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Steered discrete-time quantum walks for engineering of quantum states
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We analyze the strengths and limitations of steered discrete-time quantum walks with position-independent
coins in generating quantum states of bipartite quantum systems comprising of a qubit coupled to a qudit system.
We demonstrate that not all quantum states in the composite space are accessible through such quantum walks,
even under the most generalized definition of a quantum step, leading to a bifurcation of the composite Hilbert
space into “walk-accessible states” and the “walk-inaccessible states.” We give an algorithm for generating any
walk-accessible state from a simple-to-realize product state in a minimal number of walk steps, all of unit step
size. We further give a prescription towards constructing minimal quantum walks between any pair of such
walk-accessible states. Linear optics has been a popular physical system for implementing coin-based quantum
walks, where the composite space is built up of spin and orbital angular momenta of light beams. We establish
that in such an implementation, any generalized quantum step can be implemented up to a global phase using a
single q-plate and a pair of homogeneous wave plates. We then give a quantum walk based scheme for realizing
arbitrary vector beams consisting of a finite number of OAM components, using only q plates and wave plates.
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I. INTRODUCTION TO QUANTUM WALKS

The theory of classical random walks has been an indis-
pensable tool to understand statistical phenomena and has
been ubiquitous in modeling of various stochastic processes
[1–5]. In one-dimensional random walks, the walker tosses a
coin and moves forward or backward by one unit, depending
upon the outcome of the toss. The quantum-mechanical coun-
terpart of this are the discrete time quantum walks (DTQWs),
where the walker and the coin obey the principles of quantum
mechanics, and the motion of the walker and the toss of the
coin are implemented as unitary transformations. Owing to
quantum superposition effects, these walks display distinct
statistical properties compared with their classical counter-
parts. Quantum walks have proved to be of immense utility in
varied domains, like in quantum computation [6–8], quantum
search [9], quantum algorithms [10,11], generating random
numbers [12], modeling topological phenomena [13–17], etc.
In the DTQWs, the walker is modeled as a qudit, belonging
to a potentially infinite-dimensional space called the “walk
space,” while the coin is modeled as a qubit, belonging to
two-dimensional space called the “coin space.” In this context,
another application of such quantum walks explored in recent
years has been quantum state engineering (QSE) of high-
dimensional quantum systems, which refers to constructing
a desired quantum state starting from some simple-to-realize
initial state. QSE is realized using DTQWs by carefully steer-
ing the quantum walk towards a certain state in the composite
space and then projecting out the coin, such that the walker
collapses into the desired state on the walk space [18–22].
Such high-dimensional states have myriad applications, since,
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in general more can be accomplished in a qudit quantum
system than in a qubit quantum system [23–25]. For in-
stance, qudits are shown to be more powerful than qubits in
tests exploring the foundations of quantum theory [26–28], in
quantum machine learning [29], etc. In quantum cryptogra-
phy, such states are shown to be more resilient to noise and
also offer a larger secret key rate [30–34].

Quantum walks have been implemented in various physical
systems [35]: NMR systems [36,37], on ion traps [38,39], in
circuit QED [40] in neutral atoms [41], to name a few. In
addition to these, photonic systems have also proved to be a
very viable platform for implementing DTQWs, in that they
have been demonstrated under various settings like, time-bin
encoding [42], interferometers [43,44], and spin angular mo-
mentum and orbital angular momentum (SAM-OAM) of light
beams [45–47].

In this paper, we examine the viability of DTQWs in-
volving position-independent but time-dependent coins, in
engineering of the quantum states of the composite space.
In SAM-OAM optical implementation of the quantum walks,
these states physically correspond to what are called vector
beams, which are light beams having spatially varying polar-
ization distribution across their transverse planes. Such vector
light beams have found numerous applications in varied fields
[48–53]. In this paper, we recast the above-mentioned “QSE
using DTQWs” formulation as a means of generating desired
vector vortex beams starting from standard Gaussian light
beams.

The paper is organized as follows: In Sec. II, we give
theoretical background of the DTQWs, and then present
mathematical formulation of QSE in DTQWs. Section III is
devoted towards defining a generalized quantum step, char-
acterizing walks comprised of such quantum steps and the
quantum states realized by such quantum walks. In Sec. IV,
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we present a deterministic recursive algorithm for generating
walk-accessible composite states, starting from some easy-to-
generate product states. In Sec. V, we introduce the notion
of simplification of a quantum walk. We establish that given
a quantum walk it is possible to construct another “simpli-
fied” quantum walk that is completely equivalent to it, but
consisting of quantum steps of identical step size. Given a
pair of walk-accessible states, we also provide here method
for obtaining a “minimal quantum walk” that transforms one
to the other. As a practical implementation of these ideas, in
Sec. VI, we provide the implementation details for these tar-
geted quantum walks in the linear optics domain. In Sec. VII
we provide some numerical examples for the algorithms de-
rived in the previous sections. In Sec. VIII, we conclude the
paper by summarizing the results.

II. THEORETICAL BACKGROUND

For carrying out a DTQW, we identity a quantum system
with two different degrees of freedom (DoFs): a qubit DoF
called the “coin space” spanning the Hilbert space Hc and a
qudit DOF called the “walk space” whose states belong to a
Hilbert space Hw. An arbitrary state |c〉 ∈ Hc in the standard
basis is given by

|c〉 = c0|0〉 + c1|1〉, (1)

where c0 and c1 are complex numbers. We associate with
every state |c⊥〉 a unique state |c⊥〉 which is orthogonal to |c〉
defined in terms of components of |c〉 in the standard basis as

|c⊥〉 = −c̄1|0〉 + c̄0|1〉, (2)

where the overbar indicates complex conjugation. Any state
orthogonal to |c〉 will differ |c⊥〉 only by an overall phase
factor. It is to be noted that |(c⊥)⊥〉, the orthogonal state of
|c⊥〉, is not |c〉 but −|c〉. We use the symbol |c; m〉 to represent
the product state |c〉 ⊗ |m〉, where |c〉 is a unit vector in Hc, m
is an integer, and |m〉 is the mth standard basis vector in Hw.

An arbitrary pure state in the composite space Hc ⊗ Hw is
given by [54,55]

|P〉 =
m=e∑
m=b

pm|pm; m〉, (3)

where |pm〉 are unit vectors in the coin space Hc, and pm are
non-negative real numbers. Given a composite state of the
form Eq. (3), we define the integer interval [b, e] as its “posi-
tion span,” by which we mean that the probability amplitudes
at all positions greater than e or less than b are all zero.

A. Coin-based quantum walks

A single step of the quantum walk is a product of these two
operators:

T̂ = Ŝ(Ĉ ⊗ Îw ), (4)

where Ĉ is an SU(2) operator called the “coin toss operator”:

Ĉ(α, β, γ ) =
(

eiα cos β −e−iγ sin β

eiγ sin β e−iα cos β

)
(5)

in the {|0〉, |1〉} basis of the coin space. The shift operator is
given by

Ŝ =
∑

m

(|0; m − 1〉〈0; m| + |1; m + 1〉〈1; m|). (6)

The initial state; that is, the state at the beginning of the
quantum walk, is generally taken to be at position m = 0 in
some arbitrary coin state |s〉. A time-independent quantum
walk constitutes of N such steps starting from this initial state,
and it leads to a composite state of the form Eq. (3):

T̂ N |s; 0〉 = |W 〉. (7)

The state on the right-hand side (RHS) |W 〉 is a composite
state of the form Eq. (3). The role of coin operator leading to
different composite states is studied in Ref. [56].

B. Quantum state engineering using quantum walks

We refer to the product state located at the position 0, that
is states of the form |u; 0〉, as the “home states.” The problem
of quantum state engineering is to generate a composite state,
like Eq. (3), starting from some home state.

In this paper, we intend to address some of the following
questions: (i) can all quantum states on the composite space;
that is, states of the form Eq. (3), be generated by a quantum
walk of the form Eq. (7) or some reasonable generalization
of it, starting from some home state? (ii) If two composite
states can be generated by quantum walks, can those two
be connected by a quantum walk? (iii) If the answer to the
previous question is in affirmative, can a minimal walk be
found that accomplishes it in least number of unit-sized steps?

In this paper, we represent the quantum states as bold
letters enclosed in the ket symbol. States belonging to the coin
space Hc are represented by lowercase letters as in Eq. (1),
while those belonging to the composite space Hc ⊗ Hw are
represented by the uppercase letters as in the left-hand side of
Eq. (3).

