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We consider the problem of engineering the two-excitation Dicke state |D3
2〉 in a three-qubit system with all-to-

all Ising-type qubit-qubit interaction, which is also subject to global transverse (Zeeman-type) control fields. The
theoretical underpinning for our envisioned state-preparation scheme, in which |000〉 is adopted as the initial state
of the system, is provided by a Lie-algebraic result that guarantees state-to-state controllability of this system for
an arbitrary choice of initial and final states that are invariant with respect to permutations of qubits. This scheme
is envisaged in the form of a pulse sequence that involves three instantaneous control pulses, which are equivalent
to global qubit rotations, and two Ising-interaction pulses of finite durations between consecutive control pulses.
The design of this pulse sequence (whose total duration is T ≈ 0.95 h̄/J , where J is the Ising-coupling strength)
leans heavily on the concept of the symmetric sector, a four-dimensional, permutationally invariant subspace
of the three-qubit Hilbert space. We demonstrate the feasibility of the proposed state-preparation scheme by
carrying out a detailed numerical analysis of its robustness to systematic errors, i.e., deviations from the optimal
values of the eight parameters that characterize the underlying pulse sequence. Finally, we discuss how our
proposed scheme can be generalized for engineering Dicke states in systems with N � 4 qubits. For the sake of
illustration, we describe the preparation of the two-excitation Dicke state |D4

2〉 in a four-qubit system.
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I. INTRODUCTION

Advanced capabilities in quantum-state engineering [1–28]
represent one of the crucial prerequisites for the development
of next-generation quantum technologies [29]. Tantalizing
achievements have been reported in this thriving research
area in recent years, pertaining–in particular–to the creation
of highly entangled quantum states in systems of increas-
ingly large size that belong to various physical platforms for
quantum computing (QC) [12,30,31]. Two of the most widely
discussed classes of such states are maximally-entangled mul-
tipartite states of W [32] and Greenberger-Horne-Zeilinger
(GHZ) [33] types. Motivated primarily by their proven util-
ity in various quantum-information processing [34] tasks, a
multitude of proposals have been made in recent years for the
efficient generation of both W [1–11] and GHZ [12–20] states
in diverse QC platforms. In addition, deterministic intercon-
versions of W and GHZ states have lately also been attracting
considerable attention [23–28].

Dicke states, originally introduced in connection with the
phenomenon of superradiance [35], represent yet another im-
portant family of highly entangled multiqubit states. Owing to
their favorable properties–such as robustness to particle loss
[36] and immunity to collective dephasing noise [37]–they
hold promise for emerging quantum-technology applications
in areas as diverse as quantum networking [38], quantum
metrology [39], quantum game theory [40], and quantum
combinatorial optimization [41]. The a-excitation Dicke state
|DN

a 〉 of an N-qubit system is an equal-weight superposition
of all N-qubit states with Hamming weight of a (i.e. all bi-
nary bitstrings of length N with exactly a appearances of 1);
this family of states includes W states as its special, single-
excitation (a = 1) case, i.e. |DN

1 〉 ≡ |WN 〉. Several schemes

have heretofore been proposed for the experimental realiza-
tion of Dicke states in various physical platforms, such as
trapped ions [42–44], neutral atoms [45–47], photons [38,48],
superconducting qubits [49], and spin ensembles [50].

In this paper, we consider the problem of engineering
the two-excitation Dicke state |D3

2〉 in a three-qubit sys-
tem with long-ranged (all-to-all) Ising-type (zz) interaction
between qubits, which are acted upon by global, Zeeman-
type control fields in the transverse (x and y) directions.
Aside from quantum-technology applications of Dicke states,
the motivation behind the present work stems from the
fact that qubit arrays with Ising-type qubit-qubit interac-
tion can be realized in several physical platforms for QC
[51]. One familiar example is furnished by nuclear spins,
i.e., nuclear-magnetic-resonance (NMR) systems [52–54].
Another example are capacitively coupled spin qubits of
singlet-triplet type [55], formed using double quantum dots
[56]. Finally, arrays of optically trapped neutral atoms in-
teracting via off-resonant dipole-dipole (van der Waals)
interactions feature an all-to-all Ising-type interaction be-
tween neutral-atom qubits based on Rydberg states [57,58].
This last, neutral-atom-based platform offers particularly rich
possibilities for quantum-state engineering [59].

A recent result in the realm of Lie-algebraic controllability
implies that a qubit array with all-to-all Ising-type interaction
between qubits, when acted upon by two global transverse
control fields, is state-to-state controllable if the initial and
final states are invariant under an arbitrary permutation of
qubits [60]; moreover, it is important to note that both our
adopted initial state |000〉 and the sought-after Dicke state
|D3

2〉 are indeed permutationally invariant. Thus, this last
Lie-algebraic result guarantees the existence of a quantum-
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control protocol for the preparation of the state |D3
2〉 starting

from |000〉 for Ising-coupled qubits with global transverse
control.

Our envisaged state-preparation scheme is based on an
NMR-type pulse sequence. This pulse sequence turns out to
involve three instantaneous (δ-shaped) global control pulses,
two of which correspond to global qubit rotations around the
y axis and the remaining one around the x axis, and two Ising-
interaction pulses of equal durations between consecutive
control pulses. It is worthwhile to mention that NMR-
type pulse sequences have heretofore been used in various
QC problems [61–68], even in the presence of the same (Ising)
type of qubit-qubit interaction. For instance, they were utilized
for preserving cluster states [66] in measurement-based QC
[69]; the practical usefulness of the Ising-type qubit-qubit
coupling in this regard stems from the close kinship between
its native two-qubit gate and controlled-Z [34], the gate used
for generating cluster states [69].

The design of the envisaged pulse sequence relies heav-
ily on the permutational invariance of the state-preparation
problem at hand, more precisely, on the use of the four-
dimensional, permutationally invariant subspace (symmetric
sector) of the three-qubit Hilbert space. After finding the op-
timal values of the eight parameters characterizing this pulse
sequence (namely, the durations of the interaction pulses, the
global-rotation angles, which are related to the control-field
magnitudes, and, finally, the angles specifying the directions
of the rotation axes in the x-y plane), we carry out a detailed
numerical analysis of its sensitivity against systematic errors
in the values of those parameters. We show that even for fairly
large relative errors in different parameter values, one can still
retain Dicke-state fidelities very close to unity, which speaks
in favor of the robustness of the proposed scheme.

The remaining part of this paper is organized in the fol-
lowing manner. In Sec. II, the Ising-coupled qubit system at
hand and the Dicke-state preparation problem to be addressed
in what follows are described in detail; the notation to be
used throughout the paper is also introduced, along with some
permutational-symmetry-related considerations. Section III is
set aside for the discussion of the design of the sought-after
NMR-type pulse sequence that allows an efficient Dicke-state
preparation. The obtained results for the idealized pulse se-
quence, i.e., for the optimal values of its eight characteristic
parameters, are then presented and discussed. Finally, a ge-
ometric interpretation of the proposed pulse sequence, based
on a dimensional reduction of the problem at hand and the
concept of the Bloch sphere, is also provided. In Sec. IV
the robustness of the proposed scheme to systematic errors
in its characteristic parameters is discussed in great detail.
Section V is concerned with the generalization of the pro-
posed state-preparation scheme to systems with four or more
qubits; it starts with some general symmetry-related consider-
ations, followed by the demonstration of the pulse sequence
for realizing the two-excitation Dicke state in a four-qubit
system. Before closing, in Sec. VI we summarize the main
findings of this paper and indicate possible directions for
future work. The derivation of the time-evolution operators
corresponding to the different stages of the proposed pulse
sequences in the three- and four-qubit cases is relegated to the
Appendix.

II. SYSTEM AND DICKE-STATE
PREPARATION PROBLEM

To set the stage for further discussion, we start by introduc-
ing a system of Ising-coupled qubits with global transverse
control, with emphasis on the relevant Lie-algebraic control-
lability results (Sec. II A). We then briefly review some basic
properties of Dicke states and formulate the state-preparation
problem under consideration as a quantum-control problem
in a three-qubit system (Sec. II B). Finally, we underscore
the consequences of the permutational invariance of the sys-
tem at hand for the solution of this quantum-control problem
(Sec. II C).

A. Hamiltonian of Ising-coupled qubit arrays with global
transverse control

The system at hand is an array of qubits coupled through
long-range (all-to-all) Ising (zz) coupling, which are also
acted upon by global Zeeman-type control fields in the two
transverse (x and y) directions. Accordingly, the total system
Hamiltonian H (t ) = HZZ + HC (t ) is given by the sum of the
Ising-interaction part HZZ and the control part, i.e.,

H (t ) = HZZ + hx(t )X + hy(t )Y, (1)

where hx(t ) and hy(t ) are global control fields in the x and
y directions, respectively. The operators HZZ , X , and Y are
given by

HZZ = J
∑

1�n<n′�N

ZnZn′ , (2)

X =
N∑

n=1

Xn , Y =
N∑

n=1

Yn, (3)

where J denotes the Ising coupling strength, while Xn, Yn, and
Zn are the Pauli operators of the nth qubit (n = 1, . . . , N), i.e.,

Xn = 12 ⊗ . . . ⊗ 12 ⊗ X︸︷︷︸
n

⊗12 ⊗ . . . ⊗ 12, (4)

where X ≡ (X,Y, Z )T is the vector of single-qubit Pauli op-
erators and Xn ≡ (Xn,Yn, Zn)T its counterpart acting on the
N-qubit Hilbert space; 12 is the single-qubit identity operator.

