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Global estimation strategies allow one to extract information on a phase or a set of phases without any prior
knowledge, which is required for local estimation strategies. We devise a global multiphase protocol based
on Holevo’s estimation theory and apply it to the case of digital estimation, i.e., we estimate the phases in
terms of the mutual information between them and the corresponding estimators. We test the protocol in two
particular cases, i.e., the single-phase and the double-phase estimation. In the single-phase scenario, the protocol
encompasses two specific known optimal strategies. We extend them to the simultaneous estimation of two
phases and evaluate their performance. Then we retrieve the ultimate digital bound on precision when a generic
number of phases is simultaneously estimated. This bound is again expressed in terms of mutual information and
is general for any digital multiphase estimation protocol. We show that in the multiphase strategy there is only a
constant quantum advantage with respect to a sequence of independent single-phase estimations. This extends a
recent similar result, which settled a controversy on the search for the multiphase enhancement.
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I. INTRODUCTION

Quantities that in quantum mechanics are not described by
operators require the search for good estimators revealing the
value of the corresponding parameters [1]. The efficiency of
an estimation strategy is assessed by the Heisenberg bound
[2,3], which provides the ultimate achievable precision.

In this context, we have a general framework for local
estimation, where an approximate knowledge of the parameter
at least is assumed through, for instance, preliminary coarse
measurements that the local estimation aims to improve [4,5].
The idea is to study the dispersion of the estimator in the
neighborhood of the parameter, typically through the Fisher
information and the Cramér-Rao bound. The theory has been
successfully specified in the quantum formalism and extended
to the multiparameter estimation, where more than one param-
eter is simultaneously estimated [4,6–8].

The same cannot be said for global estimation theories,
since generally global models are exactly solved only in
special cases [9]. In global estimation theories, no a priori
knowledge of the parameter is assumed and the goal is to
investigate the quality of an estimation procedure defined
by a measurement on an input state where the parameter
is encoded. One can do this by describing the parame-
ter and estimator as phases and averaging a suitable cost
function over the whole range. Much effort has been spent to
apply a Bayesian approach to local theories, thus accounting
for uncertainty on the knowledge of the parameter [9,10].
This approach produced many useful bounds on specific cost

functions (typically the mean-square error), such as the Ziv-
Zakai bounds, originated in Ref. [11]. Still, all these criteria
are based on preliminary knowledge about the parameter to
be estimated. Useful group-covariant methods have been de-
veloped to assess a relation between Cramér-Rao bounds and
the asymptotic bound of the error between the estimator and
parameter [12–15].

As concerns genuine global Bayesian estimation theories,
the seminal work by Holevo [16] defined the framework and
the first main results for a restricted but significant class of
cost functions in the case of a nondegenerate generator and
single-parameter estimation. Then the case of a degenerate
generator was considered and accomplished in Ref. [17]. A
first extension to the multiparameter scenario grounded in
Holevo’s global theory was developed in Ref. [18]. Only a
few investigations followed in this direction. A generalization
of the quantum phase estimation algorithm (QPEA) to the
multiphase context was recently provided in Ref. [19]. A
Bayesian covariant estimation was provided in Ref. [9], where
Demkowicz-Dobrzaski et al. found the positive operator-
valued measures (POVMs) optimizing cost functions related
to the quantum state fidelity in the specific case of pure and
mixed qubits as probes. Interestingly, a couple of years later
Górecki and Dobrzański exploited a minimax approach to
generalize a local phase estimation to the global covariant sce-
nario [20]. In particular, they retrieved the Heisenberg bound
scaling on the sum of the squared errors in the multiphase
case and proved that the advantage of simultaneous multi-
phase estimation with respect to independent single-phase
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estimations amounts to a constant factor. This result created a
controversy, since it contradicts the multiphase enhancement
previously claimed both in local frameworks [6–8], where an
intrinsic advantage scaling with the number of simultaneously
estimated phases was found, and in the global framework of
the multiphase QPEA [19].

Here we devise a protocol for global multiphase estima-
tion with commuting generators based on the extension of
Holevo’s optimal POVM [16] to the multiphase case ex-
ploited in Ref. [18]. The protocol is more general than other
procedures, such as the ones in Refs. [18,20], because it en-
compasses diverse well-known global single-phase estimation
strategies. Indeed, the protocol fixes the POVM only so that,
by suitably changing the input state, it outputs the statistics re-
lated to the corresponding strategy, defined by the desired cost
function. Estimation strategies can be generally differentiated
according to the application of the encoding unitaries into
parallel and sequential [3,21]. In parallel configurations, we
encode the parameter on a number N of inputs employed all
together, while in the case of a sequential strategy we use the
encoding unitary N times on the same input, possibly coupled
to ancillary systems. As a preliminary test for our protocol,
we show how a suitable choice of the probes can reduce it to
known optimal parallel and sequential strategies.

In principle, if the estimator is a continuous variable, our
protocol sets no limitations on the cost function to be op-
timized. If the estimator is discrete, the protocol needs to
satisfy several assumptions about the cost function, which are
detailed in Appendix A, in order to keep the Bayesian average
of the cost function invariant under discretization. Here we
take a discrete estimator and apply the protocol to the mutual
information between the parameter φ and the estimator φ̃,
which can be defined as [22]

I (φ̃ : φ) = H (φ̃) − H (φ̃|φ), (1)

where H (φ̃) is the entropy of the estimator and H (φ̃|φ) is
the conditional entropy of the estimator with respect to the
parameter. Every estimation strategy is intrinsically depen-
dent on the figure of merit one wants to optimize, since it
is the indicator of the quality of the estimation itself. For a
global estimation, the mutual information is a good candi-
date because it does not depend on the parameter and has a
clear physical meaning: It is the number of bits shared by
the parameter and estimator. An estimation theory based on
the mutual information is known as digital estimation. Dig-
ital quantum estimation for sequential and parallel strategies
was developed in the single-parameter case in Ref. [21]. In
Ref. [23] the relative entropy was used as a precision crite-
rion for the generation of approximating states in the case of
mixed states. Another well-established case where the mutual
information is used as a figure of merit for phase estimation is
the rate-distortion theory [24,25]. Note that in rate-distortion
theories typically the cost function employed is the so-called
distortion, defined as a function of the difference between
the estimator and parameter, and the minimum of the mutual
information over the conditional distribution p(φ̃|φ) is used
to lower bound the distortion through Shannon’s joint source-
channel coding theorem [22]. Here instead we will use the
conditional entropy defining the mutual information itself as
a cost function. As noted by Hall in Ref. [26], it is quite

surprising that seldom has a quantum metrology problem been
expressed in information-theoretic terms, since the mutual in-
formation, differently from the Cramér-Rao bound, is deeply
and directly connected to the original information theory as
introduced by Shannon. Hall and Wiseman found interesting
equivalences between the information-theoretic framework
for phase estimation and the Fisher-information formalism
[27]. In particular, they successfully exploited the Holevo
information bound as an Heisenberg limit on the mutual in-
formation and found that the latter is limited from above by
the entropy of the generator for the probe state.

Finally and more importantly, our protocol can be naturally
extended to the multiparameter case, thus providing a bench-
mark for multiphase estimation. Here we use it to investigate
the simplest nontrivial case, which is the simultaneous esti-
mation of two phases, but we remark that it can be applied
to an arbitrary number of phases. We find that double-phase
estimation slightly outperforms independent single-phase pro-
cedures. Hence, we move to the case of a generic number
of phases and assess the ultimate limit on multiphase estima-
tion in information-theoretic terms, i.e., we derive Heisenberg
bounds on the mutual information as a consequence of the
Holevo information bound, which was exploited in this con-
text also in Refs. [21,26,27]. We remark that the bound is
not derived from a specific estimation strategy, i.e., it is not
limited to our estimation protocol. This last result is relevant
because it helps to clarify the controversy about the multi-
phase enhancement mentioned above. On the one hand, we
find that it is true that the maximum achievable information
grows with the number of simultaneously estimated phases.
On the other hand, by inspecting the effective information
gain for each estimated phase, we find that asymptotically it
amounts to a constant factor, as claimed in Ref. [20].

