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Efficient Dicke-state distribution in a network of lossy channels
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We analyze the generation of entanglement in a multipartite optical network. We generalize the twin-field
strategy to the multipartite case and show that our protocol has advantageous rate-loss scalings of distributing
W states and Dicke states over the star networks. We provide precise theoretical formulas and quantitative
performance analyses. Also, analysis of the same protocol using Gaussian states as resources, which is a typical
setup in many experimental tests, is provided. We numerically study the feasibility of the protocol in realistic
experimental conditions with imperfect detectors. We observe that the advantage depends on the chosen fidelity
and is affected by the dark counts of the detector.
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I. INTRODUCTION

Quantum repeaters have been investigated for a long time
in the context of overcoming the effect of loss in transmit-
ting optical channels. They are a basic building block for
extending quantum key distribution (QKD) networks without
trusted nodes [1,2] and a crucial step toward building a quan-
tum internet [3,4]. Various protocols for quantum repeaters
have been explored, especially in the context of bipartite
transmission. In many of those proposed so far, quantum
memory [5,6] or large-scale entangled photonic states [7,8]
are required at the repeater nodes. These approaches still face
serious technical challenges. Meanwhile, a recently proposed
QKD protocol, the twin-field QKD (TF-QKD), shows that a
single-hop repeaterlike operation is possible with a very sim-
ple configuration at the intermediate node [9], with only linear
optics and photon detection. While the TF-QKD protocol uses
weak coherent-state signals, the corresponding entanglement-
based protocol [10] can also act as a single-hop repeater for
entanglement distribution. This idea has been extended to a
multiparty QKD scenario known as the conference key agree-
ment [11]. In [11], the authors used W states [12] as a resource
for QKD for the first time and showed that their protocol can
achieve higher conference key generation rates than that of the
direct-transmission protocol.

In this work, we further investigate in detail the single-hop
repeater protocol for multipartite entangled states. We study
the efficiency and quality of protocols generating W and Dicke
states that are characterized by advantageous scaling with
respect to some nonrepeater benchmarks. We give the general
formulas for an ideal protocol. In addition, we analyze real-
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istic experimental conditions with Gaussian states generated
from spontaneous parametric down-conversion sources. Our
work goes beyond the area covered by [11] in general charac-
terizations of Dicke states, different nonrepeater benchmarks,
and providing analysis of the protocols with Gaussian states
and realistic experimental conditions, which is natural for
existing experimental setups.

This paper is organized as follows. In Sec. II, an overview
of our idea and protocol is given. Section III describes the
detailed theoretical formulation of the protocol. In Sec. IV, we
perform a numerical simulation of the protocol with practical
Gaussian-state inputs. Section V concludes the paper.

II. OVERVIEW OF THE PROTOCOL

Let us start by defining the states we want to generate
in a network. Dicke states are K-photon pure states with at
most one photon per mode that are invariant with respect to
permutations of modes. We can also consider the generalized
version, which can be brought to the standard Dicke states by
local changes in phases,

|D(N,K )〉 = 1√
CN

K

CN
K∑

k=1

eiφk
∣∣ f (N,K )

k

〉
. (1)

Here, Cx
y is the number of combinations of y elements in the

set of x elements and | f (N,K )
k 〉 is the state with N modes and

K photons with at most one photon per mode. The summation
is over | f (N,K )

k 〉 numbered in a chosen order by index k. As an
example we consider the Dicke state with D(4,2),

|D(4,2)〉 = 1√
6

(|1100〉 + |1010〉 + |1001〉

+ |0110〉 + |0101〉 + |0011〉). (2)
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FIG. 1. A network with N = 4 parties connected to a central sta-
tion C by lossy channels, each of length L. The parties and the central
station collaborate to generate Dicke states such that the generation
rate scales favorably with the transmittance of the channel. Ei denote
the environments the photons can be lost to.

By setting K = 1 we define generalized W states,

|WN 〉 = 1√
N

N∑
k=1

eiφk
∣∣ f (N,1)

k

〉
. (3)

For example,

|W4〉 = 1√
4

(|1000〉 + |0100〉 + |0010〉 + |0001〉), (4)

which we reduce to the single-photon maximally entangled
two-mode states when N = 2, i.e., |W2〉 = |�〉. Hereafter, we
omit the phase factor eiφk since it is easily controlled by the
local phase rotations.