III. GENERALIZED COIN-BASED QUANTUM WALKS

Speaking of generalizing the quantum walks, one method
has been to employ different coin operator at each step, so that
in place of Eq. (7), we have

T̂N · · · T̂1|s; 0〉 = |W 〉, (8)

where T̂i represents the ith quantum step, differing in their
coin-flip operators, Eq. (5). This is referred to as a quantum
walk using a time-dependent coin. Another generalization of
Eq. (7) has been to have different step sizes for forward and
backward motion. For instance, in Refs. [18,19,57,58], the
conditional shift operator employed was the one of moving
forward or staying still, depending upon the state of the coin.
Owing to the translational symmetry of the problem, this shift
operator was shown to be equivalent to the standard shift
operator, in the sense that the resulting composite states in
the both cases are identical, up to a relabeling of the position
states.

It is to be noted that replacing an SU(2) coin with a unitary
one will not give access to any different set of states: a com-
posite state accessible with a unitary coin is also accessible
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with an SU(2) coin. Therefore in the rest of the paper, we
shall restrict our attention to only SU(2) coins. Furthermore,
there are generalizations of the discrete time quantum walks
where the coins are position-dependent [22,59,60] or history-
dependent [61–63]. Such treatment are also beyond the scope
of this paper, as we intend to consider only those systems
which can be readily implemented in the linear optics setting.

A. Generalized quantum steps

A single step of the quantum walk is an SU(2) operator T̂
on the composite system Hc ⊗ Hw of the form

T̂� (δ, p, s, c) = Ŝ� (δ, p, s)[Ĉ(s, c) ⊗ Iw], (9)

where Ĉ(s, c) and Ŝ� (δ, p, s) are given by

Ĉ(s, c) = |s〉〈c| + |s⊥〉〈c⊥|,

Ŝ� (δ, p, s) = cos
�

2
Ic ⊗ Iw + sin

�

2

∑
m

(eiδ|s⊥; m + p〉〈s; m|

− e−iδ|s; m − p〉〈s⊥; m|), (10)

where � and δ are real numbers between 0 and 2π , d is a
nonzero integer and Ic and Iw are identity operators in the
coin and walk space respectively. The coin operator Ĉ(s, c)
is completely equivalent to the coin operator Ĉ(α, β, γ ) de-
fined in Eq. (5), only parametrized differently. Here we have
parametrized it by two unit vectors c and s of the coin space.
The action of coin-toss operator Ĉ(s, c) is to unitarily trans-
form the orthogonal pair of states |c〉 and |c⊥〉 to another
orthogonal pair of states |s〉 and |s⊥〉, respectively. The shift
operator Ŝ� (δ, d, s) leaves a fraction of the state unaltered, and
with the remaining fraction, it moves forward in the position
space by p units if the coin state is |s〉, and moves backwards
by the same number of units if the coin state is |s⊥〉. Simul-
taneously, it also transforms the coin states |s〉 and |s⊥〉 into
eiδ|s⊥〉 and −e−iδ|s〉, respectively. The action of T̂� (δ, p, s, c)
on the orthogonal states |c; m〉 and |c⊥; m〉 is given by

T̂� (δ, p, s, c)|c; m〉 = cos
�

2
|s; m〉 + sin

�

2
eiδ|s⊥; m + p〉,

T̂� (δ, p, s, c)|c⊥; m〉 = cos
�

2
|s⊥; m〉 − sin

�

2
e−iδ|s; m − p〉.

(11)

We shall regard Eq. (11) as the definition of the quantum
step T̂� (δ, p, s, c), being completely equivalent to Eq. (10).
The action of T̂� (δ, p, s, c) on any other product state |w; m〉
can obtained by expressing |w〉 in the basis (|c〉, |c⊥〉) and
acting it linearly on them. Its action on an arbitrary composite
state can be found by acting it on each of the constituent
terms. In the quantum step T̂� (δ, p, s, c), we call the state |c〉
as its coin state and |s〉 as its shift state. Here p is an integer,
indicating the size of the step. This quantum step is called
position-independent or translationally invariant, because the
parameters of the step are independent of the position m on
which it is acting. The presence of � makes the quantum
step very different from that of Eq. (4) as only a fraction of
the state now undergoes the quantum walk, with � determin-
ing that fraction: � = π leading to complete state transfer,
while � = 0 corresponds to no change in the walk space.

Such walks have been termed “hybrid walks” in literature
[64]. While � can range from [0, 4π ), it is easy to see that
T̂� (δ, p, s, c) = T̂4π−� (π + δ, p, s, c) and therefore � can be
restricted to [0, 2π ]. The quantum steps T̂0(·, ·, s, c), i.e., the
steps with � = 0 refer only to SU(2) transformation from c to
s, acting only on the coin space:

T̂0(·, ·, s, c) = Ĉ(s, c) ⊗ Iw, (12)

where Ĉ(s, c) is the operator defined in the first of Eq. (10).
The step size p and the relative phase δ in this case are
immaterial, and hence they are suppressed in Eq. (12). We
call these steps as the “improper steps,” as against the steps
with � > 0 and p �= 0, which we call as the “proper steps.”

The quantum step Eq. (11) is such that, in one proper step at
most only two other states, at a fixed distance (±p) from the
current state, are accessed. We shall regard the step defined
in Eq. (11) as the most generalized quantum walk step. This
claim requires some justification, since we still have the same
step size p in both forward and backward directions. This
definition of a quantum step is the most general, in the sense
that any further relaxation in the definition will be inconsistent
with the requirement of translational invariance. It is essential,
for instance, that the coin states at the mth and (m ± p)th

positions appearing in the right-hand side of Eq. (11) be or-
thogonal to each other. Likewise, having distinct step sizes
in the forward and backward directions is not consistent with
translational invariance, unless � is fixed to π . In this paper,
we have made a choice to force identical step size in the
forward and backward directions, retaining the facility to have
a variable � instead, a choice motivated by the linear optics
implementation, to be introduced in Sec. VI. It must be noted
that the second relation in Eq. (11) is not independent, but
follows directly from the first, by requiring that T̂ act as an
SU(2) operator in the composite space.

We represent a collection of M such steps by the symbol
Ŵ :

Ŵ = T̂�M (δM, pM , sM, cM ) · · · T̂�1 (δ1, p1, s1, c1). (13)

We call this sequence of steps Ŵ as the “quantum walk.” The
walk Ŵ acts on the states from the left. We shall consider the
dimension of walk space to be larger than N = max(|b|, |e|)
of all the involved composite states, and also larger than
|p1| + |p2| + · · · + |pM | of all the involved steps.

B. Identifying states obtained by quantum walks

A quantum walk Ŵ starting from an arbitrary home state
|u; 0〉 can be described as

Ŵ |u, 0〉 = |U〉 ≡
m=e∑
m=b

um|um; m〉, (14)

where the state |U〉 on the RHS is a unit vector of the same
form as the generic composite state |P〉 of Eq. (3). We shall
refer to such states, that is, composite states which are output
of a quantum walk starting from some home state, as the walk
accessible states, or simply “walk states.” We now derive a
condition that distinguishes these walk states from the generic
composite states of Eq. (3). From translation symmetry, if
Ŵ |u; 0〉 = |U〉 then Ŵ |u; d〉 = |U+d〉, where d is an integer
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and |U+d〉 is |U〉 shifted on the walk forward en masse by d
units:

|U+d〉 =
n=e∑
n=b

un|un; n + d〉. (15)

Since |u; 0〉 and |u; d〉 are orthogonal, and since the walk
operator Ŵ is a unitary operator, we demand the resulting
states |U〉 and |U+d〉 to also be orthogonal, 〈U |U+d〉 = 0, for
all d �= 0. The nontrivial ds being d = 1, . . . , e − b, leading
to e − b constraints:

〈U |U+d〉 =
m=e−d∑

m=b

umum+d〈um|um+d〉 = 0,

∀ d = 1, . . . , e − b. (16)

This result indicates that not all composite composite states
are walk states, only those which satisfy the constraints of
Eq. (16) are. We shall refer to the walk-inaccessible composite
states as the “non-walk states.” These states do not satisfy
Eq. (16).

C. Generating new walk states from existing ones

It must be noted that a linear combination of two walk
states need not be a walk state. The set of walk states, there-
fore do not form a subspace. This can be easily seen by
noting that all the states belonging to the standard product
basis {|0〉, |1〉} ⊗ {. . . , |−1〉, |0〉, |1〉, . . . } are walk states, and
therefore if the linear combination of walk states also yielded
a walk state, then every state in the composite space would
have been a walk state.

Given a walk state |U〉 with position span [b, e], one can
generate another walk state |U+d〉 with span [b + d, e + d]
by shifting each position m in |U〉 by d units as in Eq. (15).
Likewise, we define another walk state |U×d〉 as

|U×d〉 =
n=e∑
n=b

un|un; nd〉. (17)

It is easy to confirm that |U×d〉 is also a walk state. If a walk
Ŵ generates |U〉, then |U×d〉 can be generated by changing
the step size pi of each step T̂�i (δi, pi, ui, ci ) of Ŵ by pi × d .