The paper is organized as follows. In Sec. II we review the
basic framework of a global estimation theory and how it can
be extended to account for degenerate eigenstates of the gen-
erator. Then we present our protocol in Sec. III. In Sec. IV we
focus on the single-parameter estimation and retrieve two ex-
isting strategies from our protocol. Our analysis in this context
shows a trade-off between optimal sequential and parallel-
separable strategies. We move to the double-phase estimation
scenario in Sec. V, where we derive a direct generalization of
the optimal sequential and parallel protocols retrieved in the
preceding section and compare them. Moreover, we evaluate
them with respect to the single-phase estimation case. Sec-
tions IV and V are both divided in two parts. In Secs. IV A
and V A we identify the input states and the POVM exploited,
while in Secs. IV B and V B we show what is obtained in terms
of mutual information by applying our protocol. In Sec. VI
we consider the general case of estimating k phases with N
encoding operations and investigate how the ultimate bound
on precision depends on these parameters. We summarize in
Sec. VII.

II. GLOBAL ESTIMATION THEORY
WITH DEGENERATE STATES

Here we review Holevo’s global quantum estimation the-
ory [16]. The aim is to find a POVM minimizing a given
functional describing the cost of the estimation, i.e., how
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much information is lost in the estimation process. In par-
ticular, we focus on the so-called Bayesian uniform mean
deviation [16], i.e.,

C =
∫ 2π

0

dφ

2π

∫ 2π

0

dφ̃

2π
c(φ, φ̃)Tr(ρφ�φ̃ ), (2)

where φ is the parameter to be estimated, φ̃ is the estimator,
c(φ, φ̃) is a cost function, and the conditional probability
density of measuring φ̃ given φ is

Pr(φ̃|φ) = Tr(ρφ�φ̃ ), (3)

with ρφ the state where the phase is encoded and �φ̃ an ele-
ment of the POVM � = {�φ̃}φ̃ describing the measurement.

Holevo’s POVM is optimal in the context of covari-
ant phase estimation problems, i.e., in the case where both
the state and the measurement are covariant. In particu-
lar, the state ρφ0 is transformed by a unitary representation
of the phase-shift group Uφ as follows:

Uφρφ0U
†
φ = ρφ+φ0 . (4)

The covariance of the POVM, on the other hand, implies

Tr(ρφ0�φ̃ ) = Tr(ρφ0+φ�φ̃+φ ) ∀φ ∈ [0, 2π ]. (5)

Hence, note that in a covariant estimation problem the con-
ditional probability density Pr(φ̃|φ) depends just on the
difference φ̃ − φ since

Tr(ρφ�φ̃ ) = Tr(ρ0�φ̃−φ ). (6)

Furthermore, the optimality of Holevo’s POVM holds for a
wide but specific class of cost functions, which we call here
the Holevo class. These functions are periodic, even, and again
depend on the difference φ̃ − φ only. In other words, their
Fourier expansion is given by

c(φ, φ̃) = c0 +
∞∑

k=0

ck cos[k(φ̃ − φ)], (7)

with the following further assumptions on the coefficients:
c0 � 0 and ck � 0 ∀ k � 1.

Note that, given this set of conditions, the Bayesian mean
deviation defined in Eq. (2) reduces to an integral over a single
variable. However, we will keep it in its general form (2) since
in the following we will not need all of the conditions that
guarantee the optimality of Holevo’s POVM.

Holevo showed in Ref. [16] that, if the estimation prob-
lem is covariant and the cost function belongs to the Holevo
class, the differential POVM minimizing the cost functional
in Eq. (2) is

dμ(φ̃) = dφ̃

2π
|e(φ̃)〉〈e(φ̃)|, (8)

where

|e(φ̃)〉 ≡
∞∑

n=0

einφ̃ |n〉 (9)

are the Susskind-Glogower vectors and {|n〉}n is the set of
eigenstates of the generator H of the transformations Uφ . The
optimal POVM in Eq. (8) can be generalized to the case where
the generator is degenerate through the projection method

[17]. We can easily show in which sense the generator can
be degenerate and how the method works if we focus on the
equatorial qubit state

|ψ0〉 ≡ 1√
2

(|0〉 + |1〉) (10)

and take N identical copies of it as a probe |ψ̃0〉, i.e., |ψ̃0〉 ≡
|ψ0〉⊗N . In such a case, an encoding operation as U ⊗N

φ with
generator H = |1〉〈1| would provide the same eigenvalues for
different states defined by the same number of |1〉 states. We
can remove the degeneracy as follows. We define H ≡ C⊗N

as the Hilbert space where |ψ̃0〉 is defined. We consider the
nondegenerate subspace H‖ of H such that H = H‖ ⊗ H⊥
and H‖ is spanned by the normalized vectors |n0, n1〉‖ ∝
Pn0,n1 |�0〉, where n0 and n1 are the numbers of zeros and
of ones, respectively, |�0〉 is an arbitrary pure initial state,
and Pn0,n1 is a projector onto the degenerate eigenspace of
dimension

(N
n1

)
generated from all the states defined by the

tensor product of n1 states |1〉 and n0 = N − n1 states |0〉.
Then the vectors |n0, n1〉‖ spanning H‖ can be defined as

|n0, n1〉‖ = |N − n, n〉‖ ≡ |n〉‖

≡ 1√
λn

1∑
ν1=0

· · ·
1∑

νN =0

δ

(∑
k

νk − n

)
N⊗

k=1

|νk〉,
(11)

where λn ≡ (N
n

)
is a symmetrization factor accounting for the

multiplicity of the corresponding eigenvalue. Note that here
we relabeled n1 = n, i.e., n is the number of ones. The POVM
can be chosen in a block-diagonal form on H, i.e., dμ(φ̃) =
dμ‖(φ̃)

⊕
dμ⊥(φ̃), where dμ⊥(φ̃) can be an arbitrary POVM

on H⊥, since, being defined on the states orthogonal to |�0〉,
it does not contribute to Pr(φ̃|φ). Therefore, the problem
is reduced to finding the optimal dμ‖(φ̃). It was proved in
Ref. [17] that the form of the POVM is identical to the one in
the nondegenerate case with the eigenstates of H replaced by
the basis of H‖ defined in Eq. (11), i.e.,

dμ‖(φ̃) = dφ̃

2π
|E (φ̃)〉〈E (φ̃)|, (12)

with

|E (φ̃)〉 ≡
N∑

n=0

einφ̃ |n〉‖. (13)

III. MULTIPHASE GLOBAL ESTIMATION PROTOCOL

A. Protocol

The global estimation protocol we are introducing here
fixes the measurement to the Holevo POVM and optimizes a
given figure of merit over the set of input states. It can be used
for the estimation of a single phase and, most importantly, for
the joint estimation of an arbitrary number of phases. In this
regard, it is a multiphase estimation protocol. The algorithm
can be described as follows.

