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We theoretically explore the advantages rendered by non-Gaussian operations in phase estimation using
a parity-detection-based Mach-Zehnder interferometer, with one input being a coherent state and the other
being a non-Gaussian squeezed vacuum state (SVS). We consider a realistic model to perform three different
non-Gaussian operations, namely, photon subtraction, photon addition, and photon catalysis on a single-mode
SVS. We start by deriving the Wigner function of the non-Gaussian SVSs, which is then utilized to derive
the expression for the phase sensitivity. The analysis of the phase sensitivity reveals that all three different
non-Gaussian operations can enhance the phase sensitivity under suitable choices of parameters. We also
consider the probabilistic nature of these non-Gaussian operations, the results of which reveal the single-photon
addition to be the optimal operation. Further, our analysis also enables us to identify the optimal squeezing of the
SVS and the transmissivity of the beam splitter involved in the implementation of the non-Gaussian operations.
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I. INTRODUCTION

The Mach-Zehnder interferometer (MZI) is the most com-
monly employed optical instrument in phase measurement
[1,2]. If the input beams to the MZI are classical sources,
the phase sensitivity is bounded by the shot-noise limit (SNL)
[3]. To improve the phase sensitivity, quantum resources such
as NOON states, twin Fock states, and squeezed states have
been employed. These quantum resources enable the phase
sensitivity to go beyond the SNL and reach the Heisenberg
limit [4–9].

The maximum squeezing that can be achieved experimen-
tally is bounded [10], which leads to a limited enhancement
in the phase sensitivity. To overcome this drawback, one can
resort to non-Gaussian (NG) operations such as photon sub-
traction (PS), photon addition (PA), and photon catalysis (PC).
It has already been shown that NG operations can be beneficial
in quantum teleportation [11–18], quantum key distribution
[19–23], quantum illumination [24], and quantum metrology
[25–31].

In particular, Ref. [32] showed that the phase sensitivity
of a parity-detection-based MZI at a fixed squeezing could be
enhanced when the inputs were a coherent state and an ideal
photon-subtracted squeezed vacuum state (SVS) as compared
to the case when a coherent state and a SVS were employed
as the inputs [33].
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In this article, we extend the analysis of Ref. [32] to
a wider class of NG states. To generate these NG states,
we perform three distinct NG operations, namely, PS, PA,
and PC, on SVSs. We implement these NG operations via
a realistic model based on multiphoton Fock states, photon-
number-resolving detectors, and beam splitters [Fig. 1]. This
leads to the generation of three distinct families of states,
namely, photon-subtracted SVSs (PSSVSs), photon-added
SVSs (PASVSs), and photon-catalyzed SVSs (PCSVSs),
which we collectively term as “NGSVSs.”

We then evaluate the Wigner function of these NGSVSs,
where the free parameters include the input Fock state, the
detected Fock state, and the transmissivity of the beam split-
ter involved in the implementation of the NG operation. By
suitably choosing the input Fock state and the detected Fock
state, we can perform PS, PA, or PC operations on SVSs. The
Wigner function is then utilized to evaluate the expression of
the phase sensitivity for the parity-detection-based MZI.

We analyze the behavior of the phase sensitivity of
NGSVSs as a function of different parameters. The analysis
reveals that all three NG operations can lead to a significant
enhancement under suitable choices of parameters. Further,
we take the probabilistic nature of NG operations into account
in our analysis, which reveals that the single-photon-added
SVS is the optimal state.

It should also be noted that the PS operation considered
in Ref. [32] is implemented by the annihilation operator â,
which is nonphysical. In contrast, our realistic scheme for
the implementation of NG operations can be realized with
current technologies, including the multiphoton Fock state
[34–38] and photon-number-resolving detectors [39–41]. We
would like to point out that this realistic model invariably
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FIG. 1. Schematic diagram for the implementation of NG opera-
tions on a SVS followed by a parity-detection-based MZI. The SVS
and the ancilla Fock state |m〉 are combined using a beam splitter
of transmissivity τ , and subsequently, detection of n photons in the
ancilla output mode heralds the generation of NGSVSs. A coherent
state and the NGSVSs serve as the resource states of the MZI for the
estimation of the introduced phases.

enhances the complexity of our calculation. Further, the phase
sensitivity expression derived here is quite general and special
cases investigated in Refs. [32,42] can be obtained in the
appropriate limit. Furthermore, the realistic scheme enables
us to consider the probabilistic nature of the involved NG
operations.