Recall that the action of a linear operator on an N-
dimensional space gets fixed only by specifying its action on
N linearly independent vectors. In case of the walk operator,
however, once the action of Ŵ on any state |u; 0〉 is specified,
as in Eq. (14), then its action on any other state, be it a home
state, a product state, or a composite state, gets fixed, owing to
its being SU(2) and translationally invariant. Particularly, be-
tween orthogonal home states we have the following relation:

if Ŵ |u; 0〉 = |U〉,
then Ŵ |u⊥; 0〉 = |U⊥〉, (18)

where, for a given |U〉, the composite state |U⊥〉 is defined as

|U⊥〉 =
m=−b∑
m=−e

u−m|(u−m)⊥; m〉, (19)

where |(u−m)⊥〉 is the state orthogonal to |u−m〉. It is easy to
see that the walk states |U〉 and |U⊥〉 are orthogonal to each
other.

Therefore, given a walk state |U〉, we can construct another
walk state |U⊥〉, and two other families of walk states |U+d〉
and |U×d〉 by shifting and scaling the walk position labels,
respectively. Furthermore, any complex linear combination of
the walk states |U〉 and |(U⊥)+d〉 is also a legitimate walk
state for any d . This facility enables us to construct new walk
states of larger span from walk states of smaller span.

D. Characterizing the walk states

Given two walk states, we are interested in knowing
whether they are a result of same walk Ŵ , but with different
home states or not. Let |P〉 and |Q〉 be the two walk states
resulting from a quantum walk Ŵ , from home with coin states
|p〉 and |q〉 respectively. Owing to the SU(2) nature of the
quantum walks, the necessary and also sufficient condition for
this to hold can be derived to be

if |P〉 = Ŵ |p; 0〉 and |Q〉 = Ŵ |q; 0〉 then

|〈P|Q〉|2 + |〈P|Q⊥〉|2 = 1. (20)

This result indicates that all composite states accessible by
a given quantum walk (starting from different home states)
reside in a two-dimensional subspace.

IV. SHRINKING ALGORITHM AND STEERED
QUANTUM WALKS

It is to be noted that a quantum walk Ŵ preserves the trans-
lational invariance of composite states: it takes walk states to
walk states and non-walk states to non-walk states. Given a
step T̂� (δ, p, s, c), we define its inverse [T̂� (δ, p, s, c)]−1 as the
operator that undoes the action of T̂� (δ, p, s, c). The inverse of
a quantum step is also a quantum step. It is easy to see that

[T̂� (δ, p, s, c)]−1 = T̂� (π + δ, p, c, s). (21)

Since each step of a walk is invertible, the walks themselves
are invertible. So, given any walk state there always exist
quantum walks that takes it to one of the home states. Inverting
this walk would then yield a walk from a home state |u〉 to the
desired walk state |U〉. Here we propose an algorithm to find a
walk of p = 1 quantum steps that can convert the given walk
state |U〉 to a home state |u〉. This is accomplished in just N
number of p = 1 quantum steps, where N = max(|b|, |e|).

We start with the simplest case first: when the walk state
is of a single term |u; m〉. A quantum step T̂π (0, 1, s, u⊥) on
|u; m〉 yields |s; m − 1〉. Now, from here, taking m − 1 steps
of T̂π (0, 1, s, s⊥), we land on the home state |s; 0〉:

|s; 0〉 = T̂π (0, 1, s, s⊥)
m−1

T̂π (0, 1, s, u⊥)|u; m〉. (22)

We now consider the case of reducing an arbitrary walk state
|U〉 to some home state |u; 0〉. We achieve this using a recur-
sive method: we find a walk step T̂1, that can convert the given
state |U〉 of walk-spread [b, e] into a composite beam |U1〉 of
a shorter spread [b + 1, e − 1]. This is always possible if |U〉
is a walk state, proof of which is given in the Appendix. One
set of parameters of T̂1 that accomplishes this is given by (see
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Appendix):

|c〉 = |ue⊥〉,

� = 2 tan−1

(
ue

ue−1|〈ue⊥|ue−1〉|
)

,

δ = π − �(〈ue⊥|ue−1〉). (23)

Now, note that the ensuing state |U1〉 is also a walk state,
having obtained through a quantum step on a walk state. It can
also be reduced to another composite state |U2〉 whose spread
is [b + 2, e − 2], by using another walk step T̂2, whose pa-
rameters can be computed in a similar manner as in Eq. (23).
Proceeding this way for a total (e − b)/2 steps if b and e
are of same parity, or for (e − b + 1)/2 steps if they are of
different parity, one lands in a separable state |u; p〉, where p is
equal to (b + e)/2 in the former case and (b + e − 1)/2 in the
latter case. Now, if p = 0, we are at home, and therefore have
accomplished what we have set out to. Otherwise, transform
|u; p〉 into |s; 0〉 in p steps as in Eq. (22). Therefore, in either
case, in a total of N = max(|b|, |e|) steps it is possible to
reduce a composite state of spread [b, e] into a home state:

T̂N · · · T̂2T̂1|U〉 = |u; 0〉. (24)

We call this process as the “shrinking algorithm,” as the
position span of the composite state shrinks after each step.
Now, it follows from Eq. (24) that the composite state |U〉 can
be constructed from the home state |u〉 by taking the inverse
of those N steps, in the opposite order:

|U〉 = Ŵ min|u; 0〉, (25)

where

Ŵ min = T̂ −1
1 · · · T̂ −1

N , (26)

with the inverse of a walk step T̂ defined in Eq. (21). This
completes the algorithm to deterministically reach a given
walk state from some home state. We call this the steered
quantum walk algorithm. Note that the shift state |s〉 does not
appear in the Eq. (23), implying that the shrinking algorithm
is does not place any restriction on the shift state of any
quantum step. Now, recall that the steps appearing in the
steering quantum walk algorithm are the inverses of those
appearing in the shrinking algorithm. Since the coin and step
states of a step and its inverse are swapped [see Eq. (21)], the
steered quantum walk algorithm is arbitrary up to the coin
state of each of its steps.

V. SIMPLIFYING THE QUANTUM WALKS

A. Simplifying a quantum walk

In Sec. IV, given a walk state, an algorithm was prescribed
for obtaining a walk and a home state which together generate
the given walk state. Here we discuss a case where the walk Ŵ
of the form Eq. (13) is given instead of a walk state. Recall that
our definition of the quantum walk allows it to be composed
of steps of unequal step-sizes, different coin, shift states etc.
Given such a walk, we intend to find another walk Ŵmin, that
functions like Ŵ , but consisting steps of identical step-size
p = 1, and all with the same coin state |c〉.

Towards this, pick up an arbitrary home state |p; 0〉. Let |P〉
be the outcome of quantum walk Ŵ starting with this home
state. Now, ignoring Ŵ , we could start from |P〉 and, from
the shrinking algorithm of Sec. IV, get a walk Ŵs, and a home
state |ps〉. Now, how are Ŵs and Ŵ related? Both lead to the
same walk state, but for different home states Ŵ |p〉 = Ŵs|ps〉.
They are only related by an SU(2) operation in the coin space:

Ŵ = ŴsT̂0(·, ·, ps, p). (27)

We say the walk on the RHS, ŴsT̂0(·, ·, ps, p), as the walk that
“minimizes the walk Ŵ ,” and represent it as min(Ŵ ).

At this stage, it is important to note that it is always possi-
ble to absorb an improper step into a proper quantum step that
follows it, as

T̂� (δ, d, s, c)T̂0(·, ·, p, q) = T̂� (δ, p, s,w), (28)

where the coin state |w〉 of the step on the RHS is given by
|w〉 = T̂ −1

0 (·, ·, p, q)|c〉.
The improper step T̂0(·, ·, ps, p) of Eq. (27) can be ab-

sorbed into the first step of Ŵs, as in Eq. (28), so that the
minimal walk min(Ŵ ) contains only as many steps as are in
Ŵs.

B. Quantum walks between two walk states

While the paper until now discussed the cases of a quantum
walk starting from home states to the composite walk states, in
this section we discuss about going from one composite walk
state to another composite walk state through a minimal quan-
tum walk. That is, given two walk states |P〉 and |Q〉, we seek
the minimal quantum walk Ŵmin such that |Q〉 = Ŵmin|P〉. One
way to generate Ŵmin is to first obtain some walk Ŵ that
accomplishes this, and then get Ŵmin as min(Ŵ ), using the
minimization method discussed above. One such walk Ŵ that
takes |P〉 to |Q〉 can be

Ŵ = ŴQT̂0(·, ·, q, p)Ŵ −1
P , (29)

where the walks ŴP and ŴQ are the minimal walks that take
the walk states |P〉 and |Q〉 to the home states |p; 0〉 and |q; 0〉,
respectively, and T̂0(·, ·, q, p) is the improper step that takes
|p〉 to |q〉 in the coin space:

ŴP|p; 0〉 = |P〉,
ŴQ|q; 0〉 = |Q〉,

T̂0(·, ·, q, p) = (|q〉〈p| + |q⊥〉〈p⊥|) ⊗ Iw.