(i) Fix a set of commuting generators Hj defining the
unitary representations Uφ j of the phase-shift group with the
corresponding set of phases to be estimated {φ j}k

j=1 ≡ φ.
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(ii) Using the procedure described above, build the Holevo
POVM dμ‖(φ̃) on the nondegenerate set of eigenstates of the
generators for the set of estimators {φ̃ j}k

j=1 ≡ φ̃.
(iii) Choose a figure of merit for the estimation process.
(iv) Optimize the figure of merit over the set of input states

ρ0 ∈ S (H‖), with S (·) the set of quantum states, through the
Bayesian mean deviation, i.e.,

C = min
ρ0

[∫
dφ Tr

(∫
dμ‖(φ̃)c(φ, φ̃)U ⊗N

φ ρ0(U †
φ )⊗N

)]
,

(14)

where Uφ ≡ exp(i
∑

j Hjφ j ) and the figure of merit is estab-

lished by the cost function c(φ, φ̃).
We remark that Holevo’s POVM optimizes a specific class

of cost functions for a generic pure input state over the set
of POVMs [16]. Our protocol applies Holevo’s POVM to a
generic figure of merit and finds the input state optimizing
that figure of merit.

B. Application to the mutual information

As mentioned above, here our figure of merit is the mutual
information I (φ̃ : φ). The mutual information has the opposite
meaning of a cost function since it provides the number of
bits of the parameters gained through the estimation proce-
dure. However, it is built by definition on a Bayesian mean
deviation, with the so-called surprise as a cost function, i.e.,

c(φ, φ̃) = − log2 Pr(φ̃|φ). (15)

Note that, despite being covariant, in general it does not be-
long to the Holevo class, since it is generally not periodic or
even. The Bayesian mean deviation whose cost function is the
surprise is the conditional entropy H (φ̃|φ), which provides
the number of bits that we have to pay for the estimation.
The mutual information is a gain function, i.e., it is the differ-
ence between the maximum number of phase bits H (φ̃) that
we can get (fixed by the number of resources N that we exploit
for the estimation) and the number of bits lost in the estimation
procedure, provided by the conditional entropy.

The minimization of the conditional entropy over the set of
input states is not a simple task. However, we can get an idea
of the optimal pure state in the single-phase case through a
local minimization of the cost function in Eq. (15) for φ̃ ∼ φ,
i.e., we can look for the state |�0〉 such that

c(φ, φ̃ ∼ φ) � min
�0

[− log2 |〈E (φ̃)|Uφ|�0〉|2]. (16)

Since the logarithm is a monotonic function, this minimization
is equivalent to maximizing the distribution Pr(φ̃ ∼ φ|φ) =
|〈E (φ̃)|Uφ|�0〉|2, which, via Lagrange multipliers, readily
gives as the optimal state a uniform superposition of the
nondegenerate states {|n〉‖}N

n=0, known as the Holland-Burnett
state [28], i.e.,

|�0〉opt ≡ 1√
N + 1

N∑
n=0

|n〉‖. (17)

We stress the fact that this state is locally optimal for the
specific cost function defining the mutual information, i.e., the
surprise in Eq. (15). Different cost functions which have been

extensively explored in the literature, such as the dispersion
and the maximum likelihood [12,13,29] or a generic Fourier
expansion of Holevo cost functions [30,31], require one to
consider different inputs to achieve the Heisenberg scaling.
Our protocol can be applied to those contexts as well. Here
we test it in the case of the digital estimation.

As mentioned in the Introduction, on the one hand, our pro-
tocol based on Holevo’s POVM allows us to retrieve known
global single-phase estimation strategies and, on the other
hand, it paves the way for multiparameter global estimation.

IV. SINGLE-PHASE ESTIMATION

A. Theory

Here we show that, by suitably changing the probe state,
our protocol allows us to retrieve as specific cases two known
optimal single-parameter parallel and sequential estimation
strategies and, to this aim, we introduce a notion of equiva-
lence between estimation protocols.

Definition 1. Two estimation protocols A and B are equiv-
alent if the output probability distribution of the estimator φ̃

conditioned on the parameter φ is the same, i.e., if

PrA(φ̃|φ) = PrB(φ̃|φ). (18)

In particular, we test our protocol with two different
probes. By comparing the resulting conditional probabilities
with the ones of known single-parameter estimation protocols,
we will establish an equivalence through Definition 1. Hence,
we can appreciate the generality of this approach.

1. Preparation

We consider first a probe state which is known to achieve
the standard quantum limit and second a state saturating
the Heisenberg bound [21]. The former is a probe which is
very commonly exploited in the parallel estimation strategies,
which we mentioned in the Introduction. It is defined by N
copies of the equatorial state |ψ0〉 in Eq. (10), i.e., the separa-
ble state

|�0〉(1) ≡ |ψ0〉⊗N = 1√
2N

N∑
n=0

√(
N

n

)
|n〉‖. (19)

As for the latter, we take the Holland-Burnett states in Eq. (17)
since we found in the previous section that they locally opti-
mize the mutual information, namely,

|�0〉(2) ≡ 1√
N + 1

N∑
n=0

|n〉‖. (20)

The Holland-Burnett states are entangled (see Appendix B),
which implies that we need the N probe states to be en-
tangled to achieve the Heisenberg bound. The phase is
encoded through U ⊗N

φ |�0〉(x) ≡ |�φ〉(x) with x = 1, 2 and
Uφ ≡ exp(iHφ) with generator H = |1〉〈1|.

2. Measurement

Our protocol provides an estimation of the parameter φ

through Holevo’s POVM. The probability density of the es-
timator φ̃ conditioned on the value of the parameter φ can be
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retrieved from

Pr(φ̃|φ)
dφ̃

2π
= Tr

[
dμ(φ̃)‖ρ

(x)
φ

]
, (21)

with ρ
(x)
φ = |�φ〉〈�φ|(x) and x = 1, 2.

If the phase is encoded on ρ
(1)
φ , we find that the distribution

of the estimator conditioned on the parameter is

Pr(1)(φ̃|φ) =
∣∣∣∣∣∣

1√
2N

N∑
n=0

√(
N

n

)
ei(φ̃−φ)n

∣∣∣∣∣∣
2

. (22)

On the other hand, if we take ρ
(2)
φ , we find

Pr(2)(φ̃|φ) = 1

N + 1

sin2[(N + 1)π (φ − φ̃)]

sin2[π (φ − φ̃)]
. (23)

Since our figure of merit is the mutual information, here we
consider the case of a discrete estimator φ̃/2π = m/(N + 1)
with m ∈ [0, N]. We show in Appendix A how the discretiza-
tion of the distributions and of the cost functional works. In
particular, we find that the conditional probability density is
modified according to the prescription

p(m|φ) = 1

N + 1
Pr

(
φ̃ = 2πm

N + 1

∣∣∣∣φ
)

, (24)

with the normalizations
∑N

m=0 p(m|φ) = 1 and∫ 2π

0
dφ̃

2π
Pr(φ̃|φ) = 1.

B. Results

1. Equivalence

By applying the prescription in Eq. (24), we find that the
conditional probability densities related to the initial states
|�0〉(1) and |�0〉(2) for a discrete estimator m are

p(1)(m|φ) = 1

N + 1

∣∣∣∣∣∣
1√
2N

N∑
n=0

√(
N

n

)
ei[m/(N+1)−φ]n

∣∣∣∣∣∣
2

(25)

and

p(2)(m|φ) = 1

(N + 1)2

sin2[(N + 1)πφ]

sin2{π [φ − m/(N + 1)]} . (26)

We can recognize in these equations the probability densities
of two well-known estimation protocols.