We consider a star network in which users and a central
station are connected by identical lossy channels with power
transmittance T and introduce a protocol for entangled state
generation that improves the success rate with respect to other
protocols with a similar setup. The situation is schematically
shown in Fig. 1 for the case with four nodes. In our protocol,
the nodes locally produce states of the form

|ψ〉XiX ′
i
= a|00〉XiX ′

i
+ b|11〉XiX ′

i
, (5)

where |i〉 denotes an i-photon Fock state and the subsystems
X ′

i are called shared subsystems and will be jointly measured
in the later stage of the protocol. Here, we assume that a
and b are real and positive; moreover, we assume that b is
small. The small value of b is our choice. It is motivated by
the fact that if b is small and the experiment signals success,
the fidelity of generated states with the target states is high,
as explained in detail later. Then shared subsystems are sent
to the middle station, pass through a mode-mixing setup that
removes the information about where a photon comes from,
and are measured (see Fig. 2). When the appropriate measure-
ment outcome appears, the nonshared system gets close to the
Dicke state (detailed definitions will be given later) with N
modes and K photons, which reduces to W states when K = 1
and to a maximally entangled bipartite state when N = 2
and K = 1. In particular the protocol allows for generating
a maximally entangled state 1√

2
(|01〉X1X2 + |10〉X1X2 ) with the

success probability that scales like T . This two-party scenario
is an immediate consequence of the entanglement version
of the TF-QKD protocol [9,10]. We will extend this to the
multipartite scenario with N > 2.

FIG. 2. Generating one-photon entangled states in a network
with two parties and a central station. The parties prepare entangled
states similar to vacuum in their local sources and send one part of
each to the central station that removes the information about the
origin of potential photons. The detector’s click denotes the creation
of an entangled state between the parties. Success probability scales
like the first power of the power transmittance of one channel that
links one party with the central station. Ei denote the environments
the photons can be lost to.

Justification for our protocol comes from the following
comparison to alternative methods for generating entangled
states in the system. Let us first look at the case with N = 2
and K = 1, where two distant parties intend to share Bell
states.

The trivial strategy is that one party generates two-photon
Bell states, e.g., by polarization encoding and then sends one
part to the second party through the channel directly link-
ing them. The process is characterized by the probability of
success that a photon is not lost. This is given by the power
transmittance. For example, for an optical-fiber channel, it is
given by

T = 10−γ d/10,

where γ is the fiber loss coefficient, typically given in deci-
bels per kilometer. For the considered link of length 2d the
probability that the entangled photon passes the channel is T 2.
This rate-loss scaling is, in fact, a fundamental limit of the
distillable entanglement over a point-to-point lossy channel.
In other words, one cannot beat this scaling by any input
quantum signal with the assistance of any local operations and
classical communication (LOCC) [13,14].

Another strategy is to locate a central station in the mid-
dle of the channel, which generates entangled photon pairs,
such as polarization entangled photons, and send them to
each node. This is an experimentally established approach for
entanglement distribution. Since each photon travels through
a channel with loss T , the success probability of distributing
them to two nodes is again T 2. This setting is out of the
scope of point-to-point channel-capacity theorems [13,14],
and nontrivial tight bounds for the channel-capacity in this
setting are not known yet. In this paper, therefore, we use
the above strategy of directly sending entanglement from the
central station to benchmark our repeaterlike protocol and
call it the direct-transmission protocol. This strategy can be
easily extended to the multipartite-entanglement scenario. The
central station generates N-partite entangled states with N
photons, e.g., by polarization encoding [15,16] and sends each
photon to each user via a channel with loss T . Then the
success probability of the distribution is given by T N .
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FIG. 3. Comparison of our repeaterlike protocol, the direct trans-
mission, and the squashed entanglement bound for the distribution
of the tripartite W state defined in (6) in the star network. The
generation rate is the probability of success of the experiment. The
smaller rate of the repeaterlike scenario for short distances is implied
by the low probability of generating one photon in the circuit, as
b is assumed to be small. However, the advantage of this method
for larger distances comes from the fact that only one photon has to
survive the loss.