The minimal quantum walk Ŵmin to accomplish this can then
be found by minimizing the above walk Ŵ by the method
discussed in Sec. V A.

VI. OPTICAL IMPLEMENTATION

We now provide a means of realizing the aforemen-
tioned ideas on an actual physical hardware over which such
quantum walks are being implemented. In the linear opti-
cal implementation of DTQWs, the spin angular momentum
(SAM) of the light beam as the coin space Hc, and its orbital
angular momentum (OAM) acts as the walk space, Hw. The
state of polarization (SoP) of a light beam characterizes the
SAM of light, with left circular polarization identified with +1
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units of SAM and right-circular polarization identified with
−1 units of it. OAM, on the other hand, is independent of
the SAM of the light beam and characterizes the helicity of
its wave front. An arbitrary composite state of the light beam
is the one which exists in a superposition of combinations of
spin and orbital angular momenta, such that a definite SoP or
OAM cannot be assigned to it. Such beams are termed vector
beams, and they can be identified by the varying phase and
SoP distribution across their transverse plane.

A. Scalar and vector beams

An arbitrary SoP of a light beam can be represented as a
two-component unit vector, |u〉 called the “Jones vector,” in
some orthogonal basis, as in Eq. (1). For implementing the
SoP as a coin space, we identify the states |0〉 and |1〉 with |l〉
and |r〉, the left and right circular polarization states of light,
respectively. The states |h〉, |v〉, |d〉, and |a〉, defined following
Eq. (41), will then correspond to horizontal, vertical, diagonal,
and antidiagonal SoPs of light, respectively. In the numerical
simulations carried out in this work, the computational basis
vectors [1, 0]T and [0, 1]T respectively stand for |h〉 and |v〉
states. The left- and right-circular SoPs |l〉 and |r〉 would then
correspond to the column vectors 1√

2
[1, i]T and 1√

2
[i, 1]T ,

respectively.
Unitary transformations between pairs of SoPs are affected

using wave plates. In this paper, we represent them by the
symbol p̂� (α), where � is its retardance, and α is the angle
its fast axis makes with the x axis. The action of this wave
plate on an arbitrary SoP |u〉 is given by

p̂� (α)|u〉 = − sin
�

2
〈r|u〉e−2iα|l〉

+ cos
�

2
|u〉 + sin

�

2
〈l |u〉e2iα|r〉. (30)

Here 〈l |u〉 and 〈r|u〉 stand for the left and right circular polar-
ization components of |u〉. It is important to note it is always
possible to transform one SoP to another SoP “up to a phase”
using a single wave plate, and even “including the phase”
by using a three-plate gadget consisting of a half-wave plate
inserted in between two quarter-wave plates ([65,66]).

A vector beam is a light beam whose SoP varies across its
transverse plane. In this work, we shall confine our attention
to only cases where the variation is only along the azimuthal
direction. We therefore ignore the radial coordinate in the rest
of our discussion. The SoP of a vector beam will be repre-
sented as |u(ϕ)〉 where ϕ is the azimuthal angle, measured
from some reference axis, say the x axis. It can be represented
as in Eq. (1):

|u(ϕ)〉 = ul (ϕ)|l〉 + ur (ϕ)|r〉, (31)

where ul (ϕ) and ur (ϕ) are complex periodic functions
of the azimuthal angle ϕ: ul (2π + ϕ) = ul (ϕ) and ur (2π +
ϕ) = ur (ϕ), and satisfying the normalization requirement
|ul (ϕ)|2 + |ur (ϕ)|2 = 1. If the coefficients ul (ϕ) and ur (ϕ)
depend identically on ϕ as eimϕ , for some integer m, we say
the light beam carries an OAM of m units. We represent such
states by the symbol |u; m〉:

|u; m〉 ≡ |u〉 ⊗ |m〉 = |u〉eimϕ, (32)

where m is an integer and |u〉 is a SoP of the form Eq. (1),
having no azimuthal dependence. We refer to such light beams
as scalar light beams. The SoPs along two different azimuthal
angles on the transverse plane of such scalar light beams differ
only in their global phase.

An arbitrary vector beam of the form Eq. (31) can be ob-
tained as a superposition of a collection of such scalar beams,
resulting in a composite state |U〉 of the form Eq. (3). The
Jones vector of its mth OAM component and its amplitude can
be extracted from |u(ϕ)〉 as

um|um〉 =
∫ 2π

0
e−imϕ |u(ϕ)〉dϕ ∀ m ∈ [b, e]. (33)

The limits b and e in Eq. (33) are the smallest and largest
m that yield nonzero um. We confine our attention to only
those u(ϕ) for which the b and e are finite, i.e., only those
vector beams which are constructed out of a superposition
of a finite number of scalar beams having definite OAM. In
such a case, there is a one-to-one correspondence between
vector beams having a spatially SoP of the form Eq. (31) and
composite quantum state of the form (3), |u(ϕ)〉 ↔ |U〉, with
Eq. (33) establishing the mapping. The corresponding orthog-
onal states also follow the same mapping |u(ϕ)⊥〉 ↔ |U⊥〉,
where |u(ϕ)⊥〉 is obtained through |u(ϕ)〉 from Eq. (2), and
|U⊥〉 is obtained through |U〉 using Eq. (19).

A prominent method of generating such vector light beams
has been using optical interferometers [67,68] with spatial
light modulators [69–72]. They have also been generated by
employing inhomogeneous wave plates called q plates [73]
which are wave plates with uniform retardance, but whose
orientation of the fast axis varies linearly with the azimuthal
angle. We represent such q plates with the symbol q̂� (q, α0),
where � is called the retardance, q is called the topological
charge, and α0 is the offset-angle [74]. The import of these
parameters can be understood by knowing its action on an
arbitrary separable state |u; m〉:

q̂� (q, α0)|u; m〉 = − sin
�

2
〈r|u〉e−2iα0 |l ; m − 2q〉

+ cos
�

2
|u; m〉+ sin

�

2
〈l |u〉e2iα0 |r; m+2q〉.

(34)

A q plate of topological charge q and retardance π is called
as the standard q plate. It raises the OAM of the left circular
component of the input light beam by 2q units and simultane-
ously reduces the OAM of its right circular component by 2q
units. The inverses of p̂� (α) and q̂� (q, α0) are given by

p̂� (α)−1 = p̂�

(
α + π

2

)
,

q̂� (q, α0)−1 = q̂�

(
q, α0 + π

2

)
. (35)

B. Coin based quantum walks on the SAM-OAM space

In the SAM-OAM implementation of quantum walks, the
“coin-toss operation” is implemented using wave plates and
the “shift operation” is implemented using q plates [45,46].
Since the initial state is normalized, and the involved q plates
and wave plates are all unitary, an immediate constraint on
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the emerging vector beams |U〉 is that the corresponding SoP
|u(ϕ)〉 satisfies 〈u(ϕ)|u(ϕ)〉 = 1 at all azimuthal angles ϕ. But
this inner product can be evaluated as

〈u(ϕ)|u(ϕ)〉 =
∑
m,n

umun〈um|un〉ei(m−n)ϕ. (36)

The above double summation over m and n can be rewritten
collecting terms having identical m − n as

〈u(ϕ)|u(ϕ)〉 =
e−b∑

d=b−e

(
e−d∑
m=b

umum+d〈um|um+d〉
)

e−idϕ, (37)

where we take um = 0 for all m < b or m > e. Pulling out the
d = 0 term from the above summation, we have

〈u(ϕ)|u(ϕ)〉 =
e∑

m=b

|um|2

+
e−b∑

d=b−e,d �=0

(
e−d∑
m=b

umum+d〈um|um+d〉
)

e−idϕ.

(38)

The first term of the left-hand side (LHS) of Eq. (38) is 1, since
the um are components of the unit vector |U〉 of the composite
space. Therefore, for the inner product 〈u(ϕ)|u(ϕ)〉 to be equal
to 1 at all ϕ, the second summation must vanish identically, at
all ϕ. This is possible only when every term in its parenthesis
is 0. This leads to the constraints which are exactly identical
to those of Eq. (16), and their complex conjugates. Therefore,
this forces us to conclude that a composite state |U〉 of the
form Eq. (3) is a walk state in the SAM-OAM space of the
light beams, only if the corresponding SoP is normalized at
every azimuthal angle ϕ: that is, 〈u(ϕ)|u(ϕ)〉 = 1 ∀ ϕ. In
the rest of this section, we focus our attention to such vector
beams only.

