximation worsens as we increase the
evolution time. So, the time-evolution routine contributes with
a systematic bias to the computed Gμ(t ) if the expansion used
does not have negligible error for the time domain considered.
We could increase the order of the product formula, but that
would lead to a larger circuit and thus more decoherence
errors. In the end, we must bear in mind that the results are
limited to the range where the product formula constitutes a
good approximation of the time-evolution operator.

The current devices do not measure the qubit registers with
perfect fidelity. To deal with these readout errors, we first
compute a measurement filter, which indicates the observed
deviation of the readout results from its expected values, for

0 1 2 3 4

FIG. 6. Device layout. The nodes represent the qubits, and their
labels, while the edges indicate the possible direct CNOT gate
implementations.

the particular hardware chip in use at the given time. With
this filter, we can partially undo the effect of readout errors
on our Gμ(t ) data. The measurement filter only needs to be
computed once, and it can then be applied to all circuits run on
that particular chip. As we are only interested in correcting the
readout error of the ancilla qubit, this filter takes a constant,
negligible time to compute, independent of the number of
qubits or the circuits we intend to use.

For real quantum hardware, the gate’s physical implemen-
tation is also not perfect. Its deviation from the desired gate
introduces errors in the quantum state that may severely af-
fect the output. To mitigate these errors, we assume that the
obtained noisy data Gμ,noisy(t ) are of the form

Gμ,noisy(t ) =
∑

l

c̃l e
i2π fl t , c̃l � αcl , with 0 < α � 1.

(F1)

For t = 0, we know from analytic considerations that
Gμ(0) = −i. By comparing the value of Gμ(0) with the values
of Gμ(t ) for small t , we estimate a value of α. Then, we
rescale the measured data by 1/α. This admittedly ad hoc
procedure effectively nullifies some effects of the encountered
gate errors. In general, we could also have implemented some
form of zero noise extrapolation [47], but we did not observe
a significant advantage of doing so for our case.

APPENDIX G: DEVICE INFORMATION

The experimental results were obtained in IBM’s
ibmq_manila device, in backend version 1.0.35. Qubits 3
and 4 were used to run the circuit in Eq. (E8) to obtain the
results in Fig. 3. Its layout and a representative configuration
are displayed in Fig. 6 and Table I, respectively. We note
that, due to limitations in the number of circuits allowed to
run concurrently in IBM’s devices, and the large number of
circuits required to obtain Fig. 3, IBM’s device may have
been recalibrated between some of the runs. Nonetheless, the
device configuration did not deviate significantly from the
values shown in Table I.

TABLE I. Device configuration.

Qubit 3 4

T1 (μs) 123.82 128.65
T2 (μs) 58.86 46.80
Frequency (GHz) 4.951 5.065
Anharmonicity (GHz) −0.344 −0.342
Readout error (%) 1.96 2.52
p(1|0) (%) 0.74 1.30
p(0|1) (%) 3.18 3.74
Readout length (ns) 5351 5351√

X infidelity (%) 0.045 0.045√
X duration (ns) 35.6 35.6

CNOT(4,3) infidelity (%) 0.68
CNOT(4,3) duration (ns) 298.7
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