The Lie-algebraic controllability of coupled spin-1/2
chains (qubit arrays) was discussed extensively in the past
[70]. In particular, for complete (operator) controllability, i.e.,
the capability of realizing an arbitrary unitary transforma-
tion on the Hilbert space of the underlying system, which is
tantamount to enabling universal QC, of a qubit array with
Ising-type interaction it is necessary to have two mutually
noncommuting control fields acting on every qubit in the array
[71]. Therefore, an N-qubit system with Ising-type coupling
between qubits and acted upon by global Zeeman-type control
fields in the x and y directions [cf. Eqs. (1) to (3) above]
is, generally speaking, not completely operator-controllable;
rephrasing, its corresponding dynamical Lie algebra [70]
Ld = span{HZZ ,X ,Y} is not isomorphic with the full u(2N )
or su(2N ) algebra, being, in fact, isomorphic with one of their
proper Lie subalgebras.
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An important controllability-related result for Ising-
coupled qubit arrays was recently derived, which is based on
the invariance under permutations of qubits. Namely, it has
been shown that a system described by the permutationally
invariant Hamiltonian of Eq. (1) is completely state-to-state
controllable for an arbitrary pair of permutationally invariant
initial and final states [60]. In other words, the time depen-
dence of global control fields hx(t ) and hy(t ) [cf. Eq. (1)] can,
in principle, be found such that an arbitrary permutationally
invariant final state can be reached in a finite time starting
from a permutationally invariant initial state. However (as is
also the case with other results in the realm of Lie-algebraic
controllability [70], which have the nature of existence theo-
rems), the aforementioned recent result does not provide the
actual time dependence of the fields hx(t ) and hy(t ) that allows
this system to evolve from a chosen initial to a desired final
state [72].

B. Preparation of the Dicke state |D3
2〉 as a

quantum-control problem

In the following, we formulate the envisaged determinis-
tic preparation of the two-excitation Dicke state |D3

2〉 in a
three-qubit system (N = 3), starting from the state |000〉, as
a quantum-control problem. To begin with, we provide a short
reminder on the basic properties of Dicke states.

A generic N-qubit state with a excitations (i.e., a qubits
in the logical state |1〉, with the remaining ones being in
the state |0〉) can be parameterized as |{n1, . . . , na}〉, with
n1, . . . , na enumerating those qubits that are in the logical
state |1〉. The a-excitation Dicke state of an N-qubit system is
given by

∣∣DN
a

〉 =
(

N

a

)−1/2 N∑
n1<...<na

|{n1, . . . , na}〉, (5)

i.e., by the equal-weight superposition of all the states
|{n1, . . . , na}〉 spanning the subspace of the N-qubit states
with exactly a excitations (i.e., states corresponding to bit
strings of Hamming weight a); the sum in Eq. (5) runs over
all

(N
a

)
combinations of a qubits out of N .

While the notation used in Eq. (5) is appropriate for
the most general Dicke states, for relatively small values
of N one can resort to a simpler notation. In particu-
lar, the two-excitation Dicke state of N = 3 qubits, the
state of primary interest in the present work, can be
written as ∣∣D3

2

〉 = 1√
3

(|110〉 + |101〉 + |011〉). (6)

Our treatment in what follows will rely heavily on the permu-
tational invariance of this state (see Sec. II C below).

In the special case N = 3 the Ising-interaction Hamiltonian
[cf. Eq. (2)] reduces to

HZZ = J (Z1Z2 + Z2Z3 + Z1Z3), (7)

while the total control Hamiltonian is given by

HC (t ) = hx(t )(X1 + X2 + X3) + hy(t )(Y1 + Y2 + Y3). (8)

Our objective in the following is to find the time depen-
dence of control fields hx(t ) and hy(t ) such that the dynamics
governed by the total Hamiltonian H (t ) = HZZ + HC (t ) al-
lows the preparation of the state |D3

2〉 in a finite time
starting from the state |000〉. Thus, the state |ψ (t )〉 of the
three-qubit system under consideration ought to satisfy the
conditions

|ψ (t = 0)〉 = |000〉, |ψ (t = T )〉 = ∣∣D3
2

〉
, (9)

where T is the as-yet-unknown state-preparation time.

C. Symmetric sector of the three-qubit Hilbert
space and its basis

Before embarking on the design of the pulse sequence
for implementing the desired Dicke-state preparation, it is
pertinent to explore the consequences of the permutational
invariance of the problem under consideration. Particularly
useful in this regard is the concept of the symmetric sector
of the three-qubit Hilbert space.

In the quantum-control context, it is often beneficial to
consider pure states that are invariant with respect to per-
mutations of qubits [73–75], either under the full symmetric
group SN (where N is the number of qubits) or with respect
to proper subgroups of SN [76]. In particular, in the state-
preparation problem under consideration we focus on the
subset of all the unitaries on the Hilbert space H ≡ (C2)⊗3

of the system at hand that are invariant under the full permu-
tation group S3. The relevant (permutationally invariant) Lie
subgroup U S3 (8) of U (8) has dimension 20 [60]. Its associ-
ated Lie algebra is uS3 (8) = span{iΠ (σ1 ⊗ σ2 ⊗ σ3)}, where
Π = (3!)−1 ∑

P∈S3
P and σn (n = 1, 2, 3) stands either for 12

or one of the Pauli operators.
The eight-dimensional total Hilbert space H of a three-

qubit system decomposes into three invariant subspaces under
the action of uS3 (8). Among those subspaces, which corre-
spond to irreducible representations of su(2), there are two
subspaces of dimension 2 and one that has dimension 4. The
four-dimensional subspace comprises the states that are in-
variant under an arbitrary permutation of qubits, hence being
referred to as the symmetric sector [74]. The states

|ζ0〉 = |000〉, |ζ1〉 = 1√
3

(|100〉 + |010〉 + |001〉),

|ζ2〉 = 1√
3

(|110〉 + |101〉 + |011〉), |ζ3〉 = |111〉, (10)

form an orthonormal, symmetry-adapted basis of the sym-
metric sector [27,60], where the subscript a in |ζa〉 is equal
to the Hamming weight of the corresponding bit string.
These four states are, in fact, the four Dicke states |D3

a〉
(a = 0, . . . , 3).

The initial and final states of our envisioned state-
preparation scheme [cf. Eq. (9)] correspond to two of the basis
states in Eq. (10). While the initial state |000〉 ≡ corresponds
to |ζ0〉 ≡ |D3

0〉, the Dicke state |D3
2〉 coincides with |ζ2〉.

Therefore, it is pertinent to investigate the state-preparation
problem at hand within the symmetric sector. To this end,
we first map the four basis states in Eq. (10) onto column
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vectors [27]:

|ζ0〉 	→

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠, |ζ1〉 	→

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠,

|ζ2〉 	→

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠, |ζ3〉 	→

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠. (11)

III. PULSE SEQUENCE FOR DICKE-STATE
PREPARATION

In the following, we first describe the construction of the
NMR-type pulse sequence that allows one to efficiently pre-
pare the desired Dicke state |D3

2〉 starting from the state |000〉
and present the optimal values of its characteristic parameters
(Sec. III A). We then discuss the feasibility of realizing the
proposed state-preparation scheme with neutral-atom qubits
(based on Rydberg states [77]), even in the presence of
motion-induced dephasing and ionization effects (Sec. III B).
Finally, we provide a geometrical interpretation of this pulse
sequence based on a dimensional reduction of the problem to
a two-dimensional subspace of the original three-qubit Hilbert
space and the concept of the Bloch sphere (Sec. III C).

As indicated above, the sought-after Dicke state is invari-
ant with respect to permutations of qubits. Therefore, the
state-preparation problem at hand can be reduced to a four-
dimensional subspace (symmetric sector) of the three-qubit
Hilbert space and formulated using the basis given in Eq. (10).
We hereafter also set h̄ = 1, thus all the timescales in the
problem under consideration will be expressed in terms of the
inverse Ising-coupling strength J−1.

A. Layout of the pulse sequence
and the optimal parameter values

In what follows, we aim to find a solution of the state-
preparation problem under consideration [cf. Eq. (9)] that
has the form of an NMR-type pulse sequence; such pulse
sequences typically comprise a certain number of instanta-
neous (δ-shaped) global control pulses and interaction pulses
between consecutive control pulses. More specifically yet, we
assume that the pulse sequence of interest here consists of
three such control pulses in transverse directions (at times
t = 0, t = Tm, and t = T ) and two Ising-interaction pulses (a
pictorial illustration of this pulse sequence is given in Fig. 1).
The transverse (global) control field h(t ) ≡ [hx(t ), hy(t ), 0]T

can then be written in the form

h(t ) = α1δ(t ) + α2δ(t − Tm) + α3δ(t − T ), (12)

where the presence of the delta functions in the last equa-
tion captures the instantaneous character of the envisioned
control pulses and α1, α2, α3 are, in principle, arbitrary vectors
in the x-y plane. The directions of these vectors are specified
by their respective polar angles (azimuths) φ1, φ2, φ3.