The first one p(1)(m|φ) is the conditional distribution that
describes optimized parallel-separable strategies [21]. In par-
allel strategies the N probes are employed jointly, i.e., the
transformation Uφ is applied to all the probes together [3]. If
the input state is not entangled, we say that the strategy is
separable. It is not surprising that we end with the distribu-
tion of the optimal parallel-separable strategy since the probe

state in Eq. (19) and the Holevo POVM exactly describe that
strategy. Indeed, it is simple to see that the POVM {�φ̃}φ̃ with
�φ̃ ≡ |E (φ̃)〉〈E (φ̃)|, defined after the differential POVM in
Eq. (33), is a particular case of Davies’ POVM [21,32] maxi-
mizing the mutual information in parallel-separable strategies.

On the other hand, the second distribution is the same as
the optimal sequential strategy, whose typical application is
the well-known QPEA [3,14,21,33–35]. The basic scheme of
a sequential strategy is a single probe undergoing sequentially
N times the transformation Uφ , in the presence of ancillary
systems. The QPEA, as an optimal sequential strategy, has
been extensively investigated also in the presence of noise,
especially in terms of the mean-square error [14]. Note that in
this case our protocol is radically different from the standard
QPEA in terms of preparation and measurement. Indeed, the
QPEA takes as the input state N copies of the equatorial
state, which in the nondegenerate space is our state |�0〉(1)

in Eq. (19), while our protocol realizes the same output distri-
bution as the QPEA if we choose as an input the state |�0〉(2)

in Eq. (20). The encoding unitary required by our protocol is
simpler, since the QPEA needs a controlled unitary depend-
ing on the qubit position. As a last difference, in the QPEA
the phase is measured through an inverse quantum Fourier
transform whereas our protocol exploits the Holevo optimal
measurement. Note that, differently from the QPEA, our pro-
tocol can be straightforwardly extended to the simultaneous
estimation of an arbitrary number of phases. Despite the dif-
ferences between them, we can again establish an operational
equivalence between the two protocols based on Definition
1, i.e., we can say that running our protocol with the locally
optimal state in Eq. (20) is equivalent to the optimal sequential
strategy.

We conclude that the optimal parallel-separable strategy
and the QPEA are particular applications of our protocol. In
the next section we will briefly recap the main results of these
strategies and provide some insights into the nonasymptotic
scenario in terms of mutual information.

2. Performance

The performance of single-phase sequential and parallel
protocols has been largely explored [3,19,21,33–35]. How-
ever, our digital approach can provide a deeper understanding
of the topic and a basic reference to be compared to the mul-
tiphase case that we will investigate in the following sections.
First, let us inspect the distribution p(1)(m|φ). As far as we
know, there is no closed form for that. However, we note that
for large N a single period of p(1)(m|φ) can be approximated
as a Gaussian distribution, i.e.,

p(1)(m|φ) −−→
N�1

√
2πN

N + 1
exp

[
−2Nπ2

(
φ − m

N + 1

)2
]
.

(27)

In this case, the mutual information obtained from the
tensor-product state |�0〉(1) is asymptotic to the standard
quantum limit ISQL(1, N ) ≡ (log2 N )/2 [21], where we define
ISQL(k, N ) as the standard quantum limit in terms of mu-
tual information when k phases are jointly estimated with N
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FIG. 1. Base-e log-linear plot of the mutual information I (m : φ)
between the estimator m and parameter φ in the cases of sequential
(red solid line) and parallel-separable (blue dashed line) strategies.
The black dotted lines display the asymptotic behavior of the two
cases.

resources. In particular, we find

I (1)(m : φ) −−→
N�1

ISQL(1, N ) + 1

2

(
log2(2π ) − 1

ln 2

)

∼ ISQL(1, N ) + 0.6044. (28)

In contrast, the mutual information of the QPEA is found to be
asymptotically nearly optimal, in the sense that it tends to the
Heisenberg bound IHB(1, N ) = log2(N + 1) [21], where the
Heisenberg bound in terms of mutual information IHB(k, N )
depends again on the number of jointly estimated phases and
on the number of resources. More specifically, the mutual
information provided by the QPEA or, equivalently, by our
protocol with |�0〉(2) as a probe state, displays the behavior

I (2)(m : φ) −−→
N�1

IHB(1, N ) − 2

(
1 − γ + ln 2 − 1

ln 2

)
(29)∼ IHB(1, N ) − 1.2199,

where γ is the Euler-Mascheroni constant.
These limits are displayed in Fig. 1 as black dotted and

dashed lines, respectively. We note the well-known asymp-
totic optimality of the sequential strategies over parallel-
separable ones [3,21], also apparent from the limits in
Eqs. (28) and (29). Interestingly, we remark that for small
N here we find a trade-off: If N � 9 the mutual information
related to the parallel-separable protocol (blue line) is slightly
larger (less than one bit) than the one corresponding to the
sequential protocol (red line). This trade-off clearly outlines
the limits of a local optimization such as the one proposed in
Eq. (16).

V. DOUBLE-PHASE ESTIMATION

A. Theory

Holevo’s POVM can be straightforwardly extended to ac-
count for more than one estimator [18]. Hence, we can readily
generalize the single-phase analysis developed in the preced-
ing section to the multiphase scenario. Here we focus on
the simplest case, i.e., the estimation of two phases φ and θ

through the corresponding discrete estimators mφ and mθ . Dif-
ferently from Ref. [18], we investigate the case of a discrete
estimator, as mentioned above, and the figure of merit that
best conveys the meaning of digital precision is the mutual
information, rather than the fidelity of the estimated state with
respect to the probe, which is exploited there. In addition, we
do not restrict the analysis to the case of a tensor-product
probe state. Due to the optimization procedure performed
when applying our protocol, we can focus on the input state
that locally optimizes our figure of merit.

1. Preparation

Consider the qutrit nondegenerate space H‖ spanned by the
normalized vectors

|n0, n1, n2〉‖ = |N − n1 − n2, n1, n2〉‖ ≡ |n1, n2〉‖

≡ 1√
n

2∑
ν1=0

· · ·
2∑

νN =0

δ

(∑
k

νk − n1 − 2n2

)

N⊗
k=1

|νk〉, (30)

where, in analogy with the projection method devised in the
qubit case [18], n1 and n2 are the numbers of |1〉 and |2〉 states
in the N-tensor-product state, while n is the multinomial
coefficient

( N
n1,n2

)
.

Again, we take as inputs, on the one hand, a tensor-product
state and, on the other hand, a uniform superposition of the
basis elements |n1, n2〉‖. Explicitly, the former reads

|�0〉(1) = 1√
3N

N∑
n1=0

N−n1∑
n2=0

√(
N

n1, n2

)
|n1, n2〉‖ (31)

and the latter

|�0〉(2) = 1√
M

N∑
n1=0

N−n1∑
n2=0

|n1, n2〉‖, (32)

where ( N
n1, n2

) is again the multinomial coefficient and M =∑N
n1=0

∑N−n1
n2=0 1 = (N + 1)(N/2 + 1). The entanglement of

the Holland-Burnett qutrit states |�0〉(2) is discussed in Ap-
pendix B. The unitary encoding φ and θ can be represented in
the form Uφ,θ = ei(φH1+θH2 ), with generators H1 = |1〉〈1| and
H2 = |2〉〈2|. Given this representation, one applies U ⊗N

φ,θ to the
probe state.

As for the qubit case, we show that the N copies of the
equatorial qutrit state |�0〉(1) used as probes for our protocol
achieve the standard quantum limits, whereas the Holland-
Burnett state |�0〉(2) provides a precision asymptotic to the
Heisenberg bound. In other words, our protocol run with the
former probe generalizes the single-phase optimal parallel-
separable strategy, while, if it is started with the latter probe,
it generalizes the single-phase optimal sequential strategy. As
for the qubit case, this shows that, to achieve the Heisenberg
bound, we need the N probes to be entangled. In this simple
example, the generalization of the single-phase case is limited
to two phases, but the protocol is viable for the application
to any number of phases. We will define the ultimate limits

012613-6



PROTOCOL FOR GLOBAL MULTIPHASE ESTIMATION PHYSICAL REVIEW A 108, 012613 (2023)

attainable if a generic number k of phases is jointly estimated
with N resources in the next section.