Finally, let us also consider the rate of distributing three-
party W states consisting of one and zero photons:

|W3〉 = 1√
3

(|100〉 + |010〉 + |001〉). (6)

When it is distributed from the central station to distant par-
ties, the state turns out to be a mixture of |W3〉 and vacuum.
This means that one needs some distillation process to ex-
tract |W3〉. The upper bound on the distillable rate of the W
state is, for example, given by the multipartite version of the
squashed entanglement [17]. In the Appendix A, we derive
the upper bound of the squashed entanglement. In Fig. 3, we
show plots comparing our method, the direct transmission of
three-photon W states, and the squashed entanglement-based
bound for the direct transmission of |W3〉 through the star
network linked by a fiber with a loss of 0.2 dB/km (a typical
loss parameter in the telecom band). The generation rate is
the probability of success which determines the fraction of
the experimental repetitions in which successful generation
is signalized. The comparison shows that the method we
propose provides advantageous scaling with respect to the
others. (Note that the squashed entanglement bound shown
here is not optimal and thus is not necessarily tight. It is an
interesting open problem whether it can be further tightened.)
The examples shown in this section motivate us to study our
repeaterlike protocol in detail. In the following sections, we
derive precise theoretical formulas and perform quantitative
analyses for both ideal and realistic conditions.

III. GENERATING GENERALIZED DICKE STATES

A. Description of the setup

Suppose N parties are connected to a central station with
lossy optical channels, each with power transmittance T (see
Fig. 1). We assume that each party i can produce locally

FIG. 4. Scheme of the eight-mode transform that uniformly
mixes a single-photon state. The short, thick horizontal lines denote
50:50 beam splitters. The scheme realizes the Hadamard transform
on the modes’ photon creation operators.

entangled photonic states (5) on their local subsystems Xi

and X ′
i and that the shared subsystems are sent to the central

station. If b is sufficiently small, there is mostly vacuum or
one photon in the joint shared system. Let us assume that the
central station C is equipped with a circuit that completely
removes the information about which mode the photon comes
from.

For that purpose for N = 2n we propose a circuit of 50:50
beam splitters given as follows (see Fig. 4) [18]. First, we
group modes in pairs. We apply a beam splitter in each pair.
Next, we group previous groups in pairs and apply a beam
splitter to the corresponding outputs. We repeat this procedure
n times. Formally, we can write this transform as a transfor-
mation of creation operators (a†

1, . . . , a†
N )T corresponding to

modes as follows:

U = (u ⊗ 1n−1)(11 ⊗ u ⊗ 1n−2) · · · (1n−1 ⊗ u) = u⊗n, (7)

where 1 is the two-dimensional identity matrix, 1i = 1⊗i, and

u = 1√
2

(
1 1

−1 1

)
(8)

represents the beam splitter. Notice that U is the so-called
Hadamard matrix, which realizes a real transform similar to
the Fourier transform. The circuit from Fig. 4 was used in
[18] to generate W states locally.

B. Generation of W states with ideal channels

To explain the main idea of the protocol in simple terms,
in this section, we consider only the generation of W states
with the setup without losses. The generation of Dicke states
is a straightforward task and will be done in the next sec-
tion together with a more technical analysis of the influence
of losses.

In the ideal case, i.e., with no losses in the channels, T = 1,
if parties send their shared subsystems to the station and only
one photon is detected after the transform, the global state of
the nonshared systems is projected onto the generalized W
state. A feed-forward local compensation depending on which
detector clicks can be performed to bring the generalized W
state to a chosen fixed-phase W state. Indeed, the part of the
state |ψ〉X1X ′

1
⊗ ... ⊗ |ψ〉XN X ′

N
before the transform with just
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one photon in the shared system is

N∑
k=1

aN−1b
∣∣ f (N,1)

k

〉
X

∣∣ f (N,1)
k

〉
X ′ , (9)

where we simplified the notation by putting X instead of
X1, . . . , XN and doing the same for the shared systems. Each
term of the shared system X ′ is transformed into up-to-phase
uniform superposition of single-photon states in all modes. So
for each vector of the nonshared part X we have exactly one
term associated with a click of a chosen detector in X ′. Hence,
if this detector clicks, the nonshared part collapses to the
generalized W state. We can immediately give the probability
of the click of a chosen detector, which is

ps = (aN−1b)2. (10)

Note that because we keep b small, the probability of multi-
photon detection is small. However, if more than one photon
is detected, this method can be used to generate a Dicke
state in the nonshared system. Generalization of the lossless
protocol for Dicke-state generation is almost straightforward,
so we will not discuss it separately. Instead, in the following
section we will analyze the general scheme of Dicke-state
generation with lossy channels.

C. Dicke-state generation with lossy channels

Let us consider in full generality generation of Dicke states
D(N,M ) in the setup with losses. Here, we deal with M photons
surviving the losses, going through the transform of the central
station, and being detected by a configuration of detectors
indexed by s. For instance, for N = 4 modes and M = 2 pho-
tons, s can take the form s = (0, 1, 1, 0), which denotes that
the second and third detectors click; s = (2, 0, 0, 0), which
means that the first detector records two photons; and so on.