The rest of the paper is structured as follows. In Sec. II,
we derive the phase sensitivity expression for the parity-
measurement-based MZI with a coherent state and NGSVSs
as the two inputs. Section III contains the analysis of the
phase sensitivity enhancement using NGSVSs and Sec. IV is
dedicated to finding out the optimal NG operation for phase
estimation. We summarize our main results and provide di-
rections for future research in Sec. V. In Appendix A, we
have provided a detailed calculation of the Wigner distribution
function of NGSVSs.

II. PARITY-MEASUREMENT-BASED PHASE ESTIMATION

Consider the setup of a lossless MZI shown in Fig. 1, which
consists of two 50:50 beam splitters and two phase shifters.
While one of the input states is a coherent state, the other input
state is generated by performing different NG operations on a
SVS, as depicted in the lower left-hand corner of Fig. 1. An
unknown phase φ is introduced via the two phase shifters, and
we aim to estimate this unknown phase by parity detection on
the output mode â2. The Wigner distribution function of the
coherent state |α〉 can be written as [43]

W|α〉(ξ1) = (π )−1 exp[−(q1 − dx )2 − (p1 − dp)2], (1)

where ξ1 = (q1, p1)T and α = (dx + idp)/
√

2. To implement
the NG operations, we mix the SVS and the ancilla Fock
state |m〉 via a beam splitter of transmissivity τ . A photon-
number-resolving detector is used to perform a conditional
measurement of n photons on the ancilla output mode, which
signals the generation of NGSVSs.

For convenience, we employ a phase-space formalism,
specifically the Wigner distribution function, for calculations.
While stepwise calculation for the derivation of the Wigner
distribution function of the NGSVSs is provided in Ap-
pendix A, here we provide the final expression. The Wigner

distribution function of the NGSVSs turns out to be [given in
Eq. (A17) of Appendix A]

W NG(ξ2) = F̂1 exp
(w2

1q2+w2
2 p2+uT M1u+uT M2

−w1w2

)
PNG√

w1w2
, (2)

where w1,2 = cosh r ± τ sinh r and u = (u1, v1, u2, v2)T rep-
resents the column vector. Further,

F̂1 = (−2)m+n

π m! n!

∂m

∂ um
1

∂m

∂ vm
1

∂n

∂ un
2

∂n
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{•}u1=v1=0
u2=v2=0

(3)

represents the differential operator. The explicit forms of the
matrices M1 and M2 are provided in Eqs. (A13) and (A14) of
Appendix A. The success probability of the NG operations,
PNG, is given by [Eq. (A15) of Appendix A]

PNG =
∫

d2ξ2W̃
NG

A′ = π F̂1√
w1w2

exp

(
uT M3u
−4w1w2

)
, (4)

where the matrix M3 is given in Eq. (A16) of Appendix A.
Different NG operations on SVSs can be implemented by fix-
ing the input Fock state and the detected number of photons.
We can perform PS, PA, or PC operations on SVSs under
the condition m < n, m > n, or m = n, respectively. In this
article, we set m = 0 and n = 0 for PS and PA operations,
respectively. These NG operations convert the SVS state from
Gaussian to non-Gaussian.

The derived Wigner distribution function of the SVS (2)
is quite general and the Wigner distribution function of spe-
cial states can be obtained in different limits. For example,
the Wigner distribution function of the ideal PSSVSs can be
obtained in the limit τ → 1 with m = 0. The ideal PSSVSs
are represented by Nsân|SVS〉, where Ns is the normalization
factor. Similarly, the Wigner distribution function of the ideal
PASVSs can be obtained in the limit τ → 1 with n = 0. The
ideal PASVSs are represented by Naâ†

2
m|SVS〉, where Na

is the normalization factor. Finally, the Wigner distribution
function of the SVS can be obtained in the limit τ → 1 with
m = n.

