
PHYSICAL REVIEW A 108, 012604 (2023)

Transmission distance in the space of quantum channels

Diego G. Bussandri ,1,2 Pedro W. Lamberti,2,3,4 and Karol Życzkowski 4,5
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We analyze two ways to obtain distinguishability measures between quantum maps by employing the square
root of the quantum Jensen-Shannon divergence, which forms a true distance in the space of density opera-
tors. The arising measures are the transmission distance between quantum channels and the entropic channel
divergence. We investigate their mathematical properties and discuss their physical meaning. Additionally, we
establish a chain rule for the entropic channel divergence, which implies the amortization collapse, a relevant
result with potential applications in the field of discrimination of quantum channels and converse bounds. Finally,
we analyze the distinguishability between two given Pauli channels and study exemplary Hamiltonian dynamics
under decoherence.
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I. INTRODUCTION

The notion of quantum channel distinguishability is at the
core of quantum information theory, and it plays a central
role in a variety of contexts. Different works investigate the
mathematical and physical conditions for a suitable measure
of distance between quantum maps and, correspondingly, var-
ious such measures have been introduced, with trace distance
and quantum fidelity being the most widely used [1]. Con-
structing a universal distance measure in the space of quantum
maps that fulfils all the suitable requirements is strongly
motivated by the recent literature. However, finding such a
gold standard is rather difficult [2], and one tries to identify
distance measures capable to compare theoretically idealized
quantum channels with their noisy experimental implementa-
tions.

Within the list of relevant requirements for a measure
studied, an important property is the triangle inequality, as
it allows one to construct a true distance and it serves as a
tool to establish other features, including the chaining prop-
erty. Recently, Virosztek [3] and Sra [4] demonstrated that
the square root of the quantum Jensen-Shannon divergence
(QJSD) satisfies the triangle inequality for any quantum states
of an arbitrary finite dimension. This extensively used en-
tropic distinguishability measure has appealing properties and
it has been widely used in quantum information theory [5–8].

The main aim of this paper is to extend the transmission
distance, defined as the square root of the quantum Jensen-
Shannon divergence [9], to the space of quantum channels.
We study two different approaches to carry out this goal:

Making use of the Choi-Jamiołkowski isomorphism, we ar-
rive at the transmission distance between quantum channels.
Furthermore, by optimizing the channel output over all pos-
sible inputs, we investigate the entropic channel divergence.
Additionally, we establish their operational interpretations.
In the case of the transmission distance between quantum
channels, we point out the connection with the capacity of
a dense coding protocol. The entropic channel divergence, on
the other hand, corresponds to a particular case of the quantum
reading capacity: the maximum amount of information that
can be obtained in a readout process (channel decoding) per
cell of a digital memory [10].

Going beyond the required properties for having well-
behaved measures of distance between quantum operations,
we establish a chain rule for the entropic channel divergence.
This chain rule was originally proposed in Eq. (4) of Ref. [11]
for the quantum relative entropy, motivated by its classical
counterpart. However, the extension of the quantum relative
entropy to the space of quantum maps through optimization
of its inputs does not satisfy this particular chain rule.

We address the issue of the amortized distinguishability
of quantum channels, relevant to analyze the problem of hy-
pothesis testing for quantum channels [12]. The idea behind
amortized distance measures is to consider two quantum states
as inputs of two different quantum channels to explore the
biggest distance between these channels without considering
the original distinguishability that the input states may have.
The chain rule leads to another property called amortiza-
tion collapse [12], which occurs if the channel divergence
is equal to its amortized version. In such a case, one obtains
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useful single-letter converse bounds on the capacity of adap-
tive channel discrimination protocols [13].

Finally, we will examine two specific applications for
the entropic distinguishability measures: (a) Pauli channels,
with a focus on studying noise in the standard quantum
teleportation channel [14], and (b) the distinguishability of
Hamiltonians under decoherence, a particular case within the
discrimination of superoperators proposed in Refs. [15,16].

This paper is organized as follows. In Sec. II we sum-
marize the main properties of the transmission distance in
the space of quantum states. In Sec. III we introduce the
transmission distance between quantum channels through the
Choi-Jamiołkowski isomorphism and study its properties.
The entropic channel divergence is proposed and analyzed in
Sec. IV.