To understand the connection between instantaneous
global control pulses in the system at hand and global

FIG. 1. Schematic of the pulse sequence for the preparation of
the Dicke state |D3

2〉, which consists of three instantaneous global
control pulses and two Ising-interaction pulses. The control pulse
characterized by the vector α j ( j = 1, 2, 3) in the x-y plane corre-
sponds to a global qubit rotation through an angle of 2α j around
the axis whose direction is determined by the unit vector n̂ j ≡
(cos φ j, sin φ j, 0)T; the polar angles φ j are restricted to values in
[0, π ), while positive (negative) values of α j correspond to coun-
terclockwise (clockwise) rotations. Here UC (α j ) ≡ UC (α j, φ j ) are
the time-evolution operators corresponding to these control pulses;
UZZ (ξ1) and UZZ (ξ2) are their counterparts pertaining to the interac-
tion pulses, with ξ1 ≡ JTm and ξ2 ≡ J (T − Tm ) being their respective
dimensionless durations.

rotations it is useful to recall the well-known identity

exp[−iθ (n̂ · X)] = cos θ12 − i sin θ (n̂ · X), (13)

for the single-qubit rotation operators Rn̂(2θ ) ≡ exp[−iθ (n̂ ·
X)], where n̂ is an arbitrary unit vector. Based on the last
identity it is straightforward to infer that an instantaneous
control pulse described by the vector α j ( j = 1, 2, 3) corre-
sponds to a global rotation through an angle of 2α j around the
axis whose direction is determined by the unit vector n̂ j ≡
(cos φ j, sin φ j, 0)T. We choose the convention according to
which the angles φ j are restricted to values in [0, π ), while
positive (negative) values of α j correspond to counterclock-
wise (clockwise) rotations.

It is appropriate to comment at this point on the feasibility
of realizing pulse sequences of the proposed form, which in-
volve global instantaneous control pulses, in different physical
platforms for QC. First, it should be stressed that the assump-
tion about the instantaneous character of control pulses is well
justified in systems where the magnitude of control fields is
much larger than the qubit-qubit coupling strength. This last
requirement is satisfied for typical control fields of magnetic
origin used in the NMR domain [52], as well as for control
fields used in superconducting-qubit- [63] and neutral-atom
systems [57]. Second, the global character of control pulses
(leading to global qubit rotations) constitutes a necessity in
several QC platforms of current interest. A typical example
are neutral-atom QC setups, where the role of two relevant
logical qubit states is played either by two hyperfine states
or by a ground state and a high-lying Rydberg state. In such
systems one typically makes use of a global microwave field
to perform a rotation in the x-y plane on every qubit [78]. This
rotation gate has to be global in character because the distance
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between qubits in such systems is several orders of magnitude
smaller than the wavelength of the microwave field.

The explicit expressions for the time-evolution operators
UC (α j ) ≡ UC (α j, φ j ) ( j = 1, 2, 3) corresponding to the three
global control pulses, as well as their Ising-interaction coun-
terparts UZZ (ξi ) with respective dimensionless (defined in
units of J−1) durations ξi (i = 1, 2), in the symmetry-adapted
basis of Eq. (10) are straightforward to derive (for a detailed
derivation, see the Appendix). By making use of those expres-
sions, we can recover the full time-evolution operator

UPS(ξ1, ξ2,α1,α2,α3) = UC (α3)UZZ (ξ2)UC (α2)

×UZZ (ξ1)UC (α1) (14)

describing the envisioned pulse sequence (for a pictorial illus-
tration, see Fig. 1).

Aiming to prepare the state |D3
2〉 starting from the initial

state |000〉, we maximize the figure of merit of relevance
here (the Dicke-state fidelity FD) with respect to the eight
pulse-sequence parameters (ξ1, ξ2, α1, α2, α3, φ1, φ2, φ3). This
fidelity is given by the module of the overlap of the target state
|D3

2〉 and the actual final state UPS(ξ1, ξ2,α1,α2,α3)|000〉 of
the three-qubit system that results from the application of the
pulse sequence [cf. Eq. (14)]

FD = ∣∣〈D3
2

∣∣UPS(ξ1, ξ2,α1,α2,α3)|000〉∣∣. (15)

We numerically optimize the Dicke-state fidelity in
Eq. (15) by making use of the minimize routine from the
scipy.optimization package of the SCIPY library [79]. In
this way, we obtain the following optimal values of the eight
pulse-sequence parameters:

α1,0 = 3π/4,

α2,0 = − arccos(1/3)/4,

α3,0 = π/4,

φ1,0 = φ3,0 = π/2, φ2,0 = 0,

ξ1,0 = ξ2,0 = [π − arccos(1/3)]/4. (16)

Based on the obtained results, we can specify the x and y
components of the global control field h(t ) [whose assumed
general form is given in Eq. (12)] that are required for the
preparation of the state |D3

2〉 in the system at hand:

hx(t ) = −J

4
arccos(1/3) δ(t − Tm),

hy(t ) = πJ

4
[3 δ(t ) + δ(t − T )]. (17)

Thus, the x component of the obtained global control field
has the form of an instantaneous pulse at t = Tm, while its
counterpart in the y direction entails two such pulses, at times
t = 0 and t = T .

From the obtained optimal parameter values [cf. Eq. (16)],
the following conclusions can be drawn. First, the first and
third control pulses correspond to global rotations around
the y axis, with the respective rotation angles of 3π/2 and
π/2. Second, the second control pulse corresponds to a global
rotation around the x axis through an angle of arccos(1/3)/2.
Finally, the two interaction pulses have equal durations. Given
that the pulse sequence involves instantaneous control pulses,

the total duration T of the pulse sequence, i.e., the state-
preparation time, is given by T = 2ξ1,0 J−1, which amounts
to T = [π − arccos(1/3)]J−1/2. Upon reinstating h̄, the to-
tal Dicke-state preparation time within the framework of the
proposed scheme is thus given by

T ≈ 0.95
h̄

J
. (18)

B. Realization with neutral-atom qubits

To examine the practical feasibility of this scheme, it is
of interest to estimate the order of magnitude of the obtained
state-preparation time in QC platforms of current interest. For
instance, one promising platform is based on optically trapped
neutral atoms confined in optical tweezers at a typical mutual
distance of a few micrometers [57,80]. In such systems it
is nowadays possible to prepare almost any two-dimensional
arrangement of neutral atoms [78]; as a special case, one can
prepare a system that consists of three equidistant neutral
atoms. Assuming that the role of the logical qubit states |0〉
and |1〉 is played by the atomic ground state |g〉 and a high-
lying Rydberg state |r〉 [77], respectively, such a system of
three neutral-atom qubits is of direct relevance for the present
work.

The Ising-type interaction between neutral-atom qubits
originates from the vander Waals (vdW)-type interaction be-
tween atoms. This interaction is given by

VvdW =
∑
n<n′

C6

R6
nn′

|rnrn′ 〉〈rnrn′ |

= 1

4

∑
n<n′

C6

R6
nn′

(ZnZn′ + Zn + Zn′ + 1), (19)

where Rnn′ is the distance between atoms n and n′ and C6 the
vdW interaction constant. Thus, the Ising-coupling strength
between Rydberg-atom qubits n and n′ is given in this system
by Jnn′ = C6/(4R6

nn′ ). For a typical interatomic distance of
around 5 μm and a value around 50 for the principal quan-
tum number [57] we have J/h̄ � 1.5MHz. Therefore, based
on Eq. (19) we find that T � 0.6 μs, which squares with
the expectation that the time needed to carry out a typical
entangling operation in such systems should be of the order
of 1 μs. The obtained state-preparation time is thus at least
two orders of magnitude shorter than the typical radiative
lifetimes of Rydberg states, which, for the chosen range of
principal quantum numbers, are of the order of 100 μs. This
speaks in favor of the feasibility of the proposed scheme for
the preparation of the state |D3

2〉.
It is of interest to examine the feasibility of realizing the

proposed state-preparation scheme with neutral-atom qubits
in the presence of potentially debilitating effects such as
motion-induced dephasing and ionization. In what follows,
we demonstrate that under typical experimental conditions
(such as the Lamb-Dicke regime of atomic motion and the
presence of a cryogenic environment) these effects do not
pose obstacles to the realization of the desired Dicke state
in a system of neutral atoms confined in optical dipole traps
(tweezers) [80].