To deal with the problem systematically we consider parts
of the state |ψ〉X1X ′

1
⊗ · · · ⊗ |ψ〉XN X ′

N
associated with K pho-

tons, where K � M. We have CN
K of these terms, all with the

same amplitudes, aN−K bK , namely,

CN
K∑

k=1

aN−K bK
∣∣ f (N,K )

k

〉
X

∣∣ f (N,K )
k

〉
X ′ . (11)

We are interested in the part with M photons left in the
shared system and K − M photons lost to the environment
E = E1, . . . , EN , which is

CN
K∑

k=1

aN−K bK (
√

T )M (
√

1 − T )K−M
∣∣ f (N,K )

k

〉
X

⊗
CK

M∑
m=1

∣∣g(M,K,k)
m

〉
X ′

∣∣g(K−M,K,k)
m

〉
E , (12)

where |g(x,K,k)
m 〉 denotes a vector with x photons distributed in

K modes selected by index k, one photon per mode. Different
vectors are numbered by index m, and the subscript E refers to
modes of the environment. The probability of this part of the
global state gives us the probability of M photons reaching the

central station

p′ =
N∑

K=M

[aN−K bK (
√

T )M (
√

1 − T )K−M]2CN
K CK

M (13)

for T � 1. The probability that after the transform U at the
central station a chosen configuration s of detectors clicks is

ps =
N∑

K=M

[aN−K bK (
√

T )M (
√

1 − T )K−M]2

×
CN

K∑
k=1

CK
M∑

m=1

∣∣〈g(M,K,k)
m

∣∣U ∣∣s〉∣∣2
, (14)

where 〈g(M,K,k)
m |U |s〉 is a permanent of a matrix built of ele-

ments from intersections of rows and columns of U indicated
by nonzero entries of g(M,K,k)

m and s, respectively. When s
contains multiple photons in a given mode, the appropriate
column should be repeated in order to calculate the perma-
nent. In general the permanent given by 〈g(M,K,k)

m |U |s〉 can
take different values depending on s and g(M,K,k)

m ; however,
it is a constant when M photons are detected in a single

detector. Then |〈g(M,K,k)
m |U |s〉| = √

M!/
√

N
M

. Assuming this
and expanding ps close to T = 0 up to O(T 2M ), we find a
concise formula for the efficiency of this process,

ps = T Mb2M CN
MM!

NM
. (15)

A detailed derivation of this formula is given the
Appendix B.

The nonshared system is then projected onto a state. The
fidelity of this state with a generalized Dicke state is

F = 1

ps
a2(N−M )b2MT M

∣∣∣∣∣∣∣
CN

M∑
k

1√
CN

M

∣∣〈 f (N,M )
k |U |s〉∣∣

∣∣∣∣∣∣∣

2

. (16)

For small T , taking into account (15), the fidelity is

F = (a2)N−M . (17)

Having this general formula, we can express the probability
that one of the detectors clicks for M = 1 in the approximation
up to O(T 2) as a function of fixed fidelity:

p = N (1 − F
1

N−1 )T . (18)

Here, the factor N comes from the fact that there are N
detectors with the same probability of a click given by (15).
As a click of different detectors signalizes a W state with
possibly different phases, the above rate is achieved if a proper
feed-forward correction is applied as follows. Let us assume
that index k indicates the position of one photon and index
s denotes the detector that fired, i.e., s = (1, 0, 0) if the first
detector fired and so on. Assume also that we want to bring
the generalized W state to the W state in which all phases are
positive. Then, if the sign of the matrix element 〈s|U | f (N,1)

k 〉
is negative, the user k should apply a phase shifter which
changes the phase of one photon state by π .

For F close to 1 and T close to 0, the probability is a
monotonically decreasing function that asymptotically tends
to a constant value, limN→∞ N (1 − F

1
N−1 )T = T ln(1/F ).
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FIG. 5. Generation rate of an N-partite state W state with fidelity
F in the setup in which the parties are connected to the central
station by a lossy channel with transmittance t = √

T . The dashed
line shows the asymptote.

For fixed values of the fidelity and transmittance of the chan-
nels the behavior of (18) as a function of N and the asymptote
are shown in Fig. 5.