For the purpose of ease in the description of the collective
action of the MZI, we consider the Schwinger representation
of the SU(2) algebra [44]. In terms of the annihilation and
creation operators of the input modes, the generators of the
SU(2) algebra turn out to be

Ĵ1 = 1
2 (â†

1â2 + â1â†
2),

Ĵ2 = 1
2i (â

†
1â2 − â1â†

2),

Ĵ3 = 1
2 (â†

1â1 − â†
2â2). (5)

These generators are also known as angular momentum oper-
ators and satisfy the commutation relations [Ji, Jj] = iεi jkJk .
The unitary operators acting on the Hilbert space correspond-
ing to the first and the second beam splitters are given by
e−i(π/2)Ĵ1 and ei(π/2)Ĵ1 , respectively. The combined action of
the two phase shifters is represented by the unitary operator
eiφĴ3 . Therefore, the total action of the MZI is represented as a
product of the unitary operators as follows:

U (SMZI) = e−i(π/2)J1 eiφJ3 ei(π/2)J1 = e−iφJ2 . (6)
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The corresponding symplectic matrix SMZI transforming the
phase-space variables (ξ1, ξ2)T turns out to be

SMZI =
(

cos(φ/2) 1 − sin(φ/2) 1
sin(φ/2) 1 cos(φ/2) 1

)
. (7)

The evolution of the Wigner distribution function due to SMZI

can be stated as [43,45]

Win(ξ) → Win
(
S−1

MZIξ
) = Wout(ξ), (8)

where Win(ξ) = W|α〉(ξ1) × W NG(ξ2) is the product of the
Wigner distribution function of the coherent state (1) and
NGSVSs (2). We employ parity detection on the output mode
â2 as depicted in Fig. 1. The operator corresponding to parity
detection is given by

�̂â2 = exp(iπ â†
2â2) = (−1)â†

2 â2 . (9)

To evaluate the average of the parity operator, we recall that
the Wigner distribution function can be expressed as the aver-
age of the displaced parity operator [46]:

W (ξ) = 1

πn
Tr[ρ̂ D(ξ)�̂D†(ξ)], (10)

where n is the number of modes, D(ξ) = exp[iξ̂ � ξ] repre-
sents the displacement operator, and �̂ = ∏n

i=0 exp(iπ â†
i âi )

represents the parity operator. Hence, the average of the parity
operator in terms of the Wigner distribution function turns out
to be [47] 〈

�̂â2

〉 = π

∫
d2ξ1 Wout(ξ1, 0). (11)

Upon substitution of Eq. (8) in Eq. (11), the calculation of the
integral yields〈

�̂â2

〉 = π F̂1√
w3w4

exp

(
uT M4u + uT M5d + dT M6d

−w3w4

)
, (12)

where w3,4 = cosh r ± τ sinh r cos φ and d = (2 dx, 2 dp)T .
Further, the matrices M4, M5, and M6 are defined in Eqs. (C1),
(C2), and (C3) of Appendix C. The phase uncertainty or
sensitivity can be expressed as the following using the error
propagation formula:

�φ =
√

1 − 〈
�̂â2

〉2∣∣∂ 〈
�̂â2

〉
/∂φ

∣∣ . (13)

The phase uncertainty is a function of the squeezing r of
the SVS, displacement dx and dp of the coherent state, and
the introduced unknown phase φ. Besides, the number of
input photons m and the number of detected photons n can
be appropriately chosen to perform different NG operations.
One important advantage of our considered realistic model
for the implementation of NG operations is that it allows us
to consider the probability of different NG operations and
consequently identify their effectiveness in phase estimation.

In the unit transmissivity limit (τ → 1) with m = 0, the
phase sensitivity expression (13) reduces to that of ideal
PSSVSs [32]. Similarly, in the unit transmissivity limit with
n = 0, we obtain the phase sensitivity expression for ideal
PASVSs [42]. Further, we obtain the phase sensitivity ex-
pression for the SVS using Eq. (13) in the limit τ → 1 with
m = n [33].