Generally speaking, laser-based manipulation of atomic
states gives rise to undesired phases that depend on atomic
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positions. These effects are, however, alleviated when atoms
are initially confined in the ground state of the trapping po-
tential (in this particular case, that of an optical tweezer) and
the system is in the Lamb-Dicke regime. This last case refers
to situations where the trap is sufficiently confining that the
momentum imparted by the scattered photon does not cause
a change in the motional state of an atom [80]. In other
words, the recoil energy of an atom is much smaller than the
spacing between adjacent vibrational levels corresponding to
the trapping potential.

Let us consider an atom of mass m whose position within
a tweezer trap with frequency ωtr is given by xn = x0

n + sn,
where x0

n is its equilibrium position and sn = l0(an + a†
n) the

fluctuation due to its motion; here l0 ≡ √
h̄/(2mωtr ) is the

harmonic zero-point length corresponding to the motional
ground state within a tweezer trap, while the creation (anni-
hilation) operator a†

n (an) creates (destroys) a single excitation
pertaining to the motional degrees of freedom of the consid-
ered atom. The atom is assumed to initially be in the state
|g〉n|0〉n ≡ |g, 0〉n, i.e., in the atomic ground state |g〉 and in
the ground state |0〉 with respect to its motional degrees of
freedom. The action of the Hamiltonian describing an atom-
laser interaction on this state leads to the state (t )eikxn |e, 0〉n,
where (t ) is the Rabi frequency of the external laser and |e〉n

is an excited atomic state (one special case of such states is the
Rydberg state |r〉n). In the Lamb-Dicke regime, defined by the
condition η ≡ kl0/

√
2 � 1, we can expand the exponential

factor eikxn ≡ eikx0
n eiksn and thereby obtain

eikxn = eikx0
n [1 + iη(an + a†

n) + O(η2)]. (20)

By first absorbing the constant prefactor eikx0
n into the defini-

tion of the atomic basis states, i.e., defining |ẽ〉n ≡ eikx0
n |e〉n,

the Hamiltonian describing the laser-induced excitation of
atom n in the basis {|g, 0〉n, |ẽ, 0〉n, |ẽ, 1〉n} adopts the form

Hexc =
⎛
⎝ 0 (t ) η(t )

(t ) 0 0
η(t ) 0 ωtr

⎞
⎠. (21)

If the considered atom starts in the state |g, 0〉n, the probability
of populating the state |r̃, 1〉n (a special case of |ẽ, 1〉n), which
corresponds to the situation where the excitation of the consid-
ered atom to the desired Rydberg state is accompanied by the
creation of a single motional quantum within the tweezer trap,
will be negligible if η � ωtr. For a typical choice of param-
eter values of our envisioned system [ ∼ 1kHz, ωtr/(2π ) ∼
(1–10)kHz] being in the Lamb-Dicke regime (η � 1) imme-
diately implies that this last condition is fulfilled. Therefore,
the motion-induced dephasing does not have an appreciable
detrimental impact on the realization of our state-preparation
scheme.

Another possible source of decoherence in our envisioned
neutral-atom system is depopulation of the Rydberg state.
The rate of Rydberg-state depopulation is given by the sum
of probabilities of spontaneous emission to all lower states,
which are given by Einstein’s coefficients Ai f [77] (with |i〉

and | f 〉 being the initial and final states, respectively)

τ−1
r =

∑
f

Ai f = 2e2

3ε0c3h

∑
E f <Ei

ω3
i f |〈i|r| f 〉|2. (22)

Here ωi f ≡ (Ei − E f )/h̄ is the transition frequency and
〈i|r| f 〉 the dipole matrix element between the initial and final
states; importantly, the sum in Eq. (23) runs only over final
states with energies smaller than that of the initial state. One of
the possible Rydberg-decay channels corresponds to loss due
to atomic collisions; however, such loss is heavily suppressed
in the envisioned system because it is assumed that in this sys-
tem there is only one atom in each individual tweezer trap. The
other possible Rydberg-decay channel pertains to blackbody-
radiation-induced transitions [77]. However, in a cryogenic
environment, which the proposed system is assumed to op-
erate in, such transitions are known to be negligible.

C. Geometric interpretation of the pulse sequence
on the Bloch sphere

Making use of the permutational-symmetry of the state-
engineering problem under consideration allows us to treat
this problem in the four-dimensional symmetric sector (re-
call Sec. II C) rather than in the original, eight-dimensional
Hilbert space of the three-qubit system. Further dimensional
reduction of the problem at hand (to a two-dimensional space)
is enabled through the decomposition of the relevant operators
in the (two-dimensional) eigensubspaces of the x- and y-parity
operators; the second of which are given by the tensor prod-
ucts of Pauli X and Y operators on different qubits

Xp ≡ X ⊗ X ⊗ X, Yp ≡ Y ⊗ Y ⊗ Y. (23)

In what follows, we make use of this additional dimensional
reduction to provide a geometric interpretation of the pro-
posed pulse sequence on the Bloch sphere.

It is worthwhile to first note that the operators HZZ and
X = X1 + X2 + X3 commute with the x-parity operator Xp

(similarly, the operators HZZ and Y = Y1 + Y2 + Y3 commute
with the y-parity operator Yp). As a result, each of the two
(degenerate) eigensubspaces of Xp, which correspond to the
eigenvalues ±1, are invariant with respect to the operators HZZ

and X . This allows us to simplify the analysis of the dynamics
inherent to HZZ and X by projecting these operators to the +1
and −1 eigensubspaces of Xp.

While, generally speaking, the dimensionality of the +1
and −1 eigensubspaces of Xp is 4, in the problem at hand
we are only interested in their corresponding eigenstates
that belong to the symmetric sector (recall the discussion
in Sec. II C). Thus, the relevant two-dimensional +1 eigen-
subspace of Xp is spanned by the states that in our chosen
symmetric-sector basis [cf. Eq. (10)] are given by

|v1〉 = 1√
2

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠, |v2〉 = 1√

2

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠, (24)
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while its −1 counterpart is spanned by

|v3〉 = 1√
2

⎛
⎜⎜⎝

1
0
0

−1

⎞
⎟⎟⎠, |v4〉 = 1√

2

⎛
⎜⎜⎝

0
1

−1
0

⎞
⎟⎟⎠. (25)

In the −1 eigensubspace of Xp the actions of HZZ and X
are represented, respectively, by the matrices

H (−1)
ZZ /J =

(
3 0
0 −1

)
, X (−1) =

(
0

√
3√

3 −2

)
. (26)

It is straightforward to express these 2 × 2 matrices in the
basis {12, X,Y, Z},

H (−1)
ZZ /J = 12 + 2Z,

X (−1) = −12 +
√

3 X + Z, (27)

which can further be recast in the form

H (−1)
ZZ /J = 12 + 2(0, 0, 1)T · X,

X (−1) = −12 + 2(
√

3/2, 0, 1/2)T · X. (28)

The form of the last equations implies that the time-evolution
operators corresponding to the operators H (−1)

ZZ and X (−1),
acting in the −1 eigensubspace of Xp, have the form of global-
rotation operators. Their respective rotation axes are defined
by the unit vectors (0, 0, 1)T and (

√
3/2, 0, 1/2)T.

The adopted initial state |000〉 of our state-preparation
scheme is an equal-weight superposition of states in the +1
and −1 eigensubspaces of the parity operator, more precisely
|000〉 = (|v1〉 + |v3〉)/

√
2. At the same time, the target state

|D3
2〉 is given by |D3

2〉 = (|v2〉 − |v4〉)/
√

2.
The proposed five-stage pulse sequence, which gives rise

to the state |D3
2〉 starting from |000〉, consists of three global-

rotation- and two Ising-interaction pulses, i.e.,

|D3
2〉 = UC (α3,0, φ3,0)UZZ (ξ2,0)UC (α2,0, φ2,0)

×UZZ (ξ1,0)UC (α1,0, φ1,0) |000〉, (29)

where {α1,0, α2,0, α3,0, φ1,0, φ2,0, φ3,0, ξ1,0, ξ2,0} are the op-
timal values of the pulse-sequence parameters given by
Eq. (16). The last equation can straightforwardly be manip-
ulated to the form

|D〉 = UZZ (ξ2,0)UC (α2,0, φ2,0)UZZ (ξ1,0) |A〉, (30)

where |A〉 = UC (α1,0, φ1,0) |000〉 ≡ Ry(3π/2) |000〉 is the
state of the three-qubit system after the first global con-
trol pulse (a rotation around the y axis through an angle
of 3π/2) is carried out, while |D〉 = U −1

C (α3,0, φ3,0) |D3
2〉 ≡

Ry(−π/2) |D3
2〉 is its state before the third control pulse (a

rotation around the y axis through an angle of π/2) is per-
formed. In terms of the basis vectors |v3〉 and |v4〉 of the −1
eigensubspace of the x-parity operator Xp [cf. Eq. (26)], the
states |A〉 and |D〉 are given by |A〉 = (

√
3|v4〉 − |v3〉)/2 and

|D〉 = (
√

3|v3〉 + |v4〉)/2.
While the state |000〉, as explained above, represents a lin-

ear combination of states from two different eigensubspaces
of Xp, the state |A〉 obtained from the second eigensubspace
through the rotation Ry(3π/2) belongs to the −1 eigensub-
space. Because the same is true of the state |D〉, all three

FIG. 2. Geometric interpretation of the proposed pulse sequence
on the Bloch sphere, which pertains to the two-dimensional eigen-
subspace of the x-parity operator Xp that corresponds to the
eigenvalue −1. The point A on the Bloch sphere corresponds to the
state |A〉 ≡ Ry(3π/2) |000〉 of the system after the first global control
pulse, while D pertains to its state |D〉 ≡ Ry(−π/2) |D3

2〉 before the
third control pulse; the dashed line indicates the global-rotation axis
corresponding to the operator X (−1) in Eq. (29).

remaining stages of the pulse sequence [represented by the
operators UZZ (ξ1,0), UC (α2,0, φ2,0), and UZZ (ξ2,0) in Eq. (31)]
lead to the evolution of the three-qubit system within that
same (two-dimensional) eigensubspace of Xp. Given that it is
confined to a two-dimensional subspace, this evolution can be
visually represented using a Bloch sphere.