In Fig. 6 we show a comparison of the generation rate (suc-
cess probability) of Wi states for i = 2, 3, 4 between the direct
method and the strategy with central detection. In the direct
method we assume that a central station sends parts of the
i-photon polarization W state to each node, as discussed in the
Introduction. We conclude that the scaling of the repeaterlike
method for long distances is favorable. Over short distances
the direct method has a larger probability of success because
the photon loss is smaller than the probability of having at
least one photon detected. However, for larger distances in the
direct method a photon must survive two times the distance of
each of the photons that can be generated in the repeaterlike
method. So in the case of the latter protocol, there are two
contributions to the probability of success: generation of the

FIG. 6. Comparison of the generation rate of Wi states for i = 2,

3, 4 with the direct method and using the repeaterlike method.
Dashed and solid lines corresponding to W2 have the highest gen-
eration rate, while the lines corresponding to W4 have the lowest. For
the repeaterlike scenario we assume fidelity F = 0.95. We assume
the loss rate is 0.2 dB/km. In the direct method we consider that
a central station sends parts of the i-photon polarization W state to
each node.

FIG. 7. Comparison of the generation rate of different four-mode
states using the direct method and the repeaterlike method. For the
repeaterlike method we assume fidelity F = 0.95. We assume the
loss rate is 0.2 dB/km. In the direct method we consider that a
central station sends parts of a four-photon polarization W state to
each node. In this plot lines corresponding to higher fidelity have a
lower generation rate.

photon by the source and the chances of one of the photons
surviving the path to the central station. The probability of one
photon being generated by the source is the overhead cost of
the method that influences its efficiency for small distances,
but in terms of scaling it does not matter. The fact that the
probability of generating a W state depends on the probability
that only one of the photons survives one path is reflected in
the weak dependence of the generation rate on the number of
users in the repeaterlike scheme, as shown in Fig. 6.

In Fig. 7 we compare generation rates (success probabili-
ties) for four-mode W and Dicke D(4,2) states using the direct
method and our repeaterlike method. Again, we conclude
that the repeaterlike method, although it has disadvantageous
overhead related to the probability of generating one photon at
the source, scales advantageously for longer distances, where
the overhead does not matter.

D. Generating two- and three-photon Dicke states

Let us discuss separately the case with N = 4 and M = 2
when two different detectors click (which is the opposite of
the previous situation in which the same detector recorded two
photons). Direct calculations show that the probability of two
different chosen detectors clicking is equal to

ps = 1
2 a4b4T 2 + a2b6T 2(1 − T ) + 1

2 b8T 2(1 − T )2. (19)

If we expand this formula close to T = 0, we get

ps = 1
2 T 2b4 + O(T 3). (20)

Substituting the first term in the formula for fidelity, we get

F = 1
3 a4 � 1

3 . (21)

Hence, coincidence measurements with two different detec-
tors do not project the nonshared system arbitrarily close to a
Dicke state. We can understand this fact by observing that our
transform with coincidence detection only partially removes
the information about the input modes. Indeed, if photons
came from modes 1 and 2 and the first detector clicks, then
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the second detector must click because of bunching photons
at the first beam splitter. However the situation changes if
we observe two photons arriving at the same detector. The
probability of this event for any detector is

ps = 3
4 a4b4T 2 + 3

2 a2b6T 2(1 − T ) + 3
4 b8T 2(1 − T )2

= 3
4 T 2b4 + O(T 3). (22)

That leads to fidelity between the state of the nonshared sys-
tem and the Dicke state in the expansion up to T 2

F = a4, (23)

which can be kept close to 1.
The situation with three photons in four modes (or even

eight modes) is different because any three-photon detection
projects the nonshared system on a state arbitrarily close to a
Dicke state.

IV. GENERATING W STATES WITH INPUT GAUSSIAN
STATES

In this section we analyze a situation with two, three, and
four modes in which we want to generate a state close to the
single-photon W state with the appropriate number of modes
in the nonshared system:

|W2〉 = 1√
2

(|01〉 + |10〉), (24)

|W3〉 = 1√
3

(|001〉 + |010〉 + |100〉), (25)

|W4〉 = 1√
4

(|0001〉 + |0010〉 + |0100〉 + |1000〉), (26)

respectively. We assume that instead of states (5), parties
prepare locally two-mode squeezed vacuum states

|ψ〉XiX ′
i
=

√
1 − λ2

∞∑
n=0

λn|nn〉XiX ′
i
, (27)

where λ = tanh r and r is the squeezing parameter. For small
r the state is mostly vacuum with a small addition of terms
with nonzero photon numbers. As in the cases considered pre-
viously, the shared subsystems X ′

i go through lossy channels.
In each channel the loss is modeled by a beam splitter with
vacuum in the extra input mode. Then the shared subsystems
X ′

i are mixed in the central station circuit that erases infor-
mation about the origin of the photons. For the case with two
parties, this is a 50:50 beam splitter as in Fig. 2. For three or
four parties we use a circuit with four input and four output
modes, which is a reduced version of the circuit in Fig. 4.
In the case of three users we set vacuum as the input of the
fourth port. Finally, we observe a click of one of the detectors
(X ′