2. Measurement

Holevo’s POVM in the case of two estimators φ̃ and θ̃ is a
projection over Susskind-Glogower vectors developed on the
elements of the nondegenerate qutrit Hilbert space, i.e.,

dμ‖(φ̃, θ̃ ) = dφ̃

2π

d θ̃

2π
|E (φ̃, θ̃ )〉〈E (φ̃, θ̃ )|, (33)

with

|E (φ̃, θ̃ )〉 ≡
N∑

n1=0

N−n1∑
n2=0

ei(n1φ̃+n2 θ̃ )|n1, n2〉. (34)

The discretization procedure works similarly to the single-
parameter case, through the prescription

p(mφ, mθ |, φ, θ )

= 1

(N + 1)2
Pr

(
φ̃ = 2πmφ

N + 1
, θ̃ = 2πmθ

N + 1

∣∣∣∣θ, φ

)
. (35)

B. Results

1. Performance

The input states |�0〉(1) and |�0〉(2) in our protocol provide,
respectively, the conditional densities

p(1)(mφ, mθ |φ, θ ) = 1

(N + 1)2

∣∣∣∣∣ 1√
3N

N∑
n1=0

N−n1∑
n2=0

√(
N

n1, n2

)
exp

{
2π i

[
n1

(
mφ

N + 1
− φ

)
+ n2

(
mθ

N + 1
− θ

)]}∣∣∣∣∣
2

(36)

and

p(2)(mφ, mθ |φ, θ ) = 1

(N + 1)3(N/2 + 1)

∣∣∣∣∣
N∑

n1=0

N−n1∑
n2=0

exp

{
2π i

[
n1

(
mφ

N + 1
− φ

)
+ n2

(
mθ

N + 1
− θ

)]}∣∣∣∣∣
2

. (37)

The distribution p(1) can be again approximated within a single period by a Gaussian for N � 1, i.e.,

p(1)(mφ, mθ |φ, θ ) −−→
N�1

8
√

3

9
π

N

(N + 1)2
exp

{
− 16

9
Nπ2

[(
mφ

N + 1
− φ

)2

+
(

mθ

N + 1
− θ

)2

−
(

mφ

N + 1
− φ

)(
mθ

N + 1
− θ

)]}
.

(38)

The sum defining distribution p(2) can be analytically
calculated and provides

p(2)(mφ, mθ |φ, θ )

= 1

M

[
S2

�φ + S2
�θ + S2

�φ−�θ − 2S�φS�θC(3+2N )(�φ−�θ )

+ 2S�φ−�θ (S�θS(3+2N )�φ − S�φC(3+2N )�θ )
]
,

(39)
where

M = 8(N + 2)(N + 1)3S2
�φS2

�θ S2
�φ−�θ , (40)

Sx ≡ sin(πx), (41)

Cx ≡ cos(πx), (42)

�α ≡ α − mα

N + 1
, α = φ, θ. (43)

Note that the distributions above are obtained by directly gen-
eralizing the qubit probe states employed for the single-phase
estimation to the qutrit case suited for double-phase esti-
mation. Therefore, we will refer to the estimation strategies
related to p(1) and p(2) as the double-phase optimal parallel-
separable and sequential strategies, respectively.

We start by comparing the mutual information I (mφ, mθ :
φ, θ ) provided by p(1) and p(2) for small N (<20). The nu-
meric evaluation shown in Fig. 2 reveals that we find again a
trade-off between the protocol started with |� (1)〉 and the one

started with |� (2)〉. In particular, the first slightly outperforms
the second up to a threshold on N , which in the double-phase
case is nearly twice the single-phase threshold.

If we focus on the asymptotics, we find that our pro-
tocol run with the tensor-product state |� (1)〉 is limited by
2ISQL(1, N ), whereas if we start it with the Holland-Burnett
state |� (2)〉 we achieve 2IHB(1, N ). We recall that ISQL(1, N )
and IHB(1, N ) are, respectively, the standard quantum limit

FIG. 2. Base-e log-linear plot of the mutual information in
the double-parameter estimation case. The blue dashed line
shows the double-phase optimal parallel-separable strategy and the
red line the double-phase optimal sequential strategy.
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and the Heisenberg bound in the single-phase estimation case.
Explicitly,

I (1)(mφ, mθ : φ, θ ) −−→
N�1

2ISQL(1, N ) + log2

(
8
√

3π

9

)

− (ln 2)−1 ∼ 2ISQL(1, N ) + 0.8314

(44)
and

I (2)(mφ, mθ : φ, θ ) −−→
N�1

2IHB(1, N ) − 3.7899, (45)

where we derived the limit of I (1) by means of an analytic ap-
proximation while the limit on I (2) is a numeric result obtained
by taking N = 500.

2. Comparison with single-phase estimation

Now we investigate if we can find any advantage in esti-
mating two phases simultaneously rather than performing two
independent single-phase estimations. For the sake of clarity,
herein we use for the mutual information between k parame-
ters and estimators the shorthand notation Ik ≡ I (m : φ).

We have to compare double-phase estimation with two
single-phase estimations sharing the same total number of en-
coding operations N to see if there is an advantage in terms of
mutual information in estimating two phases simultaneously
by encoding them on the same state or in estimating them one
by one. Note that if the phases are estimated independently
through two distinct single-phase estimation protocols, the
mutual information between estimators and phases is simply
the sum of the mutual information between each estimator and
the corresponding phase, i.e.,

I (mφ, mθ : φ, θ ) = I (mφ : φ) + I (mθ : θ ) = 2I (mφ : φ),
(46)

where the second equality holds only if the same number of
states N/2 is employed for the estimation. Shortly, using our
new notation, we are comparing I2(N ) with 2I1(N/2).

Figures 3 and 4 show that for small N the simultaneous
encoding on qutrits provides a slight advantage over indepen-
dent single-phase estimations, even if the latter is supported
with one, for N > 3, or two, for N > 6, more resources for
each phase. This result holds for both generalized optimal
parallel-separable and sequential strategies. The asymptotics
shown above prove that exploiting a large number of resources
does not improve much the performance of double-phase esti-
mation with respect to two separate single-phase estimations.
Indeed, we remark that the advantage does not scale with N
and approaches a constant factor. Specifically, comparing the
asymptotics in Eqs. (28) and (29) with the ones in Eqs. (44)
and (45), we note that the difference in terms of mutual infor-
mation amounts to approximately one bit.

One may still wonder if this advantage, which is small
in the case of double-phase estimation, depends at least on
the number of simultaneously estimated phases. This is the
problem of multiphase estimation that we mentioned in the
Introduction. In the next section we show that the ultimate
bound on the achievable precision in terms of mutual informa-
tion does depend on the number of jointly estimated phases,
but the actual gain with respect to repeated single-phase esti-
mation still amounts to a constant factor at most.

FIG. 3. Double-phase optimal parallel-separable strategy. The
base-e log-linear plot of the mutual information in the double-phase
estimation case I2(N ) (orange thick solid line) is compared with
the mutual information of two independent single-phase estimations
2I1(N/2) where the same number of resources for each phase is
employed (green thin solid line). The black dotted lines display the
asymptotic behavior of the two cases. We also show I1[(N + 1)/2]
(magenta dashed line) and I1[(N + 2)/2] (purple dash-dotted line)
and note that, for N > 3 and N > 6, respectively, the generalized
parallel-separable strategy with double-phase estimation can outper-
form the corresponding single-parameter estimation even if the latter
is supported with one or two probes more for each phase.