The aim now is to generate such vector beams using only
wave plates and q plates. With respect to DTQWs, the stan-
dard q plates mimic the standard shift operator, Eq. (6), except
that here apart from altering the OAM of the light, the standard
q plate also swaps the circular polarization components. A q
plate with � �= π functions like a standard q plate but only
on a fraction sin �

2 of the incident light beam. Currently, q
plates whose retardance � can be tuned by varying the applied
voltage have been designed [75,76] and are also commercially
available [77]. Likewise, the so-called Berek plate functions
like a homogeneous wave plate but with a tunable retardance
[78]. In this context, the effective behavior of a collection of
three wave plates and q plates has been explored in Refs. [79]
and [74]. To make connection between the q plate and the
quantum step of Eq. (11), we have the following relation:
q̂� (q, α0) = T̂� (2α0, 2q, l, l ). It is possible to implement the
quantum step T̂π , that is T� of Eq. (11) with � = π , using a
pair of wave plates and a single q plate:

T̂π (δ, p, s, c) ≡ p̂
�2

(α2)q̂
π

( p

2
, α0

)
p̂

�1
(α1), (39)

where the parameters of the plate are given as

�1 = 2 tan−1

( |〈r|c〉|
|〈l |c〉|

)
,

α1 = π

2
+ 1

2
[�(〈r|c〉) − �(〈l |c〉)],

α0 = 1

2
[δ − �(〈l |c〉) − �(〈l |s〉)],

�2 = 2 tan−1

( |〈r|s〉|
|〈l |s〉|

)
,

α2 = 1

2
[�(〈r|s〉) − �(〈l |s〉)].

(40)

The three-plate gadget involving a qπ plate introduced
through Eqs. (39) and (40) can reproduce any T̂π quantum
step. Replacing the qπ plate with a q� plate, it can even
reproduce any T̂� quantum step of Eq. (11), but only if
�(〈l |c〉) = �(〈l |s〉). This may appear as an obstacle in our
attempt to obtain desired vector beams by means of quantum
walks. However, recall that the shrinking algorithm places no
restriction on the shift state |s〉. We can exploit this freedom
on |s〉, not only to overcome the restriction on phase, but
also to get rid of one of the plates altogether. The choice of
|s〉 = ei�(〈l |c〉)|l〉 satisfies the phase relation and also ensures
that �2 = 0, so that the second homogeneous wave plate need
not be used at all, and one can work with only a pair of
homogeneous wave plate and q = 1

2 q plate per step.

VII. ILLUSTRATIONS

In this section, we shall provide some concrete examples
for the concepts and notions introduced in the previous sec-
tions of this paper. Towards this, in Sec. VII A we propose a
graphical notation for representing composite states and quan-
tum walks. Using this graphical notation, we present a few
illustrations of the shrinking algorithm and steered quantum
walks in Sec. VII B. In Sec. VII C we provide illustrations
implementing these two algorithms in the SAM-OAM space
of light beams.

A. A novel representation for the qubit-qudit space

1. Representing composite states

Normalized qubit states of the form (1) can be elegantly
described on the surface of a unit sphere called the Bloch
sphere (which in the polarization setting is termed as the
Poincaré sphere [78]). This treatment, in addition to provid-
ing a visualization of quantum states, also aids in giving a
geometric picture of the action of SU(2) operators on such
quantum states. In the polarization setting, the notion of
Poincaré sphere has been extended to represent the composite
states like Eq. (3), but limited to only two terms [80,81].

In this paper, we introduce a new graphical way of indicat-
ing coin states |c〉 of the form Eq. (1). In this representation,
the following holds:

(i) States of the form 1√
2
(eiθ0 |0〉 + eiθ1 |1〉) are depicted as

a single purple-colored circle, of radius proportional to 1√
2
,

with yellow and cyan colored arrows making angles θ0 and θ1

with the x axis, respectively.
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FIG. 1. The top row [panels (a)–(d)] depicts the four coin

states |0〉, |h〉 ≡ 1√
2
(|0〉 − i|1〉), |d〉 ≡ e−i π

4√
2

(|1〉 + |0〉), and |u〉 ≡
1√
3
(|0〉 + i

√
2|1〉), and the bottom row [panels (e)–(h)] depict the

states −|0〉, i|h〉, −i|d〉, and ei π
4 |u〉. The purple circles correspond

to the states where the |0〉 and |1〉 components are of the same
magnitude. In other cases, the green circle corresponds to the |0〉
component, its radius proportional to the magnitude of that com-
ponent and its phase is indicated by a yellow arrow. The red circle
corresponds to the |1〉 component, its radius being proportional to
the magnitude of that component and its phase is indicated by a cyan
arrow. At each position, green and red rectangles are also drawn,
whose widths are proportional to the intensity in the |0〉 and |1〉
components at that position, respectively.

(ii) States of the form eiθ√
2
(|0〉 + |1〉) are depicted with a

purple-colored circle of radius proportional to 1√
2
, and a single

white-colored arrow making an angle θ with the x axis.
(iii) Rest of the states |c〉, we indicate in terms of the two

complex numbers, c0 and c1, the components of |c〉 along |0〉
and |1〉 unit vectors, respectively. We represent these complex
numbers as two concentric green and red circles of radii
proportional to |c0| and |c1|, respectively. The phase of these
complex numbers are indicated by yellow and cyan colored
arrows over these circles, the angles they make with the hori-
zontal indicative of their phases.

Bloch sphere or polarization ellipse representations rep-
resent a state only up to a global phase. They are therefore
not capable of depicting uniquely two coin states which differ
only in their global phase. In the current representation, on
the other hand, it is possible to represent a state completely,
including its global phase. Figure 1, for example, shows eight
coin states illustrated in our graphical notation. These are
depicted in two rows. The bottom four states differ from the
corresponding states in the top only in the global phase. It
is evident that this notation assigns distinct representations to
coin states that differ only in their global phase. The relative
phase can also be easily read from the graphical represen-
tation: it is the angle that the cyan arrow makes with the
yellow arrow, measured in the clockwise direction. Coin states
with zero relative phase are represent by a single white arrow.

Another advantage of this graphical representation is that the
graphical representation of the |c⊥〉 can be built from that of
|c〉 as (i) the green and red circles of |c⊥〉 will be the red
and circles of |c〉, respectively, (ii) the yellow arrow of |c⊥〉
will be the cyan arrow of |c〉 reflected with respected to the
y axis, and (iii) the cyan arrow of |c⊥〉 will be the yellow
arrow of |c〉 reflected with respect to the x axis. An orthogonal
pair of coin states can therefore be easily identified from
their graphical representation. The graphical construction of
orthogonal states also respects the relation |(u⊥)⊥〉 = −|u〉,
as expected. For illustration, the orthogonal states for each of
the eight states of Fig. 1 are depicted in Fig. 2.

This representation can used to depict composite states as
well. We depict the composite state |P〉 of Eq. (3) as follows:
on the y axis we mark the walk space basis states |m〉 from m ∈
[b, e]. At every m with nonzero pm, the corresponding coin
state |pm〉 is depicted as described above, except that the radii
of these circles is scaled by the amplitude pm. For illustration
of the graphical notation, consider the following six composite
states of the form (3):

|A〉 = 1√
2

(|a,−1〉 + |d, 2〉),

|B〉 = 1√
3

(|h, 0〉 − |a, 1〉 + |v, 2〉),

|C〉 = 1

2
(|h,−2〉 −

√
2|a, 0〉 + |v, 2〉),

|D〉 = 1√
5

(|d; −2〉 + |l ; −1〉 − |r; 0〉 + i|l ; 1〉 + i|a; 2〉),

|E〉 = 1

2
(|c,−2〉 −

√
2|h,−1〉 + |e, 1〉),

|F〉 = 1√
5

(i|c; −2〉 + |l ; −1〉 + |e; 0〉 + |r; 1〉 + |c; 2〉),

(41)

where |h〉, |v〉 are a pair of orthogonal states |h〉 = 1√
2
(|0〉 −

i|1〉), and |v〉 = 1√
2
(|1〉 − i|0〉), and states |d〉, |a〉 are another

pair of orthogonal states: |d〉 = e−i π
4√
2

(|1〉 + |0〉), and |a〉 =
ei π

4√
2

(|1〉 − |0〉), and |c〉 and |e〉 are yet another orthogonal pair

|c〉 = 1
2 (

√
3|0〉 + i|1〉) and |e〉 = 1

2 (i|0〉 + √
3|1〉), all belong-

ing to the coin space. All the six states are normalized. Of
these, the first state has the position span of [−1, 2], the sec-
ond state, |B〉 has the position span [0,2], |E〉 has the position
span of [−2, 1], and the rest of the states have the position
span [−2, 2].