The chain rule and the amortization collapse of the entropic
channel divergence are presented in Sec. IV and in Sec. V C
we consider a set of quantum maps, for which the proposed
measures are equal. In Sec. V the physical motivations and op-
erational meanings of the introduced distances are discussed.
In Sec. VI, we compute analytically the distances for Pauli
channels and for arbitrary Hamiltonians under decoherence.
Section VII concludes the paper with a brief review of results
obtained.

II. QJSD AND TRANSMISSION DISTANCE
IN THE SPACE OF QUANTUM STATES

Let MN be the space of density matrices ρ (positive and
normalized operators, ρ � 0 and Trρ = 1, respectively) de-
fined on a N-dimensional Hilbert space.

The von Neumann entropy, S(ρ) = −Tr[ρ log2 ρ], satisfies
the concavity property [17]

S(ρ ) �
∑

i

piS(ρi ), (1)

for a given ensemble of quantum states {pi, ρi}i, with the
weighted average ρ = ∑

i piρi. This property gives rise to
a suitable symmetric measure of distinguishability between
the states comprising the ensemble (according to the classi-
cal probability vector p = {pi}i) called the Holevo quantity
[18,19] or quantum Jensen-Shannon divergence [3,4,9,20,21]:

QJSDp(ρ1, . . . , ρn) = S(ρ ) −
∑

i

piS(ρi ). (2)

Making use of the quantum relative entropy [17] between two
states ρ and σ ,

Sr (ρ||σ ) = Tr[ρ(log2 ρ − log2 σ )], (3)

the quantum divergence can be recast in the form

Dp
JS(ρ1, . . . , ρn) =

∑
i

piSr (ρi||ρ). (4)

This equality allows us to interpret the quantity
QJSDp(ρ1, . . . , ρn) as total divergence to the average
(or information radius) quantifying how much information is
discarded if we describe the system employing just the convex
combination ρ = ∑

i piρi. An analogous interpretation can
be given in the classical setup [22,23].

In the case of a binary ensemble of states ρ and σ combined
with equal weights, we can employ a simplified notation:

DJS(ρ, σ ) = S

(
ρ + σ

2

)
− 1

2
S(ρ) − 1

2
S(σ ). (5)

Regarding mathematical properties, the QJSD satisfies the
indiscernibles identity [21]:

0 � QJSD(ρ, σ ) � 1 with

QJSD(ρ, σ ) = 0 ⇐⇒ ρ = σ,

QJSD(ρ, σ ) = 1 ⇐⇒ supp(ρ) ⊥ supp(σ ), (6)

where supp(ρ) ⊥ supp(σ ) denotes ρ and σ with orthogonal
supports.

The quantum relative entropy satisfies the monotonicity
[17] with respect to any completely positive trace-preserving
(CPTP) map �. This property, also called the data processing
inequality [21], is thus inherited by the quantum divergence:

QJSD[�(ρ),�(σ )] � QJSD(ρ, σ ). (7)

Furthermore, monotonicity implies that QJSD satisfies the
restricted additivity,

QJSD(ρ1 ⊗ σ, ρ2 ⊗ σ ) = QJSD(ρ1, ρ2), (8)

and the invariance with respect to an arbitrary unitary trans-
formation U acting on both states:

QJSD(UρU †,UσU †) = QJSD(ρ, σ ).

In the single-qubit case, N = 2, Briët and Harremoës
showed [9] that the square root of the QJSD, known as the
transmission distance,

dt (ρ, σ ) :=
√

QJSD(ρ, σ ), (9)

satisfies the triangle inequality,

dt (ρ, σ ) � dt (ρ, χ ) + dt (χ, σ ), (10)

for any ρ, σ, χ ∈ M2. Recently, this result has been estab-
lished for an arbitrary finite dimension N and extended to the
cone of positive matrices [3,4].

The transmission distance can be bounded by other known
distance measures. For instance, the trace distance T (ρ, σ ) =
1
2 Tr[

√
(ρ − σ )2] allows one to obtain the bounds

T (ρ, σ )√
2 ln(2)

� dt (ρ, σ ) �
√

T (ρ, σ ), (11)

valid for an arbitrary dimension N . The upper bound was de-
rived in Ref. [9], while the lower one follows from inequalities
in Ref. [5]:

2(1 − α)2T (ρ, σ )2 � Tr[ρ(ln ρ − ln ρα )],

with ρα = αρ + (1 − α)σ and 0 < α < 1. Inserting α = 1/2,
one arrives at

T (ρ, σ )2

2 ln(2)
� Sr

(
ρ

∣∣∣∣
∣∣∣∣ρ + σ

2

)
and

T (σ, ρ)2

2 ln(2)
� Sr

(
σ

∣∣∣∣
∣∣∣∣ρ + σ

2

)
.
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The constant log2 appears above as the quantum relative en-
tropy (3) is defined here with logarithm base 2. Therefore, we
obtain

T (ρ, σ )2

2 ln(2)
� 1

2
Sr

(
ρ

∣∣∣∣
∣∣∣∣ρ + σ

2

)
+ 1

2
Sr

(
σ

∣∣∣∣
∣∣∣∣ρ + σ

2

)
,

and by taking the square root we arrive at the lower bound in
inequality (11).

A complementary upper bound for the transmission dis-
tance in terms of the square root of the quantum fidelity,
F (ρ, σ ) = (Tr[

√√
ρσ

√
ρ])2,√

QJSD(ρ, σ ) � DE (ρ, σ ), (12)

was established in Ref. [24]. The quantity DE is called the
entropic distance [21],

DE (ρ, σ ) =
√

H2

{
1

2
[1 −

√
F (ρ, σ )]

}
, (13)

as it is a function of the binary entropy, H2(x) = −x log2 x −
(1 − x) log2(1 − x) for x ∈ [0, 1].

III. TRANSMISSION DISTANCE BETWEEN QUANTUM
CHANNELS AND JAMIOŁKOWSKI ISOMORPHISM

In the preceding section, we recalled the transmission dis-
tance in the space MN of quantum states. Let us introduce
now a measure of distinguishability between completely pos-
itive trace-preserving maps, E : MN → MN , by using the
Choi-Jamiołkowski isomorphism which establishes a one-to-
one correspondence between a quantum operation E and the
corresponding bipartite quantum state ρE [25]:

ρE = (E ⊗ 1)(|�〉〈�|). (14)

Here

|�〉 =
∑

i

1√
N

|i〉a|i〉b (15)

denotes the maximally entangled, generalized Bell state,
represented in some orthonormal basis {|i〉x}i ∈ HN of the
N-dimensional Hilbert space. The bipartite state ρE is called
the Choi state of the map E and represents a mixed state
in MN2 . It emerges by applying E to the principal system,
maximally entangled with an ancilla of the same dimension
N .

Making use of this isomorphism, we apply Eq. (9) to define
the transmission distance between channels E and F :

d iso
t (E,F ) := dt (ρE , ρF ). (16)

Instead of QJSD we use its square root dt to assure that the
triangle inequality is satisfied [3] and Eq. (16) can serve as a
metric between quantum maps [1].

Properties of d iso
t (E,F )

A list of required properties for a suitable measure of
distinguishability between quantum maps was discussed in
Refs. [1,2,16]. In particular, a gold standard should be a true
distance and satisfy stability, chaining, the postprocessing in-
equality, and the unitary invariance. Let us now verify which
of these requirements are satisfied by the distance d iso

t (E,F ).

Since the triangle inequality (10) is satisfied for the trans-
mission distance in the state space, the quantity d iso

t (E,F )
is symmetric in its arguments, it satisfies the triangular in-
equality, it is non-negative, and it vanishes if and only if
E = F). Hence d iso

t (E,F ) forms a true distance in the space
of quantum maps.

For this kind of measures one often requires their stability
with respect to the tensor product:

d iso
t (E ⊗ 1,F ⊗ 1) = d iso

t (E,F ). (17)

This fact can be demonstrated employing the restricted addi-
tivity (8), and relation ρE⊗1 = ρE ⊗ ρ1, which yield

d iso
t (E ⊗ 1,F ⊗ 1) =

√
QJSD(ρE ⊗ ρ1, ρF ⊗ ρ1)

=
√

QJSD(ρE , ρF ) = d iso
t (E,F ).

Another property of chaining is relevant to estimate errors
in protocols of quantum information processing. It is satisfied
by a distance d if for any four maps E1,F1, E2, andF2 the
distance between their concatenations can be bounded from
above:

d (E2 ◦ E1,F2 ◦ F1) � d (E1,F1) + d (E2,F2). (18)

In general, this property is not satisfied by the distance
d iso

t (E,F ) defined (16) by the Jamiołkowski isomorphism. To
show a counterexample consider the following collection of
four selected Choi states analyzed in Ref. [2]:

ρE1 = 1
2 diag(1, 1, 0, 0), (19)

ρE2 = 1
2 diag(1, 0, 0, 1), (20)

ρF1 = ρE1 , (21)

ρF2 = 1
2 diag(0, 0, 1, 1). (22)

Hence ρE2◦E1 = ρE1 and ρF2◦F1 = ρF2 , so the transmission
distance between both composed maps reads

d iso
t (E2 ◦ E1,F2 ◦ F1) = d iso

t (E1,F2).