VI. DIGITAL HEISENBERG BOUND
ON MULTIPHASE ESTIMATION

Finally, we derive the Heisenberg bound on the mu-
tual information Ik (N ) between estimators and phases in
the case where N resources are employed and k phases si-
multaneously estimated. Then we find the number of bits
shared between phases and estimators when the k phases are

FIG. 4. Double-phase optimal sequential strategy. The base-e
log-linear plot of the mutual information in the double-parameter
estimation case I2(N ) (orange thick solid line) is compared with the
mutual information of two independent single-parameter estimations
2I1(N/2) where the same number of probes per parameter were
employed (green thin solid line). The black dotted lines display
the asymptotic behavior of the two cases. We also show I1[(N +
1)/2] (magenta dashed line) and I1[(N + 2)/2] (purple dash-dotted
line) and note that, for small N , the generalized sequential strategy
with double-parameter estimation can outperform the corresponding
single-parameter estimation even if the latter is supported with one
or two probes more.
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estimated separately, again for a fixed number of resources.
Hence, we discuss if there actually is an advantage by exploit-
ing multiphase estimation with respect to the straightforward
application of a single-phase estimation algorithm for each
phase.

We start by stating a proposition that generalizes for
a generic number of simultaneously estimated phases the
Heisenberg bound on the mutual information which was de-
rived in Ref. [21] in the case of single-phase estimation. The
result is a generalization of the Holevo bound.

Proposition 1. Given a set of k phases φ to be estimated
with N resources, the ultimate bound on the mutual informa-
tion Ik (N ) between the phases and the corresponding set of
estimators φ̃ reads

Ik (N ) � log2

(
N + k

N

)
≡ IHB(k, N ). (47)

The proof can be found in Appendix C. As mentioned
above, IHB(k, N ) identifies the Heisenberg limit in terms of
mutual information for a generic number k of phases jointly
estimated with N resources.

From the Heisenberg bound in Eq. (47) we find that the
performance of a multiphase estimation protocol in this con-
text strongly depends on the choice of the parameters N
and k. Depending on the ratio N/k, we can devise three
specific asymptotic scenarios. We can evaluate the largest
mutual information attainable for each jointly estimated phase
IHB(k, N )/k for each one.

First, if we fix the number of phases and take N/k � 1,
we immediately find for each jointly estimated phase the
Heisenberg bound of the single-phase estimation, namely,

IHB(k, N )/k −−→
N�k

log2 N − 1

k
log2 k! ∼ IHB(1, N ). (48)

Second, we take N/k ∼ 1. We observe that this case is quite
a typical choice since one may want to use every encoding
operation for a different phase and take k = N . In such a case,
we can also explore the asymptotic limit of the Heisenberg
bound through Stirling’s approximation and find

IHB(k, N )/k ∼ 1

N
[log2 (2N )! − 2 log2 N!] −−→

N�1
2. (49)

Finally, we can fix N and take the limit N/k � 1. We get

IHB(k, N )/k −−−→
k/N�1

N

k
log2

[
e

(
1 + k

N

)]
. (50)

The collapse of the ratio between the upper bound on the
mutual information and the number of phases in Eq. (50) is
expected since in this case the number of phases is larger than
the number of encoding operations, so there are k − N phases
that cannot be distinguished from the others.

These three different regimes are displayed in Fig. 5. We
conclude that an efficient multiphase estimation needs to set
the number of resources much larger than the number of
simultaneously estimated phases. In this optimal regime, we
compare the ultimate bound for multiphase estimation of k
phases with N resources in Eq. (47) with the expected optimal
performance of k independent single-phase estimation with
N/k resources each. The mutual information in this latter case

FIG. 5. Heisenberg bound in Eq. (47) for the simultaneous
estimation of k phases with N resources. The bound displays three
different scalings according with the ratio N/k. The first case is
N/k � 1, shown by thick magenta (k = 2) and thin red (k = 10)
solid lines. The asymptotic behavior of the bound is expressed by
Eq. (48). The corresponding black dotted line displays the ultimate
limit IHB(1, N ). The second case is N/k ∼ 1, shown by a purple
dashed line. The asymptotic behavior of the bound is expressed by
Eq. (49), i.e., it approaches a plateau emphasized by the black dotted
line. The third case is N/k < 1, shown by the brown dash-dotted line
(N = 10). The asymptotic behavior of the bound is expressed by
Eq. (50).

generalizes the one shown in Eq. (46) and the ultimate bound
on that reads

kI1(N/k) � k(log2 N − log2 k). (51)

We readily find that the multiphase advantage �Ik ≡
IHB(k, N ) − kIHB(1, N/k) depends on the number of simulta-
neously encoded phases only, namely,

�Ik = k log2 k − log2(k!), (52)

implying that the information gain for each phase reads
�Ik/k = log2 k − log2(k!)/k. Asymptotically, through Stir-
ling’s approximation, we find that the gain approaches a small
constant, i.e.,

�Ik/k −−→
k�1

log2(e). (53)

Therefore, we can conclude that we do get an advantage from
multiphase estimation, but asymptotically it is reduced to a
small constant gain, as found also in Ref. [20].

VII. CONCLUSION

Exploiting the generalization of Holevo’s POVM to the
multiphase scenario devised in Ref. [18], we developed a
protocol for global multiphase estimation. The protocol gen-
eralizes the analysis in Ref. [18] to arbitrary cost functions by
optimizing over the set of probe states. In particular, differ-
ently from Ref. [18], here we considered the case of discrete
estimators and took the mutual information between phases
and estimators as a figure of merit, thus extending the single-
phase digital estimation in Ref. [21]. Remarkably, the protocol
performs a global estimation; therefore it can be used to test
new estimation strategies in terms of the desired cost function
without any a priori notion of the phase to be estimated.
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We showed that in the single-phase case we retrieve known
optimal estimation strategies. Specifically, optimal parallel-
separable and sequential (QPEA) strategies were investigated,
also in the nonasymptotic case.

More importantly, our protocol provides a multiphase esti-
mation, without assuming any specific encoding strategy. We
analyzed here the most basic nontrivial case, i.e., the case
of two unknown phases, and pointed out the performance
of generalized sequential and parallel-separable strategies in
terms of mutual information.

We also retrieved the ultimate bound on precision in terms
of mutual information when a generic number of phases is
jointly estimated given a fixed number of resources. Our
bound contributes to clarify the controversy about the advan-
tage of multiphase estimation [6–8,19,20].
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APPENDIX A: DISCRETIZATION

1. Conditions for the invariance of cost functions
under discretization

In parameter estimation, the mutual information is the
number of bits in common between the parameter to be es-
timated and a suitable estimator. In many applications, the
parameter is a continuous quantity but the estimator is a map
from the parameter to a discrete set, which intrinsically limits
the precision of the estimation. This is a realistic occurrence:
Achieving the required number of decimal digits for the es-
timation of a parameter is one of the most important issues
in metrology. Discrete phase estimation applied to figures of
merit different from the mutual information was considered in
Refs. [14,35].

In this context, the discretization is determined by the
number of qudits N that we can exploit for our estimation.
The estimator is then defined by the partition in N subsets
of the parameter set [0, 2π ), i.e., φ̃ = 2πm/(N + 1) with
m ∈ [0, N].