FIG. 2. Graphical Illustration of the orthogonal pair of states. The top row depicts the eight states of Fig. 1, and the bottom row depicts
their orthogonal states.
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FIG. 3. The six composite states of Eq. (41) depicted in our graphical notation. Each of these composite states |P〉 are represented in terms
of their coin states |pm〉 for m being [−2, . . . , 2]. The representation of the coin states is the same as discussed in Fig. 1, except that the radii
of the circles are now scaled by the amplitude pm of that component.

Figure 3 depicts these six composite states of Eq. (41) in
the new graphical notation.

Given the graphical representation of a composite state
|U〉, the graphical representation of its orthogonal state |U⊥〉
can be easily constructed, since the coin states of |U⊥〉 are
orthogonal states of the coin states of |U〉 [see Eq. (19)].
To show this relationship between the orthogonal composite
states, in Fig. 4 we plot the pairs of orthogonal states |A〉,
|A⊥〉, |B〉, |B⊥〉, |I〉, |I⊥〉 and |J〉, |J⊥〉 where |A〉 and |B〉
given in (41), and the states |I〉 = 1√

2
(|0, 1〉 + √

3|1, 2〉) and

|J〉 = 1√
3
(|u, 0〉 + √

2|w, 2〉). Here |u〉 = 1√
3
(|0〉 + i

√
2|1〉),

and |w〉 = 1
2 (|0〉 + i

√
3|1〉).

2. Representing quantum steps and quantum walks

The quantum steps can also be represented in the graph-
ical notation using the same representation as that of the
composite states. We depict quantum steps T̂� (δ, p, s, c), in
terms of their action on the orthogonal pair of home states
|c; 0〉 and |c⊥; 0〉. The two input home states |c; 0〉 and |c⊥; 0〉,

FIG. 4. Depicting the orthogonal composite states in the current
graphical representation. Four states and their orthogonal states are
depicted. The subfigure (a) depicts the pair of states |A〉 and |A⊥〉,
subfigure (b) depicts the pair |B〉 and |B⊥〉, subfigure (c) depicts
the pair |I〉 and |I⊥〉, and subfigure (d) depicts the pair |J〉 and
|J⊥〉. The states |A〉 and |B〉 are defined in Eq. (41), and the com-
posite states |I〉 and |J〉 are |I〉 = 1√

2
(|0, 1〉 + √

3|1, 2〉) and |J〉 =
1√
3
(|u, 0〉 + √

2|w, 2〉). Here |u〉 = 1√
3
(|0〉 + i

√
2|1〉), and |w〉 =

1
2 (|0〉 + i

√
3|1〉).

and the two output composite states T̂� (δ, p, s, c)|c; 0〉 and
T̂� (δ, p, s, c)|c⊥; 0〉 are all depicted in the concentric circle
representation of states introduced earlier. A quantum walk
Ŵ of the form Eq. (13) is represented with such steps stacked
from the right to left, with the first step appearing rightmost
and the last step appearing leftmost. As an illustration of a
quantum walk, a seven steps walk is depicted in Fig. 5. The
first and six steps of this walk are improper steps, the fifth
step is of size d = 2, and rest of the steps are of unit size.

B. Examples of quantum walks

1. Identifying walk and non-walk states

As first illustrations of walk and non-walk states, con-
sider the product states in the composite space. They are
of the form |u〉 ⊗ |s〉, where |u〉 ∈ span(|0〉, |1〉) and |s〉 ∈
span(. . . , |−1〉, |0〉, |1〉, . . . ). Of these, the only possible
translation invariant product states are of the form |u; m〉,
where |m〉 ∈ (. . . , |−1〉, |0〉, |1〉, . . . ). A composite state with
only two nonzero OAM components, |W 〉 = wb|wb; b〉 +
we|we; e〉 is a walk state only if the two constituent coin states
are orthogonal: 〈wb|we〉 = 0. The state |A〉 defined in Eq. (41)
is of this form and therefore it is a walk state. Similarly,
a composite state |X〉 consisting of three constituent terms:
|X〉 = xb|xb; b〉 + xm|xm; m〉 + xe|xe; e〉 where b, m, and e are
integers and xb, xm, and xe are real numbers such that x2

b +
x2

m + x2
e = 1, is a walk state only if

m = b + e

2
,

|xm〉 = 1√
x2

e + x2
b

(eiδxe|xb〉 − e−iδxb|xe〉),

〈xb|xe〉 = 0,

where δ is an arbitrary phase. This is an interesting result, with
respect to the state engineering aspect of the quantum walks.
The first of these restricts the possible occupied positions of
a three-term walk state. It is not possible via quantum walks
to access composite states where, for instance, only the |0〉,
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FIG. 5. A quantum walk of seven steps, starting from the home state |h; 0〉. At the end of the seventh step, the resulting composite state is
the one spanning the positions [−3, 3], with probabilities Pm being [0.021,0.355,0.117,0.214,0.197,0.089,0.007] for m = −3, . . . , 3.

|1〉, and |3〉 position states are occupied. And this is true
irrespective of the corresponding amplitudes of occupation x0,
x1, and x2 and the coin states |x0〉, |x1〉, and |x3〉. From this it
can also be seen that the states |B〉 and |C〉 defined in Eq. (41)
are walk states, but the state |E〉 of Eq. (41) is not.

Consider now the four-component state

|Y 〉 = yb|yb; b〉 + ym|ym; m〉 + yn|yn; n〉 + ye|ye; e〉,
where b, m, n, and e are integers and yb, ym, yn, and ye

are nonzero real numbers such that y2
b + y2

m + y2
n + y2

e = 1.
It follows from Eq. (16) that |Y 〉 is a walk state, if and only
if m − b = e − n. Furthermore, if e − b �= m − b(= e − n),
then it is a walk state only if the amplitudes satisfy the re-
lation yb/ym = ye/yn, and the coin states satisfy the relations
〈yb|ym〉 = 〈ym|yn〉 = 〈yn|ye〉 = 0 and 〈yb|yn〉 + 〈ym|ye〉 = 0.

Of the six states defined in Eq. (41), and depicted in Fig. 3,
it can be seen that only the first four states are walk states
satisfying the constraints Eq. (16).

2. Constructing new walks from existing ones

We now provide a couple of illustrations for constructing
new walk states of larger span from linear combination of
walk states with smaller span, the basic idea of which was
introduced earlier in Sec. III C. Consider the five-component
state |D〉 of Eq. (41). Its position span is [−2, 2]. The position
span of |D+3〉 is therefore [1,5]. Its orthogonal state |(D+3)⊥〉
therefore has a span of [−5,−1]. A complex combination of
these two states α|D+3〉 + β|(D+3)⊥〉 where |α|2 + |β|2 = 1
will be walk states with position span [−5, 5]. One such walk
state is

|G〉 = 1√
2

(|D+3〉 + |(D+3)⊥〉)

= 1√
10

(i|d; −5〉− i|r; −4〉 + |l ; −3〉 + |r; −2〉 + |a; −1〉

+ |d; 1〉 + |l ; 2〉 − |r; 3〉 + i|l ; 4〉 + i|a; 5〉). (42)

State |G〉 has the position span of [−5, 5], in which for all
nonzero m ∈ [−5, 5], the probability Pm is 1/10. One could

likewise generate a ten-term “uniform walk state” from |D〉 as

|H〉 = 1√
2

[|D×2〉 + |((D×2)⊥)+1〉]

= 1√
10

(|d; −4〉 + i|d; −3〉 + |l ; −2〉 − i|r; −1〉 − |r; 0〉

+ |l ; 1〉 + i|l ; 2〉 + |r; 3〉 + i|a; 4〉 + |a; 5〉), (43)

where |D×2〉 is the state that is obtained from |D〉 by
Eq. (17), state |(D×2)⊥〉 is its orthogonal state, and the state
|((D×2)⊥)+1〉 is |(D×2)⊥〉 translated by one unit. State |H〉
has the position span of [−4, 5], in which for all m ∈ [−4, 5],
including m = 0, the occupation probability Pm is 1/10.

3. Illustrations of the steered quantum-walk algorithm

As illustrations of the steered quantum-walk algorithm dis-
cussed in Sec. IV, we show the evolution of home states into
each of the four walk states of Eq. (41). As N = max(|b|, |e|)
is equal to 2 for all four states, they can be generated in
just two proper steps. The required steps, the initial home
states and the intermediate walk states are all depicted in
Fig. 6. While the states |A〉 and |B〉 are generated with |l ; 0〉
as the home state, the other two are generated with home
states ei 3π

4 |a; 0〉 and |d; 0〉, respectively. In each of the four
quantum walks, the coin states |c〉 of both the steps are taken
be |0〉.