As the Choi states ρE1 and ρF2 have orthogonal supports, the
distance d iso

t (E1,F2) = 1, as it admits the maximal value of
the implied identity of indiscernibles (6). Since ρF1 = ρE1 one
has

d iso
t (E1,F1) + d iso

t (E2,F2) = d iso
t (E2,F2).

Taking into account that ρE2 and ρF2 do not have orthogonal
supports, we obtain the inequality

d iso
t (E2 ◦ E1,F2 ◦ F1) > d iso

t (E2,F2)

= d iso
t (E1,F1) + d iso

t (E2,F2),

which provides a counterexample of inequality (18).
However, the chaining property holds in a particular case,

if one of the maps applied first, E1 or F1, is bistochastic: trace
preserving and unital. As a consequence of the monotonicity
of the transmission distance and the triangle inequality, the
chaining property holds for a bistochastic argument, F1 =
Dbi. To demonstrate the desired inequality,

d iso
t (E2 ◦ E1,F2 ◦ Dbi ) � d iso

t (E1,Dbi ) + d iso
t (E2,F2), (23)
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we follow directly the same steps as in Ref. [1]. By applying
the triangle inequality, we have

d iso
t (E2 ◦ E1,F2 ◦ Dbi) � d iso

t (E2 ◦ E1, E2 ◦ Dbi )

+ d iso
t (E2 ◦ Dbi,F2 ◦ Dbi ). (24)

The main argument of the proof is to apply contractivity to the
right-hand side of the previous equation, reaching Eq. (23).

In the first place, it should be noted that for arbitrary oper-
ations E and F , it holds [1,26] that

ρE◦F = (Fᵀ ⊗ E )(|�〉〈�|), (25)

where Fᵀ is the quantum operation determined by the trans-
pose of the Kraus operators corresponding to the map F .
Specifically, if F (ρ) = ∑

i FiρF †
i , for all quantum state ρ,

then Fᵀ(ρ) = ∑
i Fᵀ

i ρ(Fᵀ
i )† = ∑

i Fᵀ
i ρF ∗

i .
If F is bistochastic (

∑
i FiF

†
i = 1), the map Fᵀ is a trace-

preserving operation: by taking the transpose in
∑

i FiF
†

i = 1
it follows that

∑
i F ∗

i Fᵀ
i = 1.

Let us return to Eq. (24). By using Eq. (25), we can write

d iso
t (E2 ◦ Dbi,F2 ◦ Dbi )

= dt
[(
Dᵀ

bi ⊗ E2
)
(|�〉〈�|), (Dᵀ

bi ⊗ F2
)
(|�〉〈�|)],

in which the map Dᵀ
bi is a trace-preserving operation. Then, it

holds that

d iso
t (E2 ◦ Dbi,F2 ◦ Dbi) � d iso

t (E2,F2).

To see the previous inequality it is necessary to consider that(
Dᵀ

bi ⊗ E2
)
(|�〉〈�|) = (

Dᵀ
bi ⊗ 1

)
(1 ⊗ E2)(|�〉〈�|),

and to apply contractivity. By following the same reasoning
as before, we can prove that

d iso
t (E2 ◦ E1, E2 ◦ Dbi) � d iso

t (E1,Dbi ).

Finally, we have shown that the right-hand side of Eq. (24) can
be bounded by employing contractivity to both terms, leading
to the desired result.

The postprocessing inequality [1,16] requires that

d iso
t (R ◦ E,R ◦ F ) � d iso

t (E,F ), (26)

for arbitrary quantum maps R, E , and F . The transmission
distance d iso

t satisfies this property, as it follows from the
monotonicity of this distance.