First, we need to map the continuous probability distri-
butions Pr(φ̃|φ) into discrete quantities p(m|φ). This can be
done by taking the limit

lim
N→∞

Pr

(
2πm

N + 1

∣∣∣∣φ
)

= Pr(φ̃|φ) ≡ α lim
N→∞

p(m|φ), (A1)

where α is a normalization constant. Indeed, we also need the
discrete quantities p(m|φ) to be probabilities. Then, for every
fixed phase φ = φ̄ we require 0 � p(m|φ̄) � 1 ∀ m ∈ [0, N]
and

∑N
m=0 p(m|φ̄) = 1. The normalization over the discrete

set of the outcomes implies

1 =
∫ 2π

0
Pr(φ̃|φ̄)

dφ̃

2π
= lim

N→∞
1

N + 1

N∑
m=0

Pr

(
2πm

N + 1

∣∣∣∣φ̄
)

= lim
N→∞

α

N + 1

N∑
m=0

p(m|φ̄),

(A2)
implying α = N + 1 and the prescription

p(m|φ) = 1

N + 1
Pr

(
φ̃ = 2πm

N + 1

∣∣∣∣φ
)

. (A3)

The same distribution can be derived by equivalently dis-
cretizing Holevo’s POVM dμ(φ̃) → μ(m) through the same
procedure, i.e.,

dμ(φ̃) = dφ̃

2π
|e(φ̃)〉〈e(φ̃)| = lim

N→∞
1

N + 1
|e(m)〉〈e(m)|

≡ lim
N→∞

μ(m). (A4)

Note that in general the distribution in Eq. (A3) is nor-
malized just in the limit of large N . However, one can
check that for the distributions p(1) and p(2) we consider
here

∑N
m=0 p(1)(m|φ) = ∑N

m=0 p(1)(m|φ) ∼ 1 ∀ N because the
width of their peaks is limited to the interval m ∈ (φ(N +
1) − 1, φ(N + 1) + 1) and is the effective support of the dis-
tributions, meaning that p(x)(m �= φ(N + 1)) = o((N + 1)−2)
while p(x)(m = φ(N + 1)) ∼ 1, with x = 1, 2.

However, we still need to check how discretization affects
the cost functional in Eq. (2), which is now expressed as

C̄ =
∫ 2π

0

dφ

2π

∫ 2π

0

dφ̃

2π
Pr(φ̃|φ)c(φ, φ̃)

= lim
N→∞

1

N + 1

∫ 2π

0

dφ

2π

N∑
m=0

Pr(m|φ)c(φ, m)

= lim
N→∞

∫ 2π

0

dφ

2π

N∑
m=0

p(m|φ)c(φ, m). (A5)

The form of the cost function c(φ, φ̃) is crucial to the dif-
ference between the continuous and discrete cases. Through
the following observations, we will define the cases where the
discretization works for every N .

Proposition 2. Consider a two-variable function f (φ, φ̃) ≡
Pr(φ̃|φ)c(φ, φ̃), defined as the product of a conditional den-
sity and a generic function c. Let the two variables share a
continuous domain. If (a) f depends only on the difference
between the two variables, i.e., f (φ, φ̃) = f (φ − φ̃), (b) f is
periodic, (c) c(φ, φ̃) does not depend on Pr(φ̃|φ), and (d) the
discrete distribution implied by Eq. (A3) is normalized for all
N , then∫ 2π

0

dφ̃

2π

∫ 2π

0

dφ

2π
f (φ − φ̃)

= 1

N + 1

∫ 2π

0

dφ

2π

N∑
m=0

f

(
φ − 2πm

N + 1

)
∀ N. (A6)
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This result in our case implies

C̄ =
∫ 2π

0

dφ

2π

∫ 2π

0

dφ̃

2π
Pr(φ̃|φ)c(φ, φ̃)

=
∫ 2π

0

dφ

2π

N∑
m=0

p(m|φ)c(φ, m),

(A7)

i.e., we can ignore the limit N → ∞ in Eq. (A5).
Proof. Let φ̃ be a continuous variable, periodic with period

2π . Then∫ 2π

0

dφ̃

2π

∫ 2π

0

dφ

2π
f (φ − φ̃) =

∫ 2π

0

dγ

2π

∫ 2π

0

dφ

2π
f (γ )

=
∫ 2π

0

dγ

2π
f (γ ). (A8)

On the other hand, if φ̃ is discrete and, in particular, φ̃ =
2πm/(N + 1), we take the sum

N∑
m=0

∫ 2π

0

dφ

2π
f

(
φ − 2πm

N + 1

)

=
N∑

m=0

∫ 2π[1−m/(N+1)]

−2πm/(N+1)

dγ

2π
f (γ )

(A9)

= (N + 1)
∫ 2π

0

dγ

2π
f (γ )

= (N + 1)
∫ 2π

0

dφ̃

2π

∫ 2π

0

dφ

2π
f (φ − φ̃),

where we use the periodicity of f in the second equality and
the result of Eq. (A8) in the third one. The third and fourth
conditions guarantee that the ratio over N + 1 normalizes the
resulting discrete probability according to the prescription in
Eq. (A3). �

Cost functions belonging to the Holevo class, like
c(φ, φ̃) = 4 sin(φ − φ̃)2/2, all satisfy the hypotheses of
Proposition 2. In such a case, for any number of qubits N
employed for estimation, continuous and discrete estimators
are equivalent to the cost function.

2. Effects on the mutual information

Here we are interested in the mutual information, whose
related cost functional is the conditional entropy H (φ̃|φ) =
−Pr(φ̃|φ) log2 Pr(φ̃|φ). Note that, as long as Pr(φ̃|φ) is a
periodic function, this functional satisfies the second of the
conditions required in Proposition 2. However, the cost func-
tion related to H (φ̃|φ) is the so-called surprise c(φ, φ̃) =
− log2 Pr(φ̃|φ), which depends on the conditional density
Pr(φ̃|φ), against the third condition, implying that the dis-
cretized distribution defining the surprise is not normalized.
Indeed, continuous and discrete estimators provide different
conditional entropies. Notwithstanding, the mutual informa-
tion is invariant under discretization, as we show in the
following.

Proposition 3. Given a periodic and covariant condi-
tional density P(φ̃|φ), the mutual information between an
estimator φ̃ and a real parameter φ ∈ [0, 1], defined as

I (φ̃ : φ) ≡ H (φ̃) − H (φ̃|φ), is invariant under discretization
of the estimator.

Proof. Let φ̃ be a continuous variable. Then the conditional
entropy H (φ̃|φ) reads

H (φ̃|φ) = −
∫ 1

0
dφ

∫ 1

0
dφ̃ Pr(φ̃|φ) log2 Pr(φ̃|φ). (A10)

We assume to have no prior information on the estimator.
Thus the related probability distribution is uniform and the
differential entropy H (φ̃) depends on the integration domain.
Here we have

H (φ̃) = −
∫ 1

0
Pr(φ̃) log2 Pr(φ̃) = 0. (A11)

Therefore, we find for the mutual information

I (φ̃ : φ) = −H (φ̃|φ) =
∫ 1

0
dφ

∫ 1

0
dφ̃ Pr(φ̃|φ) log2 Pr(φ̃|φ)

=
∫ 1

0
dγ Pr(γ ) log2 Pr(γ ),

(A12)
where in the last equality we exploit covariance. Now take
a discrete estimator φ̃ = m/(N + 1). Without assuming any
convergence to Eq. (A10), we write the conditional entropy as

H (m|φ) = −
N∑

m=0

∫ 1

0
dφ p(m|φ) log2 p(m|φ)

= −
N∑

m=0

∫ 1

0
dφ

Pr(m|φ)

N + 1
log2

Pr(m|φ)

N + 1

= −
N∑

m=0

∫ 1−m/(N+1)

−m/(N+1)
dγ

P(γ )

N + 1
log2

P(γ )

N + 1

= log2(N + 1) −
∫ 1

0
dγ Pr(γ ) log2 Pr(γ ).