Before even attempting to provide a geometrical interpre-
tation of the proposed pulse sequence, it is useful to recall that
an arbitrary pure single-qubit state can be parametrized as [34]

|�(θ, φ)〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉, (31)

where the values of the polar angle θ ∈ [0, π ] and the
azimuthal angle φ ∈ [0, 2π ) define the point (x, y, z) =
(sin θ cos φ, sin θ sin φ, cos θ ) that corresponds to the state
|�(θ, φ)〉 on the Bloch sphere. According to this parametriza-
tion, the north pole of the Bloch sphere (θ = 0) corresponds to
the logical |0〉 state, while the south pole (θ = π ) represents
the state |1〉.

For our present purpose of geometrically representing uni-
tary transformations in the relevant two-dimensional subspace
of the original three-qubit Hilbert space, we choose the con-
vention in which the eigenvector |v3〉 is identified with the
north pole of the Bloch sphere in Fig. 2 and |v4〉 with the
south pole [cf. Eq. (26)]. On this Bloch sphere the states |A〉
and |D〉 are represented by the eponymous points. At the same
time, the three stages of the proposed pulse sequence that
are required to steer the system from A to D are represented
by following three curves: the curve A to B [the first Ising-
interaction pulse, described by UZZ (ξ1,0)], B to C [the second
control pulse, i.e., a rotation around the x axis through an
angle of − arccos(1/3)/2, represented by UC (α2,0, φ2,0)], and
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C to D [the second Ising-interaction pulse; its corresponding
time-evolution operator is UZZ (ξ2,0)]. All three curves have
the same shape because in the relevant two-dimensional sub-
space of the original three-qubit Hilbert space both control
pulses and their Ising-interaction counterparts act as global-
rotation operators, as implied by the form of Eq. (29).

IV. ROBUSTNESS OF
THE STATE-PREPARATION SCHEME

Having found the idealized pulse sequence for the prepa-
ration of the desired Dicke state [cf. Eq. (16) in Sec. III A],
it is pertinent to quantitatively assess the sensitivity of the
proposed state-preparation scheme to various imperfections.
Typical imperfections considered in NMR-type pulse se-
quences [52] pertain to errors in the rotation axes (more
precisely, in the directions of their corresponding unit vectors
n̂) and/or errors in the rotation angles. Thus, the actual qubit
rotation carried out experimentally is not the ideal one repre-
sented by Rn̂(2θ ) ≡ exp[−iθ (n̂ · X)] [cf. Eq. (13)]. A realistic
rotation is instead described by

R̃n̂(2θ ) = exp [−if (θ, n̂) · X], (32)

where the vector function f (θ, n̂) characterizes various types
of systematic errors [52]. For example, the form f (θ, n̂) =
θ (1 + εθ )n̂ of this vector function allows us to describe under
and overrotation errors (for negative and positive values of εθ ,
respectively). On the other hand, by choosing this function
to have the form f (θ, n̂) = θ (nx cos εφ + ny sin εφ, ny cos εφ −
nx sin εφ, nz )T we can capture the error in the rotation axis
[52] whose nominal direction is given by the unit vector
n̂ ≡ (cos φ, sin φ, 0)T.

In keeping with the above general considerations, we in-
vestigate the robustness of the proposed scheme by taking
into account systematic errors in the global-rotation angles
corresponding to the three control pulses (i.e., errors in the
values of the parameters α1, α2, and α3), errors in the di-
rections of the attendant rotation axes (i.e., errors in the
parameters φ1, φ2, and φ3), and, finally, errors correspond-
ing to the durations of the Ising-interaction pulses (ξ1 and
ξ2). In other words, we consider errors εp of either sign for
each of the eight characteristic pulse-sequence parameters
(p = ξ1, ξ2, α1, α2, α3, φ1, φ2, φ3):

ξi = ξi,0(1 + εξi ) ( i = 1, 2 ),

α j = α j,0(1 + εα j ), φ j = φ j,0 + εφ j ( j = 1, 2, 3 ). (33)

In connection with the form of the last equation, it is important
to stress that errors in the parameters ξ1, ξ2, α1, α2, and α3

have the nature of relative errors, while for φ1, φ2, and φ3 it is
pertinent to consider absolute errors. In both cases, we assume
the corresponding errors to vary between −0.1 and 0.1.

The relative impacts on the target-state fidelity FD of the
individual deviations εp from the respective optimal values
of the eight relevant parameters in the problem at hand are
depicted in Fig. 3, which shows the deviation of the fidelity
from unity (i.e., the infidelity) 1 − FD. What can be inferred
from these results is that, among these eight parameters, the
Dicke-state fidelity is by far most sensitive to deviations from
the optimal value of the parameter α1, i.e., the global-rotation

FIG. 3. Dependence of the deviation of the Dicke-state fidelity
from unity 1 − FD on the errors εp in the values of the param-
eters that characterize the pulse sequence for implementing the
Dicke-state preparation.

angle pertaining to the first (t = 0) control pulse. Another
parameter whose variation significantly affects the target-state
fidelity is α3, which determines the global-rotation angle cor-
responding to the third (t = T ) control pulse. The errors in
the values of the remaining six parameters have much smaller
bearing on the target-state fidelity.

Apart from the impacts of deviations εp in the individ-
ual pulse-sequence parameters on the resulting Dicke-state
fidelity, as illustrated by Fig. 3, it is pertinent to also quanti-
tatively analyze the effect of simultaneous errors in more than
one pulse-sequence parameter. To achieve that, we numeri-
cally evaluated the fidelity FD in the presence of simultaneous
errors in two different parameters, based on its defining ex-
pression [cf. Eq. (15)]. The results obtained in this manner
for the infidelity 1 − FD are presented in the form of two-
dimensional density plots in Figs. 4–7. The near-elliptical
shape of different regions in these plots originates from the
fact that the dependence of 1 − FD on the errors εp is to lead-
ing order quadratic because these errors represent deviations
from the optimal parameter values.

For instance, Fig. 4(a) shows the deviation 1 − FD of the
fidelity from unity in the presence of simultaneous errors in
the parameters α1 and α2. Apart from corroborating the afore-
mentioned conclusion that the target-state fidelity is much
more sensitive to the deviation in the first rotation angle (α1)
than in the second one (α2), another interesting quantitative
insight can be gleaned from this density plot. Namely, it can
be inferred from this plot that, as long as the relative errors in
these two parameters are below 5%, the infidelity 1 − FD does
not exceed 2%, i.e., the Dicke-state fidelity is at least 0.98.

Figure 4(b) illustrates the dependence of the infidelity on
the deviations from the optimal values of the parameters φ1

and φ2. What is immediately noticeable from this density plot
is that the relevant infidelities are, roughly speaking, an order
of magnitude lower than in the previously considered case of
α1 and α2 [cf. Fig. 4(a)]. For instance, with the exception of
very large deviations of φ1 and φ2 in the same direction (i.e.,

012608-8



DICKE-STATE PREPARATION THROUGH GLOBAL … PHYSICAL REVIEW A 108, 012608 (2023)

FIG. 4. Dependence of the deviation 1 − FD of the Dicke-state
fidelity from unity on (a) errors in the parameters α1 and α2, i.e.
deviations from their respective optimal values α1,0 = 3π/4 and
α2,0 = − arccos(1/3)/4, and (b) errors in the parameters φ1 and φ2,
i.e. deviations from their respective optimal values φ1,0 = π/2 and
φ2,0 = 0.

εφ1 and εφ2 have the same sign), the infidelity does not exceed
0.8 %; in other words, the Dicke-state fidelity is above 0.99
in almost the entire range of errors discussed. An important
qualitative observation is that, in contrast to the dependence
of the infidelity on errors in the last two parameters, which is

FIG. 5. Dependence of the deviation 1 − FD of the Dicke-state
fidelity from unity on (a) errors in the parameters α2 and α3, i.e. de-
viations from their respective optimal values α2,0 = − arccos(1/3)/4
and α3,0 = π/4, and (b) errors in the parameters φ2 and φ3, i.e. devi-
ations from their respective optimal values φ2,0 = 0 and φ3,0 = π/2.