FIG. 2. Phase uncertainty �φ as a function of the squeezing
parameter r for NGSVSs. We have set the transmissivity of the beam
splitter to be τ = 0.9 for panels (a) and (b) and τ = 0.1 for panel
(c). Further, the coherent-state displacement has been taken to be
dx = dp = 2 and phase φ = 0.01 for all the panels.

III. PHASE SENSITIVITY ENHANCEMENT VIA NGSVSs

We now proceed to find out whether different NG opera-
tions on SVSs can enhance phase sensitivity in the MZI. To
this end, we study the behavior of phase uncertainty (�φ) as
a function of initial squeezing (r) of the SVS, transmissivity
(τ ) of the beam splitter used to perform NG operations, and
magnitude of the total unknown phase (φ) introduced in the
interferometer. In Fig. 2, we show the plot of �φ as a function
of squeezing, while other parameters are kept fixed.1

1In this paper, we set the displacement of the coherent state
dx = dp = 2 for numerical analysis purposes.
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As can be seen in Fig. 2(a), PSSVSs improve the phase
sensitivity as compared to SVSs for almost the whole of the
considered squeezing range. For 1-PSSVS, phase sensitivity
improvement is not observed for r � 1.8. The phase sensi-
tivity via 2-PSSVS gets better than that of 1-PSSVS at a
certain threshold squeezing. The phase sensitivity of 3-PSSVS
is better than that of 1-PSSVS and 2-PSSVS.

An intriguing anomaly evident in Fig. 2(a) is the strange
behavior exhibited by the PSSVSs, where 2-PSSVS fails to
augment the phase sensitivity at r = 0, while 1-PSSVS and
3-PSSVS manifest such enhancement. This strange behavior
can be explained by considering the following two factors: (i)
if the input to the MZI is a coherent state combined with a
Fock state (|n〉), then it has been established that the phase
sensitivity improves with an increase in n [25], and (ii) in the
limit of r → 0, 1-PSSVS and 3-PSSVS become |1〉 whereas
2-PSSVS turns out to be |0〉. This can be seen by computing
the Wigner function (2) in the r → 0 limit. By taking into
account the aforementioned points, we deduce that SVS and
2-PSSVS will yield the same phase sensitivity in the r → 0
limit, while 1-PSSVS and 3-PSSVS will surpass the SVS in
terms of phase sensitivity.

Moving to the PA operation, we observe that 1-PASVS sig-
nificantly improves the phase sensitivity up to the squeezing
value of r ≈ 1.8. The phase sensitivity is enhanced further as
more photons are added. Similarly, the PCSVSs yield better
phase sensitivity as we catalyze more photons. However, the
phase sensitivity is improved compared to the initial SVS for
a much smaller range of the squeezing parameter, as shown in
Fig. 2(c).

We now study the dependence of �φ on the transmissivity
while other parameters are kept fixed. The results are shown
in Fig. 3. While phase sensitivity is maximized in the unit
transmissivity limit for PSSVSs and PASVSs, phase sensitiv-
ity is maximized in the zero transmissivity limit for PCSVSs.
While for 2-PSSVS, the phase sensitivity is enhanced beyond
a threshold transmissivity, 1-PSSVS and 3-PSSVS improve
phase sensitivity for the entire range of transmissivity. We
obtain improved phase sensitivity for PASVSs for the entire
range of transmissivity. In contrast, PCSVSs show improved
phase sensitivity for a small range of low transmissivity.

The reason for these behaviors can be qualitatively ex-
plained by observing the photon number distribution (PND) of
NGSVSs at different transmissivity values. For instance, we
have shown the PND for PSSVSs at different transmissivity
values in Fig. 8 in Appendix B. We first observe that for the
SVS, the probability of the vacuum state |0〉 is significantly
large (≈ 0.6). This contrasts with 1-PSSVS and 3-PSSVS
where the vacuum state always has zero probability. This,
along with the fact that nonzero Fock states yield better phase
sensitivity, explains the enhancement in phase sensitivity
when employing these two non-Gaussian states compared to
SVSs. On the other hand, 2-PSSVS has a highly populated |0〉
state in the low-transmissivity regime. As the transmissivity
increases, the PND is shifted to higher Fock states, which en-
hances the sensitivity. 2-PSSVS performs worse than the SVS
in a low-transmissivity regime because the probability of |0〉
for 2-PSSVS is larger than that for the SVS. On increasing the
transmissivity, the probability of the vacuum state decreases
and becomes comparable with that of the SVS; therefore, their