(A13)

On the other hand, the assumption of a uniform prior distribu-
tion for the estimator in the discrete case provides

H (m) = −
N∑

m=0

p(m) log2 p(m) = log2(N + 1), (A14)

implying

I (m : φ) = H (m) − H (m|φ)

=
∫ 1

0
dγ Pr(γ ) log2 Pr(γ ) = I (φ̃ : φ) ∀ N,

(A15)

which completes the proof. �

APPENDIX B: ENTANGLEMENT OF THE LOCALLY
OPTIMAL INPUT STATE

In this Appendix we discuss the entanglement content of
the states introduced in the main text. In particular, we an-
alytically evaluate the N-partite entanglement among the N
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probes of the states that are locally optimal for the mutual
information, i.e., the Holland-Burnett states. We show that, as
expected, the qutrit states are more entangled than the qubit
ones. We use as a multipartite entanglement quantifier the
geometric measure of entanglement [36], which can be easily
computed in this case due to the symmetry of the states. The
geometric measure of entanglement of a pure state |ψ〉 is

EG(|ψ〉) = 1 − max
|�〉∈prod

|〈�|ψ〉|2, (B1)

where we denote by prod the set of pure product states. The
geometric measure of the state |�0〉(1) in Eq. (19) is zero
since the state is separable. The state |�0〉(2) in Eq. (20) is
pure and symmetric and hence the closest pure product state
is symmetric [37]. We have [38]

EG(|�0〉(2) ) � 1 −
√

2πN

N + 1
. (B2)

In the qutrit case, we have have similarly that the geometric
measure of the state |�0〉(1) in Eq. (31) is zero since the
state is separable. We now calculate the geometric measure
of entanglement of the state |�0〉(2) of Eq. (32). We first note
that we can write the closest symmetric product state as |�〉 =
(
√

p|0〉 + √
qeiφ |1〉 + √

1 − p − qeiθ |2〉)⊗n. We then obtain

EG(|�0〉(2) ) = 1 − 1

M

∣∣∣∣∣
N∑

n1=0

N−n1∑
n2=0

√
M(N, n1, n2)

√
pN−n1−n2

× √
qn1

√
1 − p − q

n2
e−in1φe−in1θ

∣∣∣∣∣
2

. (B3)

It is easy to see that this expression is minimized for
φ = θ = 0 and p = q = 1/3. We can approximate the sum
by an integral and the multinomial distribution by a two-
dimensional Gaussian with mean �μ = N (1/3, 1/3) and vari-
ance � = N ((2/9,−1/9), (−1/9, 2/9)). Straightforwardly,
we get

EG(|�0〉(2) ) � 1 − 8πN

3
√

3M
. (B4)

The above result implies that the qutrit states are more en-
tangled than the qubit ones. Note that the relative entropy
of entanglement is divergent in both cases since E (ρ) �
− log2[1 − EG(ρ)] (see Fig. 6).

APPENDIX C: HEISENBERG BOUND ON THE MUTUAL
INFORMATION FOR MULTIPHASE ESTIMATION

Here we provide the proof of Proposition 1. We follow the
approach given in the Supplemental Material of Ref. [21].

Proof. Let φ = (φ1, φ2, . . . , φk ) be the vector of phases
we wish to estimate. We have the unitary representation
Uφ ≡ exp(i

∑k
j=1 Hjφ j ), with {Hj}k

j=1 a set of commuting
generators Hj = | j〉〈 j|. Take a generic probe state ρ0 ∈
S (H‖), where S (·) is a set of states, here defined on the
Hilbert space H‖ spanned by the nondegenerate vectors |n〉 ≡
{|n j〉‖}k

j=0 with the constraint on the sum of the corresponding

FIG. 6. Entanglement of the state |�0〉(2) in the qubit (brown) and
qutrit (black) cases as a function of N . The black and brown solid
lines are the asymptotic behaviors in Eqs. (B2) and (B4), respec-
tively, while the dots displays the corresponding exact values. For the
qubit case the inverse of the fidelity of separability, i.e., 1/(1 − EG),
scales as

√
N . In the qutrit case it is linear in N .

eigenvalues given by
∑k

j=0 n j = N , i.e., n0 = N − ∑k
j=1 n j .

Then ρ0 can be expressed as

ρ0 =
∑
n,m

λn,m|n〉〈m|, (C1)

with
∑

n ≡ ∑N
n1=0

∑N−n1
n2=0 · · · ∑N−∑k−1

j=1 n j

nk=0 and
∑

n λn,n = 1.
Note that we set the number of vectors |nj〉‖ to k + 1 in order
to exploit the whole basis of the nondegenerate subspace, ex-
cept for a reference state, to encode the phases to be estimated.

The application of the unitary on the probe state yields

ρφ = U ⊗N
φ ρ0(U †

φ )⊗N . (C2)

Here pφ = p(φ1, φ2, . . . , φk ) is the corresponding joint prob-
ability distribution. Finally, let S(ρ) be the von Neumann
entropy related to state ρ. Then the maximum information on
φ extractable through a corresponding set of estimators φ̃ from
ρφ is given by the Holevo bound, i.e.,

I (φ̃ : φ) � S

(∫
dφ pφρφ

)
−

∫
dφ pφS(ρφ ). (C3)

We remark that the bound is maximized for pure states, since,
for pure ρ, we have S(ρ) = 0. Therefore, henceforth we take
the probe in a pure state. In this case, the Holevo bound reads
I (φ̃ : φ) � S(

∫
dφ pφρφ ). Note that the mutual information

I (φ̃ : φ) is the same one that in the main text we denoted by
Ik (N ) to emphasize the main parameters, i.e., the number of
phases to be estimated k and the number of resources N .

Now consider the projectors over the eigenbases of the
generators defined as P(k)

n ≡ |n〉〈n|. Since the sum over the
eigenvalues {n j}k

j=0 is constrained to be equal to the number
of resources N , the number of projectors P(k)

n is

M ≡
N∑

n1=0

N−n1∑
n2=0

· · ·
N−∑k−1

j=1 n j∑
nk=0

1 =
(

N + k

N

)
, (C4)

which is the dimension of H‖ [39].
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The entropy bounding the mutual information can be
bounded through the data-processing inequality for projectors
as

S

(∫
dφ pφρφ

)

= S

(∫
dφ pφU ⊗N

φ ρ0(U †
φ )⊗N

)

� S

(∫
dφ pφ

∑
n

P(k)
n U ⊗N

φ ρ0(U †
φ )⊗N P(k)

n

)
(C5)

and, by applying the unitaries to the projectors, we have

S

(∫
dφ pφ

∑
n

P(k)
n U ⊗N

φ ρ0(U †
φ )⊗N P(k)

n

)

= S

(∫
dφ pφ

∑
n

P(k)
n ρ0P(k)

n

)
. (C6)

Then, by exploiting the normalization of the joint probability
distribution

∫
dφ pφ = 1, we find

S

(∫
dφ pφ

∑
n

P(k)
n ρ0P(k)

n

)
= S

(∑
n

P(k)
n ρ0P(k)

n

)

= S

(∑
n

λn,n|n〉〈n|
)

= H (λn,n) +
∑

n

λn,nS(|n〉〈n|)

= H (λn,n) � log2(M ). (C7)

The quantity H (λ) appearing in the last two lines is the
Shannon entropy H (λ) ≡ −∑

k λk log2 λk .
Note that the number of projectors included in the second

line is strictly connected to the number of encoded phases
k, accordingly with the definition of M in Eq. (C4), which
eventually provides the bound

I (φ̃ : φ) � log2

(
N + k

N

)
(C8)

and completes the proof. �
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