FIG. 6. Dependence of the deviation 1 − FD of the Dicke-state
fidelity from unity on (a) errors in the parameters α1 and α3, i.e.
deviations from their respective optimal values α1,0 = 3π/4 and
α3,0 = π/4, and (b) errors in the parameters φ1 and φ3, i.e. deviations
from their optimal values φ1,0 = φ3,0 = π/2.

completely symmetric with respect to the change of their sign,
the dependence of 1 − FD on εφ1 and εφ2 is highly asymmetric
with respect to such a change of sign.

The dependence of the infidelity on the errors in the param-
eters α2 and α3, which is illustrated in Fig. 5(a), is qualitatively
similar to that of α1 and α2 [cf. Fig. 4(a)]. The main quan-
titative difference is that the elliptical regions in Fig. 5(a)
are somewhat less elongated along the εα2 axis than their
counterparts in Fig. 4(a). In other words, the aspect ratio of
the relevant elliptical curves is smaller than in Fig. 4(a), which
is yet another reflection of the dominant role of errors in
the parameter α1 compared to errors in other pulse-sequence

FIG. 7. Dependence of the deviation 1 − FD of the Dicke-state
fidelity from unity on errors in the Ising-pulse durations ξ1 and
ξ2, i.e. deviations from their optimal values ξ1,0 = ξ2,0 = [π −
arccos(1/3)]/4.
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parameters. This trend is also evident in Fig. 6(a), where the
effect of simultaneous errors in the parameters α1 and α3 is
illustrated. Another effect noticeable in the case of the later
pair of parameters is the tilted orientation of the elliptical
regions.

Figure 5(b) illustrates the dependence of the infidelity
1 − FD on the simultaneous errors in the parameters φ2 and
φ3, while Fig. 6(b) depicts a similar dependence on the errors
in φ1 and φ3. Compared to Fig. 4(b) the relevant infidelities are
somewhat larger in the latter two cases. However, the target-
state fidelities are still very close to unity (more precisely,
higher than 0.98 and 0.975, respectively) even for the largest
considered values of errors in those parameters. This speaks
in favor of the robustness of the proposed state-preparation
scheme.

In contrast to the rotation angles α1, α2, α3, the simul-
taneous errors in the parameters φ1, φ2, φ3 exhibit elliptical
regions that are mainly elongated in the diagonal and antidi-
agonal directions. To provide a plausible explanation for this
observation, we note that the entire system is axially sym-
metric, i.e., invariant under rotations around the z axis. More
precisely, the x and y axes can be chosen arbitrarily and a ro-
tation around the z axis merely leads to a physically irrelevant
complex phase of the Dicke state. In particular, the Dicke-
state fidelity ought to be invariant under uniform translations,
i.e., transformations φ1, φ2, φ3 	→ φ1 + ε, φ2 + ε, φ3 + ε for
an arbitrary ε ∈ R. Needless to say, this invariance is not
borne out by the obtained results as they correspond to the
case of two simultaneous errors instead of three. However, this
invariance makes the predominant orientation of the elliptical
regions in the diagonal and antidiagonal directions plausible.
For instance, the aforementioned symmetry implies that an
error in the diagonal direction, that is, the same errors in
two angles (e.g., φ0,1, φ0,2 + ε, φ0,3 + ε), coincides with an
error in the third angle (e.g., φ0,1 − ε, φ0,2, φ0,3). This last
observation allows us to compare simultaneous errors in two
angles φi and φ j in the diagonal direction to an error in
the remaining angle φk (i, j, k = 1, 2, 3). In particular, Fig. 3
shows that the fidelity is most sensitive to deviations in φ3

(up to around 0.9%). This matches with the elliptical regions
pertaining to deviations in φ1 and φ2 in Fig. 4(b), which are
oriented in the antidiagonal direction; thus, the fastest increase
of the infidelity is the one in the diagonal direction (also up to
about 0.9%). Conversely, the elliptical regions corresponding
to deviations in (φ1, φ3) and (φ2, φ3) in Figs. 5(b) and 6(b)
are tilted in the diagonal direction, which corresponds to de-
viations in φ2 and φ1, respectively. Consistently, the infidelity
increases more slowly in the diagonal direction than along the
φ3 axis.

As can be inferred from Fig. 7, the fidelity appears to
remain equal to unity for antidiagonal errors in ξ1 and ξ2, i.e.,
for ξ1 = ξ1,0 + ε and ξ2 = ξ2,0 − ε for ε ∈ R. This somewhat
surprising observation should, however, be taken with caution
because the fidelity does, in fact, deviate from unity for an-
tidiagonal errors, even if this deviation is hardly noticeable.
Notwithstanding, we note that this observation is physically
reasonable given that the total duration T of the pulse se-
quence remains invariant under antidiagonal errors in ξ1 and
ξ2, this being a consequence of the fact that the total duration
is proportional to ξ1 + ξ2.

V. GENERALIZATION: DICKE-STATE PREPARATION
FOR N � 4

For the sake of completeness, it is worthwhile to explain
how the proposed scheme for the generation of the state |D3

2〉
can be generalized to other Dicke states, in particular in sys-
tems with N � 4 qubits. To this end, we start this section with
some general, permutational-symmetry related considerations
(Sec. V A). We then present the resulting pulse sequence for
realizing the two-excitation Dicke state in a four-qubit system,
i.e., the state |D4

2〉 (Sec. V B).

A. General permutational-symmetry-based considerations

To begin with, it is worthwhile to note that in an N-
qubit system the subspace of permutationally invariant states
corresponds to the total spin of N/2; the simplest example
is furnished by the N = 2 case, i.e., that of two spin-1/2
particles, where the permutationally invariant subspace cor-
responds to the total spin of 1 and is three-dimensional (the
spin-triplet subspace). Accordingly, the dimension of this per-
mutationally invariant subspace is equal to N + 1 [81], hence
increasing linearly with the number of qubits. This very fact
[that the dimension of the relevant permutationally invariant
subspace grows only linearly, and that of the total Hilbert
space exponentially (i.e., as 2N ), with the number of qubits]
speaks in favor of exploiting the permutational symmetry
in the context of quantum-state engineering in systems of
this type.

One commonly used complete orthonormal basis of the
permutationally invariant subspace of the N-qubit Hilbert
space is given by the Dicke states |DN

a 〉 (a = 0, . . . , N) [cf.
Eq. (5)]. In other words, any permutationally invariant state
of N qubits can be expressed as a linear combination of the
N + 1 states of this symmetry-adapted basis; as a reminder,
the basis in Eq. (10) is the special N = 3 case of this general
Dicke-state basis.

For an arbitrary qubit number N , it is straightforward to
obtain the matrices representing the time-evolution opera-
tors UZZ (ξ j ) and UC (α j ) in the chosen symmetry-adapted
(Dicke-state) basis. To derive the matrix form of UZZ (ξ j ),
we first note that HZZ is diagonal for each value of N . The
corresponding matrix elements of HZZ are given by

〈
DN

a

∣∣HZZ

∣∣DN
a

〉 = 2

(
a − N

2

)2

− N

2
, (34)

where a = 0, . . . , N . Hence, a simple matrix exponentiation
yields 〈

DN
a

∣∣UZZ (ξ j )
∣∣DN

a

〉 = e−iξ j [2(a−N/2)2−N/2]. (35)

On the other hand, the time-evolution operator UC (α j ) corre-
sponding to the jth control pulse ( j = 1, 2, . . .) is given by

UC (α j ) = e−iα jS ( j)
1 , (36)

where the operator S ( j)
1 is defined as [cf. Eq. (3)]

S ( j)
1 = cos φ jX + sin φ jY . (37)
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It is straightforward to demonstrate that the matrix elements
of S ( j)

1 in the Dicke-state basis are given by〈
DN

a

∣∣S ( j)
1

∣∣DN
b

〉 = (δb,a+1eiφ j + δb,a−1e−iφ j )

×
√

b + a + 1

2

(
N − b + a − 1

2

)
, (38)

for a, b = 0, . . . , N . Because S ( j)
1 is not diagonal in the

chosen basis, one can compute UC (α j ) using matrix exponen-
tiation, which even in the most general case can efficiently be
carried out numerically.

Further insight into the problem of generating Dicke states
in the N-qubit case can be gleaned by noting that the operators
HZZ and X commute with the x-parity operator Xp ≡ X ⊗
X ⊗ . . . ⊗ X . Consequently, these two operators can be block-
diagonalized in the two eigensubspaces of Xp that correspond
to the eigenvalues ±1; the bases of these two eigensubspaces
of Xp are given by

|v±
k 〉 = ck

(∣∣DN
k−1

〉 ± ∣∣DN
N−k+1

〉)
, (39)

where ck is the normalization constant and k =
1, . . . , �N/2� + 1 (where, for a real number x, �x� is the
largest integer not larger than x). Note that for even values
of N and the corresponding values of k such that the
two subscripts of Dicke states in Eq. (40) are the same
[i.e., for N = 2(k − 1)] the basis vector |v−

k 〉 vanishes;
therefore, in that case the +1 and −1 eigensubspaces of the
(N + 1)-dimensional permutationally invariant subspace of
the total N-qubit Hilbert space have dimensions equal to
1 + N/2 and N/2, respectively.