FIG. 3. Phase uncertainty �φ as a function of the transmissivity
of the beam splitter τ for NGSVSs. We have set the squeezing
parameter r = 0.5 and the phase to be φ = 0.01 for all the panels.

phase sensitivities also become comparable. With a further
increase of transmissivity, the probability for |0〉 becomes
even smaller for 2-PSSVS as compared to the SVS, and
the sensitivity is further increased. In Fig. 4, we analyze the
dependence of �φ on the phase while other parameters are
kept fixed. We notice a general trend that performing multiple
NG operations results in the enhancement of phase sensitivity.
However, a deviation is observed, where the 1-PS operation
performs better than the 2-PS operation. Again these behav-
iors can be largely explained by a similar analysis of the PND
for various non-Gaussian states as previously done. Figure 9
in Appendix B shows the PND for parameter values identical
to Fig. 4. In the case of PASVSs (PCSVSs), an increase
in the number of photons added (catalyzed) is accompanied
by a shift of probability from lower to higher Fock states,
thereby increasing the phase sensitivity. However, when we
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FIG. 4. Phase uncertainty �φ as a function of the phase φ for
NGSVSs. We have set the transmissivity of the beam splitter to be
τ = 0.9 for panels (a) and (b) and τ = 0.1 for panel (c). Further, the
squeezing parameter has been set to be r = 0.5 for all the panels.

transition from odd-numbered PSSVSs (such as 1-PSSVS) to
even-numbered PSSVSs (such as 2-PSSVS), the probability
shifts from odd to even Fock states, leading to an increase
in the probability of |0〉 for 2-PSSVS. As a result, the phase
sensitivity is diminished for 2-PSSVS.

IV. OPTIMAL NG OPERATION FOR PHASE ESTIMATION

In the preceding section, we investigated the benefits of
performing NG operations on the SVS for specific values of
state parameters (r and τ ) and phase φ. We now analyze the
benefits of performing NG operations for a range of squeezing
and transmissivity parameters at a fixed phase. This study
enables us to get a good understanding of the effects of the

FIG. 5. Left panels depict the success probability as a function
of the transmissivity τ and the squeezing parameter r for NGSVSs.
Right panels depict curves of fixed DNG, the difference of �φ be-
tween SVS and NGSVSs, as a function of τ and r. We have shown
the values of the parameters (m, n) for different PSSVSs. The phase
φ is taken to be 0.01. Solid black, large dashed red, dashed green, dot-
ted orange, dot-dashed cyan, and double-dot-dashed purple curves
represent DNG = 0.00, 0.025, 0.05, 0.10, 0.15, and 0.20, respectively.

NG operations. To this end, we consider the difference of �φ

between the SVS and NGSVSs defined as follows:

DNG = �φSVS − �φNGSVSs. (14)

The region of state parameters (r and τ ), where DNG turns
out to be positive, signifies that NGSVSs yield better phase
sensitivity than the SVS.

We also consider the success probability of the NG oper-
ations and plot them alongside the DNG plots. The success
probability signifies the fraction of successful NG operations
and represents resource utilization. A careful comparison with
the DNG plots enables us to qualitatively identify the opti-
mal NG operation. In the left panels of Fig. 5, we draw the
contours of the success probability in the r − τ space for
different NG operations. We observe that the values of success
probabilities reach to the range of 0.9 for both 1-PA and
1-PC operations. However, for the 1-PS operation, the success
probability only reaches to the range of 0.16. For the 1-PS
operation, the highest success probabilities are observed for
high transmissivity and high values of squeezing. In contrast,

012605-5



KUMAR, RISHABH, SHARMA, AND ARORA PHYSICAL REVIEW A 108, 012605 (2023)

FIG. 6. Product RNG = PNG × DNG as a function of the trans-
missivity τ for different NG states. The phase has been set as φ=0.01
for all the cases.

for the 1-PA operation, the highest success probabilities are
observed for low transmissivity and low values of squeezing.
The highest success probabilities for the 1-PC operation are
characterized by high values of transmissivity and by low to
intermediate values of squeezing in our considered range.