1) while other output modes are ignored. In what follows we
assume detectors are not photon-number resolving; that is, the
detector click refers to one or more photons, or the dark count.
We assume that the probability of the dark count pdc = 10−7

and the efficiency of the detector is 0.8.
Under these conditions we calculate the probability of the

click and the fidelity of the conditional state of the nonshared
system collectively denoted as X with a perfect WN state for

FIG. 8. Probability of a single detector click (generating the W2

state from Gaussian states) as a function of distance for a loss rate of
0.2 dB/km for different squeezings (0.87, 1.3, 1.74, 2.17, 2.61, 3.04,
3.47 dB). The lowest line corresponds to the smallest squeezing. For
comparison the dashed line shows formula (15) with a fidelity of
0.99.

N = 2, 3, 4. The probability is obtained from the phenomeno-
logical formula including the dark counts,

p = 1 − p0 + pdc, (28)

where p0 is the probability that the detector does not click and
pdc is the dark-count probability. Here,

p0 = TrXX ′E ρXX ′E |0〉〈0|X ′
1
, (29)

where X denotes the subsystem that was not sent to the circuit
and X ′ is the subsystem sent to the circuit. (This circuit con-
sists of X ′

1X ′
2 for the case with two parties and X ′

1 · · · X ′
4 for the

case with three or four parties. In the case of three parties the
input to mode X ′

4 is the vacuum.) Subsystem E corresponds
to the environment related to losses. Note that ρXX ′E is a
Gaussian state and can be fully described by a covariance
matrix. We can also calculate p0 from known formulas in the
Gaussian formalism.

In the phenomenological model, we assume that when a
dark count occurs, we do not get any information about the
shared subsystem; therefore, we trace it out. Thus, after the
detector reports the event, our nonshared system state takes
the form

σX = 1

N [(pdc + 1)ρX − TrX ′ (ρXX ′ |0〉〈0|X ′
1
)], (30)

where N = pdc + (1 − p0) is the normalization. We calculate
the fidelity between the state σX and |WN 〉 by calculating
density-matrix elements [19,20] of ρX and TrX ′ (ρXX ′ |0〉〈0|X ′

1
)

corresponding to each single-photon term of |WN 〉. For ex-
ample, for N = 3 we need to calculate 〈001|ρ3|010〉 and all
other terms with photons in different modes and to do the
same for TrX ′ (ρXX ′ |0〉〈0|X ′

1
). We do that using the function

DENSITY_MATRIX_ELEMENT from the PYTHON library THE-
WALRUS.QUANTUM provided by Xanadu [20].

Assuming transmission channels with a loss rate of
0.2 dB/km, we calculate the rate and fidelity for the gener-
ation of WN , where N = 2, 3, 4. The results are presented in
the plots in Figs. 9–13 below.
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FIG. 9. Fidelity of the W2 state with the generated state when
a single detector clicks as a function of distance for a loss rate of
0.2 dB/km for different squeezing parameters (0.87, 1.3, 1.74, 2.17,
2.61, 3.04, 3.47 dB). The blue line (with the highest fidelity for small
distances) corresponds to the smallest squeezing.

Figure 8 compares the rate of generating W2 versus dis-
tance for different squeezings. We follow the convention of
experimental studies and express squeezing in decibels using

10 log10 e2rdB, (31)

where e−2r gives the amount of Einstein-Podolsky-Rosen cor-
relation in the vacuum squeezed state [21]

Y = 1
2 [Var(x1 − x2) + Var(p1 + p2)] (32)

and (xi, pi ) are quadrature operators. Figure 9 shows the fi-
delity versus distance. The rate decreases with distance, until
the dark count dominates the rate of clicks. In that region we
observe a strong decrease in fidelity.