4. Simplification of quantum walks

For an illustration of the simplification of a quantum walk
Ŵ discussed in Sec. V A, consider the seven-step quantum
walk depicted in Fig. 5. Recall that of the seven steps there,
two were improper; that is, pure SU(2) transformations in the
coin space, one step was of d = 2, and remaining four steps
were of d = 1. But since the position span of the resulting
composite state is [−3, 3], this state can also be obtained from
the home state in just three d = 1 steps, using our steered
quantum walk algorithm. This three-step minimal walk is
depicted in Fig. 7.
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FIG. 6. Targeted quantum walks to generate each of the four walk states of Eq. (41) starting from home states, in two steps of unit step
size. Panels (a)–(d) correspond to the states |A〉, |B〉, |C〉, and |D〉, respectively.

5. Transformation between walk states

As an illustration of transforming one walk state to another
as detailed in Sec. V B, consider the transformation of the
state |D〉 of Eq. (41), to the walk state i|D〉. The two states
differ only by an overall phase factor but the quantum walk
that accomplishes the transformation is far from trivial. This

is accomplished by a four-step quantum walk. The four-step
minimal quantum walk obtained by the minimization proce-
dure elaborated above is shown in Fig. 8. From this graphical
representation it is clear that the quantum walk actually pro-
ceeds in two phases: in the first phase consisting of two steps,
the state |D〉 is taken to the home state −1√

2
(|0〉 + i|1〉), and in

FIG. 7. The three-step quantum walk that is equivalent to the seven-step quantum walk depicted in Fig. 5. Note that the initial and final are
the same as those in Fig. 5.
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FIG. 8. A minimal quantum walk for transforming the state |D〉 of Eq. (41) to the state i|D〉. The walk is four steps long.

the second phase consisting of the next two steps, the home
state −1√

2
(|0〉 + i|1〉) is taken to the target state i|D〉.

C. SAM-OAM implementation of quantum walks

1. Walk states on the SAM-OAM space

Recall the result derived earlier that a composite state |U〉
is realizable using q plates and wave plates provided the
corresponding SoP |u(ϕ)〉 has a norm equal to 1 at all ϕ. In
this section, we examine this result in the context of the six
composite states defined in Eq. (41), and also the two states
|G〉 and |H〉 defined in Eqs. (42) and (43). Towards this, for
each of these states, we compute the sum of the intensities
in the right- and left-circular components, as a function of
azimuthal angle, as shown in Fig. 9. This figure comprises
of eight subfigures, and in each of them, we have plotted the
polar plot of the right circular component |〈r|u(ϕ)〉|2 in red,
the left-circular component |〈l |u(ϕ)〉|2 in green, and their sum
in blue, with |u(ϕ)〉 being the equivalent SoP of the composite
state |U〉, with |U〉 being one of the eight states |A〉, . . . , |H〉,

respectively. It is evident that in case of the six walk states,
the sum of the field intensity components, i.e., the blue plot,
remains at 1 at all azimuthal angles, whereas in case of the
non-walk states |E〉 and |F〉, the total field intensity varies
with the azimuthal angle, exceeding 1 at some azimuth and
succeeding 1 at some azimuths.

2. Graphical notation of vector beams

A standard method for representing SoPs has been as po-
larization ellipses [82]. In this notation, the SoPs are depicted
as ellipses, with ellipticity e and orientation φ given by

e = ||〈l |u〉|2 − |〈r|u〉|2|,
φ = �(〈r|u〉) − �(〈l |u〉) + π

4
. (44)

These definitions are not standard, but have been employed
here due to their simplicity. Furthermore, since the ellipticity
e is defined as the absolute value of the difference between the
right and left circular intensities, this representation cannot
distinguish the two states differing only in their helicity, a

FIG. 9. Polar plot the intensity distribution of the six composite states of Eq. (41), state |G〉 of Eq. (42) and |H〉 of Eq. (43), as a function
of the azimuthal angle. The green and red plots correspond to the intensity in the left and right circular polarization components, while the blue
plot corresponds to the total, that is the sum of these intensities.
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FIG. 10. (a)–(d) Action of a q = 1
2 q plate with � = π

2 and α0 = 0, on four linearly polarized light beams, |d〉, |v〉, |a〉, and |h〉, respectively,
having zero OAM. The input and output beams are represented in terms of the concentric-circle notation introduced earlier and also in the
standard notation of the polarization ellipses. The orientation of short lines inside the q plates indicate the fast-axis orientation at that azimuthal
angle.

well-known limitation of this method. To overcome this limi-
tation, we color-code the ellipse to indicate the helicity: states
with |〈l |u〉| > |〈r|u〉| are colored green, those with |〈l |u〉| <

|〈r|u〉| are colored red, and those with |〈l |u〉| = |〈r|u〉| are
colored purple. Recall that the polarization ellipses represen-
tation depicts a SoP only up to a phase.

In this paper, the azimuthally varying SoP of the vector
beams is depicted in both the methods: (i) as polarization
ellipses and (ii) as the concentric circles of the graphical nota-
tion. To map the two representations: the circular polarizations
are represented by green and red circles in both the represen-
tations. Purple circles in the concentric-circle representation
corresponds to purple arrows in the elliptical representation.

3. Illustration of targeted quantum walks

We now provide some illustration of the shrinking algo-
rithm and the steered quantum walk as implemented using q-
plates and wave plates. But before doing that, we give a quick
recall of the action of q plates on scalar light beams. This will
also help in connecting our new notation of representing the
SoPs with the standard polarization ellipses representation.

Figures 10 and 11 depict the action of � = π
2 and � = π

q-plates on four linearly polarized scalar light beams. In both
the cases, the emergent light beam is a vector beam. While
the vector beams emerging in the former case are identical
fraction of left and right helicity components, in the latter
case the vector beam is composed only of plane-polarized
SoPs.

We first provide an illustration of the shrinking algorithm
for transforming the states |G〉 and |H〉 of Eqs. (42) and (43)
into standard scalar light beams. Recall that N = max(|b|, |e|)
of both the states is five, hence they both can be reduced in five
quantum steps; that is, five pair of wave plates and q plates.
Figure 12 shows the transverse plane polarization profiles of
both the beams, as they progress through each pair of plates.
We now look to generate the vector beams corresponding to
the four walk states |A〉, . . . , |D〉 of Eq. (41). Since N = 2
for all the four states, each of them can be generated from
standard scalar light beams by using just two pairs of wave
plates and q plates. This conversion is demonstrated in Fig. 13.
This is the SAM-OAM implementation of the quantum walk
depicted in Fig. 6.

FIG. 11. (a)–(d) Action of a q = 1
2 q plate with � = π and α0 = 0, on four linearly polarized light beams, |d〉, |v〉, |a〉, and |h〉, respectively,

having zero OAM. The orientation of short lines inside the q plates indicate the fast-axis orientation at that azimuthal angle.
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FIG. 12. Conversion of the vector beams |G〉 and |H〉 of Eqs. (42) and (43) to standard scalar beams using five wave plate and q-plate
pairs. The first row depicts the progression of the state |G〉 and the second row depicts that of |H〉. The figure with a single line inside denotes
a wave plate, whose fast-axis orientation is indicated by the orientation of this line.

VIII. CONCLUSION

In this work we have considered a bipartite quantum sys-
tem comprising of a qudit degree of freedom coupled with a
qubit degree of freedom. In such a composite system, we have
implemented most generalized discrete-time quantum walks
using position-independent coins, and then examined the set
of quantum states that are accessed by such walks, starting
from some easy-to-prepare product state as the initial state. A
major result coming out of the current work is that such broad-
est generalization of the definition of quantum walks does not
give access to all the states on the composite Hilbert space. A
simple criterion for identifying whether a given quantum state
can be accessible through a quantum walk, is provided based
on the notion of translational invariance of a quantum step.
Furthermore, given a walk-accessible composite state, a clear
and deterministic algorithm for realizing it through discrete
time quantum walks is also provided. The given construction

is “minimal” in that the given composite state cannot be ob-
tained using fewer quantum steps of unit step size than what
is given by the algorithm. To give a practical context to our
theoretical results, in this paper we have interpreted them in
the context of quantum walks on the spin-and-orbital angular
momenta of light beams. We have demonstrated that any
walk-accessible state can be generated deterministically using
only wave plates and q = 1

2 q plates. We believe that the re-
sults presented here will aid in designing better quantum-walk
based algorithms for quantum state engineering, particularly
in the linear optical implementation of discrete-time quantum
walks.