Inequality (23) and postprocessing inequality (26) allow us
to demonstrate the invariance with respect to arbitrary unitary
operations U and V:

d iso
t (U ◦ E ◦ V, U ◦ F ◦ V ) = d iso

t (E,F ). (27)

Note that dt is invariant under a post-transformation of E with
U ,

d iso
t (U ◦ E,U ◦ F ) = d iso

t (E,F ),

because of the unitary invariance of the transmission distance
in the state space. Thus, it remains to show the identity

d iso
t (E ◦ V,F ◦ V ) = d iso

t (E,F ). (28)

The chaining property in this case states that

d iso
t (E ◦ V,F ◦ V ) � d iso

t (E,F ).

Simultaneously it holds that

d iso
t (E,F ) = d iso

t (EV ◦ V−1,FV ◦ V−1) � d iso
t (EV ,FV ),

where EV = E ◦ V and FV = F ◦ V . Therefore, we conclude
that

d iso
t (E,F ) � d iso

t (EV ,FV ) � d iso
t (E,F ).

This implies Eq. (28) and completes the proof of the unitary
invariance (27).

To establish bounds on the analyzed transmission distance
d iso

t we shall apply the Jamiołkowski isomorphism to extend
the standard distance measures defined in the space of states
into the space of maps [27]. The trace distance T , fidelity F ,
Bures distance DB, and entropic distance DE between any two
maps read, respectively,

T (E,F ) = T (ρE , ρF ), (29)

F (E,F ) = F (ρE , ρF ), (30)

DB(E,F ) =
√

2 − 2
√

F (E,F ), (31)

DE (E,F ) =
√

H2
{
D2

B(E,F )/4
}
. (32)

Making use of inequalities (11) and (12) we arrive thus
at the bounds relating the transmission distance with other
measures:

T (E,F )

2
√

2
� d iso

t (E,F ) � min{
√

T (E,F ), DE (E,F )}.
(33)

Further discussion of the upper bound is provided in
Appendix B.

IV. ENTROPIC CHANNEL DIVERGENCE

Let us now explore another approach to introduce a dis-
tinguishability measure into the space of maps by using the
transmission distance. The quantum Jensen-Shannon diver-
gence plays a key role in quantum information theory as
the maximal amount of classical information transmissible
by means of quantum ensembles [28]. For a given quantum
channel E one defines its Holevo capacity:

C1(E ) = max
�

QJSDp[E (ρ1), . . . , E (ρn)],

where the maximum is taken over all ensembles � =
{pi, ρi}n

i=1.
Consider now a different setup, in which a fixed state ρ is

transformed by channel Ei with probability pi. The associated
Holevo information [18] reads

X (ρ) = QJSDp[E1(ρ), . . . , En(ρ)]. (34)

Taking two analyzed channels E1 and E2 with equal weights,
p1 = p2 = 1/2, we arrive at a worst-case distance measure
between them:

dt (E,F ) = sup
ρ∈MN

√
QJSD[E (ρ),F (ρ)]. (35)

Without loss of generality the supremum can be restricted to
pure states [12].
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In the above definition one analyzes directly the action
of the channels Ei on the state ρ of size N . A more general
approach involves extending the system by a K-dimensional
ancilla [1,13] and studying the action of extended channels,
Ei ⊗ 1K . The entropic channel divergence reads

dK
t (E,F ) = sup

σ∈MNK

dt [(E ⊗ 1K )(σ ), (F ⊗ 1K )(σ )], (36)

where the state σ acts on an extended space of size NK .
Observe that in the special case K = 1 one has dK=1

t (E,F ) =
dt (E,F ), as expected.

Properties of dK
t (E,F ) and the chain rule

Let us discuss some key properties of the entropic channel
divergence. By definition, for an arbitrary dimension K of the
ancilla, the entropic channel divergence dK

t is symmetric, is
null if and only if the maps are equal, and satisfies the triangle
inequality in the space of quantum channels. On the other
hand, we have

dK
t [E ⊗ 1K ,F ⊗ 1K ] � dt [(E ⊗ 1K )(ρ∗), (F ⊗ 1K )(ρ∗)]

(37)

� dt [TrK (E ⊗ 1K )(ρ∗), TrK (F ⊗ 1K )(ρ∗)] (38)

= dt [E (ρ∗
Q),F (ρ∗

Q)] = dt (E,F ). (39)

Inequality (37) holds by definition of dK
t . The quantum state

ρ∗ is taken as ρ∗ = ρ∗
Q ⊗ ρK where ρ∗

Q denotes the state which
maximizes dt (E,F ) [Eq. (35)] and ρK is an arbitrary state in
MK . Equation (38) follows from the fact that the operation
TrK defines a completely positive trace-preserving map and
from applying contractivity. Finally, Eq. (39) holds because
TrK (E ⊗ 1K )(ρ∗) = E (ρ∗

Q) and TrK (F ⊗ 1K )(ρ∗) = F (ρ∗
Q),

which lead to Eq. (35) by the definition of ρ∗
Q.