In Figs. 10–12 we show the dependence of the rate on the
distance for W2, W3, and W4, respectively, for various values
of fidelity. For comparison we also show the scaling of the
rate for direct sharing of entanglement. We observe that the
scaling of the method we investigate is better than that of the
direct method. The highest range is achieved for the lower
fidelity, of course. We observe that there is a fidelity level for

FIG. 10. Generation rate of fixed-fidelity W states from Gaussian
states as a function of the distance. The dashed line shows the rate of
generation of W states using the direct method. The line correspond-
ing to the lowest fidelity has the highest rate.

FIG. 11. Rate of generation of W3 with different fidelities. The
dashed line denotes the direct method. The line corresponding to the
lowest fidelity has the highest rate.

which the direct method cannot be beaten for the quality of the
detector that we assume. Namely, the quality of the detector
is mainly the dark count, which is assumed to be equal to
10−7. For large distances the dark counts are more likely than
the real signal to be affected by the loss; this is the reason
why the efficiency sharply drops in Figs. 10–12. the value of
this limiting fidelity is around 0.97 for W2, 0.99 for W3, and
higher than 0.99 for W4. In Fig. 13 we compare the rate at
which we generate states WN with fixed fidelity F = 0.99 for
N = 2, 3, 4. To achieve the given fidelity we apply different
squeezings to the initial state. The generation rate of W2 with
fixed fidelity is the highest. In this case the circuit erasing
the information about the paths from which photons arrive is
the simplest and consists of one beam splitter and two output
modes. When we move from two to three or four parties, we
use the circuit with four beam splitters and four detectors. We
observe that the rate of generating a fidelity of 0.99 for W3

is lower than the rate for W4. We think this is because the
circuit with four modes we used is not optimal for W3. That
is, choosing an optimal circuit could improve the rate for W3.
Although studying this case would be interesting, it is out of
the scope of our current work.

Let us also comment on the choice of the squeezing pa-
rameter. Note that by increasing squeezing we increase the

FIG. 12. Rate of generation of W4 with different fidelities. The
dashed line denotes the direct method. The line corresponding to the
lowest fidelity has the highest rate.
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FIG. 13. Generation rate for WN with fidelity F = 0.99. The line
corresponding to W2 has the highest rate. The line for W3 has the
lowest.

rate of success (Fig. 8), but the fidelity decreases (Fig. 9).
So a trade-off relation between the two quantities exists, and
the choice of the squeezing depends on what is prioritized in
each situation. If we fix the distance, we observe that there are
two different values of the squeezing corresponding to a given
fidelity. We should choose the one for which the rate is larger.
In the given conditions the dependence of the fidelity or rate
can be determined following the procedures described above.

V. CONCLUSION

In this paper we analyzed the generation of Dicke states in
a lossy network with an arbitrary number of parties equally
distant from a central station. We showed that this method
provides advantageous scaling of the rate in terms of the
power transmittance with respect to the direct link. We derived
general formulas for the fidelity and rate of this process. Also,
we provided an analysis of the rate and fidelity of the protocol
when the input state is a two-mode squeezed vacuum instead
of entangled two-photon states.

Interesting open problems remain. We compared our pro-
tocol with the simple direct-transmission protocol in which
the central station emits the target states, such as W states,
encoded in polarized photons and computed the rate at which
all photons reach the users simultaneously. This corresponds
to typical experiments of multipartite entangled photonic state
generation and distribution performed in many experimental
laboratories with postselection. However, in theory, we can
think of its generalization such that the central station can gen-
erate more a sophisticated state to be sent and then users can
distill the target state via LOCC. This may give a more fun-
damental limit of the repeaterless multipartite-entanglement
distribution in the star network. From an experimental point of
view, to implement our protocol, one needs to lock the phases
of all states since it uses the superposition of vacuum and one
photon. This might be a technical challenge, but recent exper-
imental progress is promising in regard to a solution [22].
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APPENDIX A: SQUASHED ENTANGLEMENT BOUND FOR
THE DIRECT TRANSMISSION OF TRIPARTITE W STATES

In this Appendix we calculate the so-called squashed en-
tanglement that provides an upper bound on the rate of
distilling W states shared by the direct transmission in the star
network. More specifically, we consider the situation in which
the central station of the star network repeatedly generates

|W3〉 = 1√
3

(|100〉 + |010〉 + |001〉) (A1)

and transmits them through identical lossy channels to three
receivers. Here, |i〉 is an i-photon state, and we assume a
loss rate of 0.2dB/km. Each of the states is degraded at the
receiver, but the receivers can distill some W states from the
larger number of received states by using local operations and
classical communication (LOCC).