APPENDIX: � AND α FOR THE SHRINKING ALGORITHM

Here, given a walk state |U〉 of position span [b, e], we
find the parameters of the quantum step T̂� (δ, p, s, c) such that
the composite state T̂� (δ, p, s, c)|U〉 has a position span of

FIG. 13. Evolution of scalar beams, into each of the four-vector beams |A〉, |B〉, |C〉, and |D〉 of Eq. (41). The figure with a single line
inside denotes a wave plate, whose fast-axis orientation is indicated by the orientation of this line.
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[b + 1, e − 1]. Let |R〉 = T̂� (δ, p, s, c)|U〉. The composite
state |R〉 can be expressed in the form of Eq. (3). The am-
plitude at the mth position rm and the coin state there |rm〉 can
be obtained by Eq. (11) as

rm|rm〉 =
(

um〈c|um〉 cos
�

2
− um+1〈c⊥|um+1〉 sin

�

2
e−iδ

)
|s〉

+
(

um〈c⊥|um〉 cos
�

2
+ um−1〈c|um−1〉 sin

�

2
eiδ

)
|s⊥〉
(A1)

We chose the parameters of T̂� (δ, 1, s, c) such that (i) (e + 1)th

and eth positions of |R〉 are unoccupied; that is, re+1 = 0 and
re = 0, and (ii) the bth and (b − 1)th positions of |R〉 are also
unoccupied; that is, rb−1 = 0 and rb = 0:

〈c|ue〉 = 0,

tan
�

2
= ue|〈c⊥|ue〉|

ue−1|〈c|ue−1〉| ,

δ = π + �(〈c⊥|ue〉) − �(〈c|ue−1〉). (A2)

Note that we are dealing with quantum steps of unit size,
p = 1. The contribution to the amplitude at the (e + 1)th po-
sition of |R〉 is therefore only from that of eth position of |U〉
alone. The first condition ensures that this contribution is 0.
The amplitude of eth component of |R〉, on the other hand, gets
contributions from both eth and (e − 1)th components of |U〉.

The chosen � and α of T̂ are such that the two contributions
are equal and out of phase, so that they cancel each other.

In a similar manner, the condition that the bth and (b − 1)th

positions are unoccupied in |R〉 leads to the following three
conditions on the step parameters:

〈c⊥|ub〉 = 0,

tan
�

2
= ub|〈c|ub〉|

ub+1|〈(ub)⊥|ub+1〉| ,

δ = �(〈c|ub〉) − �(〈(ub)⊥|ub+1〉). (A3)

The contribution to (b − 1)th of |R〉 is from bth component of
|U〉 alone, and the first condition ensures that this contribution
is 0. The bth component of |R〉, gets contributions from both
the bth and (b − 1)th components of |U〉 and the � and α of
the step T̂ ensure that these two contributions cancel each
other. The step of Eq. (A2), acting on a composite state |U〉
changes its position spread from [b, e] to [b − 1, e − 1] and,
likewise, the step of Eq. (A3) changes the position span from
[b, e] to [b + 1, e + 1]. We are interested in shrinking the span
to [b + 1, e − 1], so we seek a step whose parameters satisfy
both sets of constraints simultaneously. For instance, the first
of Eq. (A2) and the first of Eq. (A3) can be simultaneously
satisfied only if 〈ub|ue〉 = 0. This is not guaranteed for any
arbitrary composite state of the form Eq. (3). We, however, are
not dealing with arbitrary composite states, but “walk states”
satisfying Eq. (16), and for such states, it can be seen that the
two set of conditions are indeed identical. We make a choice
of |c〉 = |(ue)⊥〉 so as to satisfy the first of Eqs. (A3) and (A2)
simultaneously, from which Eq. (23) follows.

[1] M. Kac, Random walk and the theory of Brownian motion, Am.
Math. Mon. 54, 369 (1947).

[2] H. C. Berg, Random walks in biology, in Random Walks in
Biology (Princeton University Press, Princeton, NJ, 2018).

[3] E. A. Codling, M. J. Plank, and S. Benhamou, Random walk
models in biology, J. R. Soc., Interface 5, 813 (2008).

[4] E. Scalas, The application of continuous-time random walks in
finance and economics, Physica A (Amsterdam, Neth.) 362, 225
(2006).

[5] O. C. Ibe, Elements of Random Walk and Diffusion Processes
(John Wiley & Sons, 2013).

[6] Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random
walks, Phys. Rev. A 48, 1687 (1993).

[7] S. Singh, P. Chawla, A. Sarkar, and C. Chandrashekar, Uni-
versal quantum computing using single-particle discrete-time
quantum walk, Sci. Rep. 11, 1 (2021).

[8] A. M. Childs, Universal Computation by Quantum Walk, Phys.
Rev. Lett. 102, 180501 (2009).

[9] R. Portugal, Quantum Walks and Search Algorithms (Springer,
2013), Vol. 19.

[10] V. M. Kendon, A random walk approach to quantum algorithms,
Philos. Trans. R. Soc., A 364, 3407 (2006).

[11] E. Campos, S. E. Venegas-Andraca, and M. Lanzagorta, Quan-
tum tunneling and quantum walks as algorithmic resources to
solve hard K-SAT instances, Sci. Rep. 11, 16845 (2021).

[12] A. Sarkar and C. Chandrashekar, Multi-bit quantum random
number generation from a single qubit quantum walk, Sci. Rep.
9, 12323 (2019).

[13] S. Panahiyan and S. Fritzsche, Toward simulation of topological
phenomena with one-, two-, and three-dimensional quantum
walks, Phys. Rev. A 103, 012201 (2021).

[14] S. Panahiyan and S. Fritzsche, Controllable simulation of topo-
logical phases and edge states with quantum walk, Phys. Lett.
A 384, 126828 (2020).

[15] F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. De Lisio, G.
De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, Sta-
tistical moments of quantum-walk dynamics reveal topological
quantum transitions, Nat. Commun. 7, 11439 (2016).

[16] F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo,
C. de Lisio, G. De Filippis, V. Cataudella, E. Santamato, L.
Marrucci et al., Detection of Zak phases and topological invari-
ants in a chiral quantum walk of twisted photons, Nat. Commun.
8, 15516 (2017).

[17] S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex,
and C. Silberhorn, Measuring topological invariants in disor-
dered discrete-time quantum walks, Phys. Rev. A 96, 033846
(2017).

[18] L. Innocenti, H. Majury, T. Giordani, N. Spagnolo, F. Sciarrino,
M. Paternostro, and A. Ferraro, Quantum state engineering us-
ing one-dimensional discrete-time quantum walks, Phys. Rev.
A 96, 062326 (2017).

[19] T. Giordani, E. Polino, S. Emiliani, A. Suprano, L. Innocenti, H.
Majury, L. Marrucci, M. Paternostro, A. Ferraro, N. Spagnolo
et al., Experimental Engineering of Arbitrary Qudit States with
Discrete-Time Quantum Walks, Phys. Rev. Lett. 122, 020503
(2019).

012607-15

https://doi.org/10.1080/00029890.1947.11990189
https://doi.org/10.1098/rsif.2008.0014
https://doi.org/10.1016/j.physa.2005.11.024
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1038/s41598-020-79139-8
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1098/rsta.2006.1901
https://doi.org/10.1038/s41598-021-95801-1
https://doi.org/10.1038/s41598-019-48844-4
https://doi.org/10.1103/PhysRevA.103.012201
https://doi.org/10.1016/j.physleta.2020.126828
https://doi.org/10.1038/ncomms11439
https://doi.org/10.1038/ncomms15516
https://doi.org/10.1103/PhysRevA.96.033846
https://doi.org/10.1103/PhysRevA.96.062326
https://doi.org/10.1103/PhysRevLett.122.020503


GURURAJ KADIRI PHYSICAL REVIEW A 108, 012607 (2023)

[20] A. Suprano, D. Zia, E. Polino, T. Giordani, L. Innocenti, A.
Ferraro, M. Paternostro, N. Spagnolo, and F. Sciarrino, Dynam-
ical learning of a photonics quantum-state engineering process,
Adv. Photonics 3, 066002 (2021).

[21] A. Suprano, D. Zia, E. Polino, T. Giordani, L. Innocenti, A.
Ferraro, M. Paternostro, N. Spagnolo, and F. Sciarrino, Real-
time optimization of quantum state engineering protocol, in
Quantum Information and Measurement (Optical Society of
America, 2021), pp. F2C–4.

[22] R. Zhang, R. Yang, J. Guo, C.-W. Sun, Y.-C. Liu, H. Zhou,
P. Xu, Z. Xie, Y.-X. Gong, and S.-N. Zhu, Arbitrary coherent
distributions in a programmable quantum walk, Phys. Rev. Res.
4, 023042 (2022).

[23] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C.
Ralph, K. J. Resch, G. J. Pryde, J. L. O’brien, A. Gilchrist,
and A. G. White, Simplifying quantum logic using higher-
dimensional Hilbert spaces, Nat. Phys. 5, 134 (2009).

[24] Z. Gedik, I. A. Silva, B. Çakmak, G. Karpat, E. L. G. Vidoto,
D. d. O. Soares-Pinto, E. R. deAzevedo, and F. F. Fanchini,
Computational speed-up with a single qudit, Sci. Rep. 5, 14671
(2015).

[25] D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, High-
dimensional quantum communication: Benefits, progress, and
future challenges, Adv. Quantum Technol. 2, 1900038 (2019).
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