In the same way, for any K ′ being a multiple of K , it is
possible to show the following relation:

dK
t (E,F ) � dK ′

t (E,F ).

This inequality suggests that dK
t is in general not stable under

the addition of ancillary systems. Furthermore, it was shown
in Ref. [29] that if K < N the channel divergence arising from
the trace norm is in general not stable with respect to the ten-
sor product. To ensure stability one supplies the requirement
that the sizes of the ancilla and the principal systems are equal,
K = N . It was demonstrated in Ref. [1] that for K � N the
following equality holds:

dK
t (E,F ) = dN

t (E,F ).

This implies that for K = N the entropic channel divergence
is stable under the addition of auxiliary subsystems:

dN
t (E,F ) = dN

t (E ⊗ 1,F ⊗ 1).

As a result, it is natural to choose K = N and in this paper
the quantity dN

t will be called stabilized entropic channel
divergence.

The chaining property, postprocessing inequality and uni-
tary invariance can be straightforwardly demonstrated by
using the monotonicity and triangle inequality of the trans-
mission distance in the state space [1].

Once dK
t (E,F ) is defined, we can establish a chain rule

for the entropic channel divergence, analogously to that ob-
tained for the quantum relative entropy in Ref. [11]—this
should not be confused with the chaining property discussed
above.

Proposition 1. Let E and F denote arbitrary two operations
acting over MN . For arbitrary bipartite quantum states ρ and
σ in MNK the following chain rule holds:

dt [(E ⊗ 1K )(ρ), (F ⊗ 1K )(σ )] � dt (ρ, σ ) + dK
t (E,F ).

(40)

It relates the transmission distance dt (·, ·) between quan-
tum states, defined in (9), and the entropic channel divergence
dK

t (·, ·) introduced in Eq. (36).
Proof. It will be convenient to use a simpler notation and

write ENK (ρ) instead of (E ⊗ 1K )(ρ) for a quantum operation
E acting on MN . Using this convention, we have

dt [ENK (ρ),FNK (σ )] � dt [ENK (ρ), ENK (σ )]

+ dt [ENK (σ ),FNK (σ )]

� dt (ρ, σ ) + dt [ENK (σ ),FNK (σ )]

� dt (ρ, σ ) + dK
t (E,F ), (41)

in which we have employed the triangle inequality and the
monotonicity of the transmission distance. �

Note that the chain rule (40) is valid not only for the
stabilized version of the entropic channel divergence but
also for the original version (35) and the maps applied di-
rectly over the states describing the principal N-dimensional
system.

The chain rule (40) has interesting applications in the
context of hypothesis testing in quantum channel dis-
crimination [11], due to its connection with the amor-
tized channel divergence, introduced in Ref. [12] for
an arbitrary generalized divergence d (·, ·). By using the
transmission distance, we obtain the amortized entropic
divergence,

dA
t (E,F ) = sup

ρ,σ∈MNK

{dt [ENK (ρ),FNK (σ )] − dt (ρ, σ )},
(42)

which depends on the size K of the ancilla. Note that the chain
rule (40) establishes an upper bound for dA

t (E,F ). A lower
bound,

dA
t (E,F ) � dK

t (E,F ),

was shown [12] to hold for an arbitrary distance measure
d (·, ·). We arrive therefore at the amortization collapse of the
entropic channel divergence, that is,

dA
t (E,F ) = dK

t (E,F ). (43)

V. PHYSICAL INTERPRETATION

We defined the transmission distance (16) between quan-
tum channels, and the entropic channel divergence (36), and
will now discuss their physical meaning.
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A. Transmission distance between quantum channels

The transmission distance between quantum channels is
easy to compute, as its definition does not require any
optimization procedure. The calculations are reduced to evalu-
ation of the entropy of a map [27], equal to the von Neumann
entropy of the corresponding Choi states. Furthermore, it is
possible to estimate experimentally this quantity, since its
definition involves the Choi states, which can be obtained by
quantum process tomography [1].