To upper bound the distillation rate, we use the multipartite
squashed entanglement [17,23]. Following [23,24], we define
it as

Esq(A1; · · · ; Am)ρ = 1
2 inf

SE→E ′
I (A1; · · · ; Am|E ′), (A2)

where I (A1; · · · ; Am|E ′) is the multipartite conditional mutual
information, defined as

I (A1; · · · ; Am|E ) =
m∑

i=1

H (Ai|E ) − H (A1 · · · Am|E ),

and H is the conditional von Neumann entropy,

H (X |Y ) = H (XY ) − H (Y ).

Here, von Neumann entropy H (X ) = −TrX log2 X . The opti-
mization in (A2) goes over so-called squashing channels in the
environment involved in the evolution of the open quantum
system. The multipartite squashed entanglement is known
to be an entanglement measure which is LOCC monotone,
asymptotically continuous, and additive to tensor-product
states. This is known as an upper bound for the distillation
rates of Greenberger-Horne-Zeilinger states and multipartite
keys [17,24]. With an appropriate normalization factor, it can
also upper bound the distillation rate of m-partite W state as

RW � 2

m h2(1/m)
Esq(A1; · · · ; Am)ρ, (A3)

where h2(x) is the Shannon binary entropy.
By η we denote the transmittance of each channel connect-

ing the central station with the receiver. Then the one copy of
the initial W state becomes the following state of the system
of receivers S and the environment E where the photon can
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escape:

|� ′〉 = √
η|W 〉S|000〉E +

√
1 − η|000〉S|W 〉E . (A4)

We do not consider here the optimal squashing channel (thus,
we consider an upper bound of the squashed entanglement).
For the channel we apply 50:50 beam-splitter mixed environ-
ment modes with additional environment space E ′. The full
state reads

|� ′′〉 = √
η|W 〉S|000〉E |000〉E ′ +

√
1 − η

2
|000〉S|W 〉E |000〉E ′

+
√

1 − η

2
|000〉S|000〉E |W 〉E ′ . (A5)

Next, we trace E ′ out, obtaining

ρSE = η|W 〉〈W | ⊗ |0〉〈0|

+
√

η(1 − η)

2
(|W 〉〈0| ⊗ |0〉〈W | + |0〉〈W | ⊗ |W 〉〈0|)

+ 1 − η

2
|0〉〈0| ⊗ (|0〉〈0| + |W 〉〈W |), (A6)

where we use simplified notation in which |0〉 represents
|000〉. Here, S consists of A1, A2, and A3, and the state above
is symmetric with respect to exchanging the subsystems Ai.
For each of the subsystems we have

ρAiE = η

3
|1〉〈1| ⊗ |0〉〈0| + 3 + η

6
|0〉〈0| ⊗ |0〉〈0|

+
√

η(1 − η)

6
(|1〉〈0| ⊗ |0〉〈W | + |0〉〈1| ⊗ |W 〉〈0|)

+ 1 − η

2
|0〉〈0| ⊗ |W 〉〈W |, (A7)

ρS = η|W 〉〈W | + (1 − η)|0〉〈0|, (A8)

ρAi = η

3
|1〉〈1| + 3 − η

3
|0〉〈0|, (A9)

ρE = 1 + η

2
|0〉〈0| + 1 − η

2
|W 〉〈W |. (A10)

The nonzero eigenvalues of ρSE are {(1 − η)/2, (1 + η)/2},
and the nonzero eigenvalues of ρAiE are {(3 − η)/6, (3 +
η)/6}. Hence, the squashed entanglement upper bound for the
W state reads

1

3 h2(1/3)
[3H (ρAiE ) − 2H (ρE ) − H (ρSE)]. (A11)

The squashed entanglement is shown in Fig. 3. It is compared
with the rate for the protocol with central detection discussed
in this paper in which the parties send half of the bipartite
entangled states |�〉 to the central station and the detection of
one photon signalizes W states in the remaining system.

APPENDIX B: LOW-TRANSMITTANCE DICKE-STATE
GENERATION RATE

Expansion of (14) close to T = 0 leads to formula (15). We
assume that b is real and a = √

1 − b2:

ps = M!

NM

N∑
K=M

(aN−K bK )2T MCN
K CK

M

= T Mb2M CN
MM!

NM

N∑
K=M

a2(N−K )b2(K−M )CN−M
K−M

= T Mb2M CN
MM!

NM

N−M∑
K−M=0

a2(N−K )b2(K−M )CN−M
K−M

= T Mb2M CN
MM!

NM
(a2 + b2)N−M

= T Mb2M CN
MM!

NM
.
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