Similarly, the operators HZZ and Y commute with the
y-parity operator Yp ≡ Y ⊗ Y ⊗ . . . ⊗ Y and, as a result, can
both be block-diagonalized in the ±1 eigensubspaces of Yp.
The respective bases of these two eigensubspaces of Yp are
given by

|w±
k 〉 = ck

[∣∣DN
k−1

〉 ± iN (−1)k
∣∣DN

N−k+1

〉]
, (40)

where ck and k have the same meaning as in Eq. (40) above.

B. Pulse sequence for realizing the state |D4
2〉

Having discussed permutational-symmetry-related aspects
of the Dicke-state preparation in an N-qubit system in
Sec. V A, we now proceed to illustrate this general approach
on the example of the two-excitation Dicke state in a four-
qubit system, i.e., the state |D4

2〉. As we demonstrate in what
follows, similar to the case of |D3

2〉 the state |D4
2〉 can also

be realized starting from the state |0000〉 through a pulse
sequence that consists of three global-control pulses and two
Ising-interaction pulses, i.e., a pulse sequence of the type
illustrated in Fig. 1.

In the four-qubit case (N = 4), the five relevant permuta-
tionally invariant basis states are |D4

0〉 ≡ |0000〉, |D4
1〉, |D4

2〉,|D4
3〉, and |D4

4〉 ≡ |1111〉 [for the explicit form of these states,
see Eq. (A12)].

To determine the optimal values of the pulse-sequence pa-
rameters, we optimize the target-state fidelity, which is given
by an analog of Eq. (15). Namely, this state fidelity in the

four-qubit case is given by

FD = ∣∣〈D4
2

∣∣UPS(ξ1, ξ2,α1,α2,α3)|0000〉∣∣. (41)

The optimal values of the eight pulse-sequence parameters,
obtained numerically using the method previously employed
in the three-qubit case (cf. Sec. III A) are

α1,0 = π/4, α2,0 = −1.162, α3,0 = −2.484,

φ1,0 = π/2, φ2,0 = φ3,0 = 0,

ξ1,0 = 0.285, ξ2,0 = 0.702. (42)

Based on the obtained optimal parameter values we can con-
clude that the total duration T = (ξ1,0 + ξ2,0) J−1 of the pulse
sequence for realizing the state |D4

2〉 is (upon reinstating h̄)
given by T ≈ 0.99 h̄/J , which is just slightly longer than the
time needed to realize the state |D3

2〉 [cf. Eq. (19)]. Another,
qualitative difference from the pulse sequence used for the
preparation of |D3

2〉 [cf. Sec. III A] is that in the four-qubit case
the two Ising-interaction pulses do not have equal durations
(i.e., ξ1,0 �= ξ2,0).

The obtained optimal values of the parameters α1 and
φ j ( j = 1, 2, 3) can be made plausible through the following
algebraic analysis. To begin with, we recall that the operators
HZZ and X commute with the parity operator Xp, implying
that the eigensubspaces of Xp are invariant under the action
of HZZ and X (cf. Sec. V A). The eigensubspaces of Xp

corresponding to the eigenvalues +1 and −1 are spanned by
the vectors {|v+

1 〉, |v+
2 〉, |v+

3 〉} and {|v−
1 〉, |v−

2 〉}, respectively,
where [cf. Eq. (40)]

|v±
1 〉 = 1√

2

⎛
⎜⎜⎜⎜⎝

1
0
0
0

±1

⎞
⎟⎟⎟⎟⎠ , |v±

2 〉 = 1√
2

⎛
⎜⎜⎜⎜⎝

0
1
0

±1
0

⎞
⎟⎟⎟⎟⎠ , |v+

3 〉 =

⎛
⎜⎜⎜⎜⎝

0
0
1
0
0

⎞
⎟⎟⎟⎟⎠.

(43)

In keeping with the general conclusion stated in Sec. V A
above, the respective dimensions of the +1 and −1 eigensub-
spaces of Xp are 3 and 2.

It is straightforward to first verify that |D4
2〉 = |v+

3 〉, i.e., the
target state of our state-preparation scheme belongs to the sub-
space spanned by the vectors {|v+

1 〉, |v+
2 〉, |v+

3 〉}. Therefore,
it suffices to first convert the initial state |0000〉 ≡ |D4

0〉 into
a state that belongs to this last subspace, thereby effectively
reducing the state-preparation problem at hand to the same
subspace. It turns out that the desired initial-state conver-
sion requires a control pulse UC (α1,0) ≡ UC (α1,0, φ1,0) with
α1,0 = π/4 and φ1,0 = π/2, which corresponds to a rotation
through an angle of π/2 around the y axis. By first expressing
UC (α1,0 = π/4, φ1,0 = π/2) in the symmetry-adapted basis,
by means of Eq. (A15), we obtain

UC (α1,0)
∣∣D4

0

〉 = 1

4

⎛
⎜⎜⎜⎜⎝

1
2√
6

2
1

⎞
⎟⎟⎟⎟⎠ = |v+

1 〉 + 2|v+
2 〉 + √

3|v+
3 〉

2
√

2
. (44)

This allows us to reduce the subsequent control pulses
UC (α2,0) and UC (α3,0) to the subspace spanned by
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{|v+
1 〉, |v+

2 〉, |v+
3 〉}, which reveals that these control pulses cor-

respond to global rotations around the x axis, i.e., φ2,0 =
φ3,0 = 0. The remaining optimization problem, i.e., the max-
imization of the state fidelity in Eq. (42) with respect to
the remaining four pulse-sequence parameters, leading to the
results given by Eq. (43), can also be reduced by projecting
the operators HZZ and X into the same subspace:

HZZ 	→ J

⎛
⎝6 0 0

0 0 0
0 0 −2

⎞
⎠ , X 	→ 2

⎛
⎝0 1 0

1 0
√

3
0

√
3 0

⎞
⎠.

(45)

VI. SUMMARY AND CONCLUSION

In summary, in this paper we addressed the problem of
deterministically preparing the two-excitation Dicke state in
a system that consists of three all-to-all Ising-coupled qubits
acted upon by global control fields in the transverse directions.
This system is state-to-state controllable for an arbitrary pair
of initial and final states that are invariant with respect to
permutations of qubits [60]. The permutational invariance of
the Dicke state allowed us to carry out our analysis within
the four-dimensional subspace of the three-qubit Hilbert space
that consists of such (permutationally invariant) states.

We found a solution of the Dicke-state preparation problem
that has the form of a five-stage NMR-type pulse sequence,
which comprises three instantaneous control pulses (equiva-
lent to global qubit rotations) and two Ising-interaction pulses.
Through numerical optimization of the Dicke-state fidelity,
we determined the optimal values of the eight parameters
characterizing the envisioned pulse sequence. We then in-
vestigated the robustness of the proposed pulse sequence to
systematic errors, i.e., deviations from the optimal values
of those parameters. Importantly, we demonstrated that the
Dicke-state fidelity remained very close to unity even for
fairly large deviations from the optimal values of the relevant
pulse-sequence parameters.

We also explained how our proposed scheme for the prepa-
ration of Dicke states can be generalized to systems with N �
4 qubits, describing, as an example, the preparation of the two-
excitation Dicke state |D4

2〉 in a four-qubit system. Likewise,
the preparation of Dicke states could be addressed for qubit
arrays with other relevant types of qubit-qubit interaction; for
example, one could investigate this problem for an XY -type
interaction, which is characteristic of superconducting qubits
[82–85], as well as for Heisenberg-type interactions that are of
relevance for spin qubits [86–88]. Experimental realization of
the proposed state-preparation scheme in a physical platform
with Ising-type coupling between qubits is keenly anticipated.
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APPENDIX: DERIVATION OF THE RELEVANT
TIME-EVOLUTION OPERATORS

In the following, we sketch the derivation of the
time-evolution operators corresponding to the control- and

Ising-interaction pulses required for the preparation of the
Dicke state |D3

2〉 in a three-qubit (N = 3) system (see Sec. A 1
below), as well as its counterpart |D4

2〉 in a four-qubit (N = 4)
one (Sec. A 2).

1. N = 3 case

We start by representing the Ising-interaction Hamiltonian
of a three-qubit (N = 3) system [cf. Eq. (7)] in the symmetry-
adapted basis of Eq. (11):

HZZ 	→ J

⎛
⎜⎜⎝

3 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 3

⎞
⎟⎟⎠. (A1)

Given that HZZ is already diagonal in the chosen basis, it is
straightforward to write the explicit form of the time-evolution
operators UZZ (ξi) corresponding to both Ising interaction
pulses (i = 1, 2). Namely, these time-evolution operators are
given by

UZZ (ξi ) = e−iξiHZZ /J 	→

⎛
⎜⎜⎝

e−3iξi 0 0 0
0 eiξi 0 0
0 0 eiξi 0
0 0 0 e−3iξi

⎞
⎟⎟⎠, (A2)

with ξ1 ≡ JTm being the dimensionless duration of the first
interaction pulse and ξ2 ≡ J (T − Tm) that of the second one.