Observe that [d iso
t (E,F )]2 is the Holevo information corre-

sponding to an equiprobable ensemble composed by the states
ρE and ρF . Additionally, for general discrete ensembles,
[d iso

t (E,F )]2 is connected to the protocol of dense coding.
Consider a bipartite quantum system in a maximally entan-
gled state, ρr = |�〉〈�|, usually known as a resource state,
subjected to local unitary transformations Ui performed with
probability pi. The output state

ρU
i = (Ui ⊗ 1)ρr (U †

i ⊗ 1) (44)

occurs with probability pi. This protocol, relying on the initial
entanglement between both parties, allows them to transmit
classical information encoded in a bipartite system, while
conducting operations on a single subsystem only. If the di-
mension of each subsystem is N , it is possible to send 2 log2 N
bits of classical information, even though the classical coding
allows one to send only log2 N bits.

The capacity of the dense coding protocol with resource
ρr to transmit classical information for fixed unitary op-
erations Ui, is given [30] by the maximum over {pi}i of
QJSDp(ρU

1 , . . . , ρU
n ). Since ρU

i forms Choi matrices of uni-
tary channels, Ui, the divergence [d iso

t (U1,U2)]2 coincides
with the capacity of the coding with two unitary operations
and equal probabilities, pi = 1/2.

Therefore, [d iso
t (E,F )]2 is the dense coding capacity con-

nected to maps E and F , for a noiseless protocol with a
maximally entangled resource state ρr . Distinguishability of
quantum maps using quantum dense coding protocol was
advocated by Raginsky [16], who analyzed an analogous mea-
sure based on the quantum fidelity instead of the quantum
Jensen-Shannon divergence.

B. Entropic channel divergence

One of the fundamental challenges in quantum information
theory is the discrimination of quantum channels, belonging
to a discrete ensemble of quantum maps with a certain a
priori probability distribution pi. To accomplish this task,
input states are utilized along with measurements on their
corresponding outputs. In Refs. [31,32], quantum channel dis-
crimination was studied specifically in the context of reading
digital memories (composed by cells), a topic which laid the
groundwork for the treatment of digital memories within the
field of quantum information.

The storage of data in a digital memory is achieved through
a channel encoding protocol, where information is stored in
a cell by employing a quantum channel selected from the
fixed ensemble [32]. On the other hand, the readout process
corresponds to channel decoding, which is equivalent to dis-
criminating between the quantum channels that constitute the
ensemble. This decoding operation occurs when a decoder

retrieves information from the memory cells. The quantum
reading capacity refers to the maximum amount of informa-
tion that can be read (or decoded) per cell. In the case of a
given set of quantum operations denoted as Ei, each associated
with a probability pi, the quantum reading capacity of the
most general strategy of readout (parallel discrimination of
quantum channels in multicell encoding) is [10,31]

sup
ρ∈MN×K

QJSDp[(E1 ⊗ 1K )(ρ), . . . , (En ⊗ 1K )(ρ)].

The entropic channel divergence, Eq. (36), is therefore the
square root of the previous quantity in the case of an ensemble
of two maps, with pi = 1/2.

Furthermore, a study conducted by Laurenza et al. in
Ref. [30] revealed a relationship between the one-shot ca-
pacity of a dense coding protocol and the quantum reading
capacity, specifically when employing an arbitrary resource
state denoted as ρr . The authors demonstrated that the capac-
ity of the dense coding protocol can be expressed in terms
of the quantum reading capacity. This finding establishes
a conceptual link between the entropic channel divergence,
which is associated with the quantum reading capacity, and
the transmission distance between quantum channels, which
was discussed in the preceding section, and is associated with
the dense coding capacity.

C. Relation between the channel divergence dN
t

and the transmission distance d iso
t

Assume that the single-qubit channels we wish to distin-
guish are covariant with respect to Pauli operators. This means
that for each quantum channel E we can write E ◦ P = P ′ ◦ E ,
where P and P ′ denote Pauli channels. In this case, the
channel E can be simulated via local operations and classical
communication (LOCC) operations [30,33], and it is called
Choi stretchable: Specifically, there exists a LOCC operation
T such that we can write

E (ρ) = T (ρ ⊗ ρE ), (45)

for all quantum states ρ in the domain of E , and ρE being
the corresponding Choi state of the map E . Thus, as T is
a completely positive trace-preserving LOCC operation in-
dependent of E (it can be taken as the standard quantum
teleportation protocol) [33], for any two Choi-stretchable
quantum operations E1 and E2, we have

dN
t (E1, E2) = sup

ρ∈MN×N

dt [(E1 ⊗ 1)(ρ), (E2 ⊗ 1)(ρ)]

= sup
ρ∈MN×N

dt [T (ρ ⊗ ρE1 ), T (ρ ⊗ ρE2 )]

� sup
ρ∈MN×N

dt (ρ ⊗ ρE1 , ρ ⊗ ρE2 ) = d iso
t (E1, E2).