The right panels of Fig. 5 show curves for different values
of DNG (= 0.00, 0.025, 0.05, 0.10, 0.15, 0.20) correspond-
ing to 1-PSSVS, 1-PASVS, and 1-PCSVS. For 1-PSSVS and
1-PASVS, the region of positive DNG is obtained for the
squeezing range r ∈ (0, 1) for small values of transmissivity.
As the transmissivity increases, the advantageous squeezing
range also increases. For 1-PCSVS, the region of positive
DNG is observed for low transmissivity and low values of
squeezing.

In order to qualitatively find the most optimal NG state, we
consider following two main factors: the overlap of positive
regions of DNG with regions of high success probability, and
the magnitude of the highest success probability achieved.
Clearly, 1-PCSVS is out of the picture as the areas of high
success probabilities do not overlap with the region with
positive values of DNG. The next scope of comparison is be-
tween 1-PSSVS and 1-PASVS where both have a considerable
overlap of positive DNG and high success probabilities. Here,
1-PASVS turns out to be the most optimal state as the magni-
tude of high success probabilities (≈ 0.9) is much greater than
that of 1-PSSVS (≈ 0.16).

To see this comparison in a much more quantitative man-
ner, we consider the product RNG = PNG × DNG. Here we
trade-off between PNG and DNG by adjusting the transmis-
sivity for a given squeezing to maximize the product. The
optimal state renders this product maximum. To that end, we
numerically study the dependence of the product RNG on the
transmissivity at a fixed squeezing for different NG states in
Fig. 6. The results reveal that 1-PASVS performs way better
than other considered states when the success probability is
taken into consideration. However, we notice that the best
performance is achieved at τ = 0, which cannot be achieved
in an experiment. The best experimental strategy would be
to work in a low-transmissivity regime such as τ = 0.01.
We also note that 1-PASVS becomes |1〉 in the limit τ → 0.
Therefore, one could use the coherent state combined with |1〉
as the input state to obtain similar phase sensitivity.

V. CONCLUSION

In this paper, we investigated the advantages offered by
non-Gaussian operations in phase estimation using a parity-
detection-based MZI, with a coherent state and NGSVSs as
the two inputs. We considered the realistic scheme for imple-
menting three different NG operations, namely, PS, PA, and
PC, on the SVS state. We derived the Wigner function for
the three corresponding NGSVSs, i.e., PSSVSs, PASVSs, and
PCSVSs. The Wigner function is then used to derive the phase
sensitivity of a parity-detection-based MZI. The investigation
of the phase sensitivity reveals that all the three NG opera-
tions can enhance the phase sensitivity for suitable choices of
parameters. Further, we have taken the success probability of
different NG operations into account.

The results show that the optimal operation for phase esti-
mation is single-photon addition on the SVS. This is because
the parameter range of high success probability for a single
PA operation and the large enhancement in the phase sen-
sitivity by 1-PASVS coincide [Fig. 5(b)]. We would like to
stress that our scheme for NG state generation can be real-
ized with currently available technologies and, therefore, is
of direct relevance to the experimental community. In con-
trast, Refs. [32,42] have considered photon annihilation and
creation operator for the implementation of PS and PA op-
erations, which are nonphysical. In addition, our considered
figure of merit also enables us to find optimal squeezing and
transmissivity parameters.

Our study can be extended in several directions. Lang and
Caves have reported that for an interferometer with a coherent
state being one input and the other being constrained by the
average photon number, the optimal state to inject through
the second input is the squeezed vacuum state (SVS) [8]. In
a similar spirit, Ref. [42] has compared the phase sensitivity
of ideal PSSVSs and PASVSs with a constraint on the average
photon number. It would be interesting to compare the phase
sensitivity of NG states, including PCSVSs generated by a
realistic scheme under such constraints. Further, we can also
explore different measurement-based MZI, such as intensity
measurement [48] and homodyne measurement [49]. Fur-
thermore, such an analysis involving realistic NG operation
schemes can be extended to different classes of states, such as
displaced Fock states [50].
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APPENDIX A: CALCULATION OF WIGNER
DISTRIBUTION FUNCTION FOR NGSVSs