We now turn to the derivation of the time-evolution oper-
ators UC (α j ) corresponding to the three instantaneous global
control pulses ( j = 1, 2, 3) [cf. Eq. (12)]. It is pertinent to first
note that, while the corresponding (time-dependent) control
Hamiltonian [cf. Eq. (8)] involves the mutually noncommut-
ing Pauli operators Xn and Yn of the nth qubit (n = 1, 2, 3),
the x and y control fields have the same time dependence.
As a result, this control Hamiltonian commutes with itself
at different times (i.e., [HC (t ), HC (t ′)] = 0). Accordingly, its
corresponding time-evolution operator can be written in the
simple form exp[−i

∫ t f

ti
HC (t )dt] (with ti and t f being the

initial and final evolution times, respectively), rather than as-
suming the most general form of a time-ordered exponential.
More specifically yet, this time-evolution operator has the
form of an exponential of a linear combination of the Pauli
operators Xn and Yn (n = 1, 2, 3).

By making use of the identity in Eq. (13), we arrive at the
following expression for UC (α j ) ( j = 1, 2, 3):

UC (α j ) =
3∏

n=1

[
cos α j 18 − i sin α j A( j)

n

]
. (A3)

The operators A( j)
n (n = 1, 2, 3) are here defined as

A( j)
n = 1

α j
(α j,xXn + α j,yYn), (A4)

where α j ≡ ‖α j‖ > 0 is the norm of the vector α j , while α j,x

and α j,y are its x and y components, respectively. The form
of Eq. (A3), in conjunction with that of Eq. (A4), makes it
manifest that the three instantaneous global control pulses are
equivalent to global qubit rotations.

To obtain an explicit form of the time-evolution operators
UC (α j ), we proceed by performing the following two steps.
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First, it should be noted that, using the polar coordinates in the
x-y plane the operator A( j)

n , acting on qubit n, can be recast in
a simpler form. This is based on the identity

1

α j
(α j,xX + α j,yY ) =

(
0 e−iφ j

eiφ j 0

)
(A5)

for single-qubit Pauli operators, with φ j being the polar angle
corresponding to the vector α j . Second, by carrying out the
multiplication in Eq. (A3) we obtain the expression

UC (α j ) = cos3 α j 18 − i sin α j cos2 α j S ( j)
1

− sin2 α j cos α j S ( j)
2 + i sin3 α j S ( j)

3 , (A6)

for UC (α j ), where the auxiliary operators S ( j)
1 , S ( j)

2 , and S ( j)
3

( j = 1, 2, 3) are obtained from A( j)
n (n = 1, 2, 3) using the

following formulas:

S ( j)
1 =

3∑
n=1

A( j)
n ,

S ( j)
2 =

∑
n<n′

A( j)
n A( j)

n′ ,

S ( j)
3 =

3∏
n=1

A( j)
n . (A7)

When represented in the symmetry-adapted basis of Eq. (11),
these operators are given by the 4 × 4 matrices

PSS ( j)
0 P†

S = 14,

PSS ( j)
1 P†

S =

⎛
⎜⎜⎜⎝

0
√

3 e−iφ j 0 0√
3 eiφ j 0 2e−iφ j 0
0 2eiφ j 0

√
3 e−iφ j

0 0
√

3 eiφ j 0

⎞
⎟⎟⎟⎠,

PSS ( j)
2 P†

S =

⎛
⎜⎜⎜⎝

0 0
√

3 e−2iφ j 0
0 2 0

√
3 e−2iφ j√

3 e2iφ j 0 2 0
0

√
3 e2iφ j 0 0

⎞
⎟⎟⎟⎠,

PSS ( j)
3 P†

S =

⎛
⎜⎜⎝

0 0 0 e−3iφ j

0 0 e−iφ j 0
0 eiφ j 0 0

e3iφ j 0 0 0

⎞
⎟⎟⎠, (A8)

where PS denotes the projector onto the symmetric sector [cf.
Sec. II C]. By inserting these last matrices into Eq. (A6), after
elementary manipulations we can obtain the matrices rep-
resenting the time-evolution operators UC (α j ) in the chosen
basis. The rather cumbersome final expressions will, however,
not be provided explicitly here.

2. N = 4 case

Having presented a detailed derivation of the relevant time-
evolution operators for a three-qubit system (cf. Sec. A 1), in
what follows we briefly sketch the derivation of their four-
qubit (N = 4) counterparts.

In the N = 4 case the five (permutationally invariant)
Dicke basis states [cf. Eq. (5)] are given by∣∣D4

0

〉 ≡ |0000〉,∣∣D4
1

〉 ≡ 1

2
(|1000〉 + |0100〉 + |0010〉 + |0001〉),

∣∣D4
2

〉 ≡ 1√
6

(|1100〉 + |1010〉 + |1001〉

+|0110〉 + |0101〉 + |0011〉),∣∣D4
3

〉 ≡ 1

2
(|1110〉 + |1101〉 + |1011〉 + |0111〉),∣∣D4

4

〉 ≡ |1111〉. (A9)

By first performing a mapping of these basis states onto
column vectors, by analogy to Eq. (11), the Ising-interaction
Hamiltonian of a four-qubit system is represented in the last
symmetry-adapted basis as

HZZ 	→ J

⎛
⎜⎜⎜⎜⎝

6 0 0 0 0
0 0 0 0 0
0 0 −2 0 0
0 0 0 0 0
0 0 0 0 6

⎞
⎟⎟⎟⎟⎠. (A10)

The form of the last equation directly leads us to conclude that
the corresponding time-evolution operators UZZ (ξi) (i = 1, 2)
are given by

UZZ (ξi) = e−iξiHZZ /J 	→

⎛
⎜⎜⎜⎜⎝

e−6iξi 0 0 0 0
0 1 0 0 0
0 0 e2iξi 0 0
0 0 0 1 0
0 0 0 0 e−6iξi

⎞
⎟⎟⎟⎟⎠.

(A11)

To determine the form of the time-evolution operators UC (α j )
of instantaneous global control pulses ( j = 1, 2, 3), we utilize
the well-known identity in Eq. (13). In this way, we obtain the
expression

UC (α j ) =
4∏

n=1

[
cos α j 116 − i sin α jA( j)

n

]
, (A12)

where the operators A( j)
n are defined in Eq. (A4). By making

use of the binomial theorem, from the last equation we further
obtain

UC (α j ) =
4∑

m=0

(cos α j )
4−m(−i sin α j )

mS ( j)
m , (A13)

where S ( j)
0 = 116 and the operators S ( j)

m (m = 1, . . . , 4) are
constructed using the operators A( j)

n according to

S ( j)
m =

∑
1�n1<...<nm�4

m∏
i=1

A( j)
ni

. (A14)

It is worthwhile to note that the last equation generalizes
Eq. (A8), its three-qubit counterpart.
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The next step in the derivation of the time-evolution operators UC (α j ) corresponding to the instantaneous control pulses is
to project the operators S ( j)

m onto the symmetry-adapted basis of Eq. (A12); we denote by PS the corresponding projector onto
the five-dimensional permutationally invariant subspace of the four-qubit Hilbert space. In this manner, we obtain the following
5 × 5 matrices:

PSS ( j)
0 P†

S = 15,

PSS ( j)
1 P†

S =

⎛
⎜⎜⎜⎜⎝

0 2e−iφ j 0 0 0
2eiφ j 0

√
6 e−iφ j 0 0

0
√

6 eiφ j 0
√

6 e−iφ j 0
0 0

√
6 eiφ j 0 2e−iφ j

0 0 0 2eiφ j 0

⎞
⎟⎟⎟⎟⎠ ,

PSS ( j)
2 P†

S =

⎛
⎜⎜⎜⎜⎝

0 0
√

6 e−2iφ j 0 0
0 3 0 3e−2iφ j 0√

6 e2iφ j 0 4 0
√

6 e−2iφ j

0 3e2iφ j 0 3 0
0 0

√
6 e2iφ j 0 0

⎞
⎟⎟⎟⎟⎠ ,

PSS ( j)
3 P†

S =

⎛
⎜⎜⎜⎜⎝

0 0 0 2e−3iφ j 0
0 0

√
6 e−iφ j 0 2e−3iφ j

0
√

6 eiφ j 0
√

6 e−iφ j 0
2e3iφ j 0

√
6 eiφ j 0 0

0 2e3iφ j 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

PSS ( j)
4 P†

S =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 e−4iφ j

0 0 0 e−2iφ j 0
0 0 1 0 0
0 e2iφ j 0 0 0

e4iφ j 0 0 0 0

⎞
⎟⎟⎟⎟⎠. (A15)

Finally, after inserting the obtained matrices into Eq. (A13) and carrying out straightforward manipulations we can obtain the
matrices representing the time-evolution operators UC (α j ) in the chosen symmetry-adapted basis.
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(2022).
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