In this Appendix, we provide a detailed and stepwise cal-
culation of the Wigner distribution function for the NGSVSs.
The scheme for the generation of the NGSVSs is illustrated
in Fig. 7. We start with a single-mode SVS which can be
written as

|SVS〉 = U (S(r))|0〉, (A1)
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FIG. 7. Schematic representation of photon subtraction, ad-
dition, and catalysis operations on SVSs. A beam splitter of
transmissivity τ is used to mix the SVS and the ancilla Fock state
|m〉. Detection of n photons in the ancilla output mode F ′ heralds the
generation of the NGSVSs.

where U (S(r)) = exp[r(â2
2 − â2

†2)/2] is the single-mode
squeezing operator. This is a Gaussian state with zero mean
and the following covariance matrix:

V = 1

2

(
e−2r 0

0 e2r

)
. (A2)

The Wigner distribution function for the SVS turns out to be
[43]

W (ξ2) = π−1 exp
(−e−2rq2

2 − e2r p2
2

)
, (A3)

where ξ2 = (q2, p2)T . As shown in Fig. 7, the SVS in mode
A is combined with the Fock state |m〉 in the ancilla mode
F using a beam splitter of transmissivity τ . The state of the
two-mode system before the beam-splitter transformation can
be represented by its Wigner distribution function as follows:

WAF (ξ) = WA(ξ2)W|m〉(ξ3), (A4)

where the Wigner distribution function of a Fock state |m〉 is
given by

W|m〉(q, p) = (−1)m

π
exp(−q2 − p2) Lm[2(q2 + p2)], (A5)

with Lm{•} being the Laguerre polynomial of the nth order.
The action of the beam-splitter operation on the phase-space
variables (ξ2, ξ3)T is given by the symplectic matrix

BAF (τ ) =
( √

τ 12
√

1 − τ 12

−√
1 − τ 12

√
τ 12

)
. (A6)

The beam splitter entangles the two modes, and the corre-
sponding Wigner distribution function of the entangled state
can be written as

WA′F ′ (ξ ) = WAF [BAF (τ )−1ξ]. (A7)

We now perform a conditional measurement on the ancilla
mode of the output state F ′ using a photon-number-resolving
detector. Detection of n photons corresponds to successful
implementation of the NG operation on the SVS. The un-
normalized Wigner distribution function of the NGSVSs will
be

W̃ NG
A′ (ξ2) = 2π

∫
d2ξ3WA′F ′ (ξ2, ξ3) × W|n〉(ξ3)︸ ︷︷ ︸

Projection on |n〉〈n|

. (A8)

The cases m < n and m > n correspond to the implementation
of PS and PA operations on the SVS, respectively, while m =
n corresponds to the implementation of the PC operation on
the SVS. PS and PA operations on the SVS produce PSSVSs
and PASVSs, respectively. Similarly, the PC operation on the
SVS produces PCSVSs. The states generated by performing
these NG operations are NG. The following identity for the
Laguerre polynomials can be used to transform the integrand
of Eq. (A8) into a Gaussian function:

Ln[2(q2 + p2)] = D̂ exp

[
st

2
+ s(q + ip) − t (q − ip)

]
,

(A9)

where the differential operator D̂ is given by

D̂ = 2n

n!

∂n

∂ sn

∂n

∂ t n
{•}s=t=0. (A10)

The transformed expression (A8) can be readily integrated to
obtain

W̃ NG
A′ (ξ2) = F̂1√

w1w2
exp

(
w2

1q2 + w2
2 p2 + uT M1u + uT M2

−w1w2

)
,

(A11)

where w1,2 = cosh r ± τ sinh r, the column vector u is de-
fined as u = (u1, v1, u2, v2)T , and the differential operator F̂1
is defined as

F̂1 = (−2)m+n

π m! n!

∂m

∂ um
1

∂m

∂ vm
1

∂n

∂ un
2

∂n

∂ vn
2

{•}u1=v1=0
u2=v2=0

. (A12)

Further, the matrix M1 is given by

M1 = 1

4

⎛⎜⎜⎜⎜⎝
αβt ′2t2 −β2t ′2 αβt ′2t α2t ′2t + t

−β2t ′2 αβt ′2t2 α2t ′2t + t αβt ′2t

αβt ′2t α2t ′2t + t αβt ′2 −α2t ′2t2

α2t ′2t + t αβt ′2t −α2t ′2t2 αβt ′2

⎞⎟⎟⎟⎟⎠,

(A13)

where t = √
τ , t ′ = √

1 − τ , α = sinh r, and β = cosh r. The
matrix M2 is given by

M2 =

⎛⎜⎜⎜⎜⎝
−βt ′(q2w1 + ip2w2)

βt ′(q2w1 − ip2w2)

−αt ′t (q2w1 − ip2w2)

αt ′t (q2w1 + ip2w2)

⎞⎟⎟⎟⎟⎠. (A14)

The probability of successful generation of NG states can be
evaluated by integrating the un-normalized Wigner distribu-
tion function of the NGSVSs (A11):

PNG =
∫

d2ξ2W̃
NG

A′ (ξ2) = π F̂1√
w1w2

exp

(
uT M3u
−4w1w2

)
,

(A15)
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FIG. 8. Photon number distribution of the SVS and PSSVSs. We have set r = 0.5.

where the matrix M3 is represented as below:

M3 =

⎛⎜⎜⎜⎜⎝
αβt ′2t2 β2t ′2 αβt ′2tw2

0 t + α2t ′2t

β2t ′2 αβt ′2t2 t + α2t ′2t αβt ′2tw2
0

αβt ′2tw2
0 t + α2t ′2t αβt ′2 α2t ′2t2

t + α2t ′2t αβt ′2tw2
0 α2t ′2t2 αβt ′2

⎞⎟⎟⎟⎟⎠,

(A16)

where w0 = e−2r (w2 + t ′2α2)/(w1 − t ′2α2). The normalized
Wigner distribution function W NG

A′ of the NGSVSs can be
written as follows:

W NG
A′ (ξ2) = (PNG)

−1
W̃ NG

A′ (ξ2). (A17)

APPENDIX B: PHOTON NUMBER
DISTRIBUTION OF NGSVS

The effect of NG operations on the SVS can be easily
seen through the change in the photon number distribution
(PND). The PND or the probability of finding n photons can
be calculated as

P(n) = 2π

∫
d2ξ2W

NG(ξ2)W|n〉(ξ2). (B1)

In order to explain some of the intriguing behavior shown
by NGSVSs (in the main text), we show the PND for some
specific parameter values. For instance, Fig. 8 shows the PND
for the three PSSVSs at different transmissivity values. The
squeezing value is set at 0.5 for all these states. The PND for

the SVS is also included for comparison. Similarly, Fig. 9
shows the PND for parameter values identical to those in
Fig. 4.

APPENDIX C: MATRICES APPEARING IN THE AVERAGE
OF PARITY OPERATOR

Here we provide the expressions of the matrices M4, M5,
and M6 which appear in the average of parity operator (12):

M4 =

⎛⎜⎜⎜⎜⎝
αβγ 2t ′2t2 −β2γ t ′2 αβγ t ′2t tw3w4

−β2γ t ′2 αβγ 2t ′2t2 tw3w4 αβγ t ′2t

αβγ t ′2t tw3w4 αβt ′2 −α2γ t ′2t2

tw3w4 αβγ t ′2t −α2γ t ′2t2 αβt ′2

⎞⎟⎟⎟⎟⎠,

(C1)

where γ = cos φ and δ = sin φ. Further,

M5 =

⎛⎜⎜⎜⎝
βδt ′w3 iβδt ′w4

−βδt ′w3 iβδt ′w4

αδt ′tw3 −iαδt ′tw4

−αδt ′tw3 −iαδt ′tw4

⎞⎟⎟⎟⎠ (C2)

and

M6 = sin2

(
φ

2

)(
w3w1 0

0 w4w2

)
. (C3)
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FIG. 9. Photon number distribution of NGSVSs. We have set r = 0.5 and transmissivity of the beam splitter to be τ = 0.9 for PS and PA
and τ = 0.1 for PC.
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