We applied here the subadditivity of the QJSD in the state
space and its monotonicity under completely positive maps.
By definition of dN

t , the inequality d iso
t (E1, E2) � dN

t (E1, E2)
holds. Thus the equality

d iso
t (E1, E2) = dN

t (E1, E2) (46)

is valid for any two Pauli covariant operations E1 and E2.
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VI. APPLICATIONS

In this section, we explore certain features of the distin-
guishability measures between quantum operations proposed
in Secs. III and IV. We analyze two particular single-qubit
problems: distinguishing two unitary Pauli operations and two
Hamiltonian evolutions under decoherence.

The three-dimensional Bloch vector r of a single-qubit
state allows us to represent the density matrix as

ρ = 1
2 (1 + r · σ ). (47)

Here r · σ = ∑3
i=1 riσi with {σi}i denoting three Pauli ma-

trices. The action of a quantum operation E over ρ can be
described by a distortion matrix �E and a translation vector
lE :

E (ρ) = 1
2 (1 + rE · σ ) with rE = �Er + lE . (48)

The above form is called the affine decomposition or the Fano
representation of the map.

A. Pauli channels

All single-qubit unital operations belong to the class of
Pauli channels:

Pp(ρ) =
3∑

α=0

pασαρσα, (49)

where {σα}3
α=0 = {1, σ} and {pα}3

α=0 is a discrete probability
vector. The Fano form of such a map P reads

lP = 0, �P = diag(c1, c2, c3) =
3∑

α=0

pαRα, (50)

with

R0 = diag(1, 1, 1),

R1 = diag(1,−1,−1),

R2 = diag(−1, 1,−1),

R3 = diag(−1,−1, 1). (51)

Thus, Rα is a diagonal orthogonal matrix defined by the action
of the unitary transformations given by the Pauli matrix σα

and R0 is connected to the identity map. Additionally, the set
c = (c1, c2, c3), in Eq. (50), for which P is a well-defined
CPTP map, specifies a tetrahedron in the three-dimensional
space [34], with edges {Rα}3

α=0 (see Fig. 1). The relation
among {pα}3

α=0 and the numbers {ci}3
i=1 is

p0 = 1
4 (1 + c1 + c2 + c3),

p1 = 1
4 (1 + c1 − c2 − c3),

p2 = 1
4 (1 − c1 + c2 − c3),

p3 = 1
4 (1 − c1 − c2 + c3). (52)

FIG. 1. The tetrahedron of Pauli channels with “spheres” of
channels equidistant to the completely depolarizing channel D0

in the center of the tetrahedron, with respect to the distance
d iso

t (Pp,D0) = δ0, for radii δ0 ∈ {0.56, 0.42, 0.28, 0.14}. All de-
picted quantities are dimensionless.

Particular examples of Pauli maps are the identity, the phase-
flip channel PPF, and the depolarizing map D, corresponding
to the distortion matrices

�I = diag(1, 1, 1), (53)

�PPF = diag(1 − x, 1 − x, 1), (54)

�D = diag(1 − x, 1 − x, 1 − x), (55)

respectively. Completely depolarizing channel D0 corre-
sponds to Eq. (55) with x = 1.

For an arbitrary channel E , the distortion matrix �E can
be diagonalized by applying local unitary transformations on
E (ρ), reaching the canonical form of the map, which is subse-
quently given by the translation vector tE = (t1, t2, t3) and the
distortion vector ωE = (ω1, ω2, ω3), which results from the
diagonalization of �E [26,35]. Note that the canonical form
of a given unital map, tE = 0, gives a Pauli channel (49).

The Choi matrix (14) of any single-qubit channel in its
canonical form reads [26]

ρE = 1

4

⎡
⎢⎢⎢⎣

1 + ω3 + t3 0 t1 + iω2 ω1 + ω2

0 1 − ω3 + t3 ω1 − ω2 t1 + iω2

t1 − iω2 ω1 − ω2 1 − ω3 − t3 0

ω1 + ω2 t1 − iω2 0 1 + ω3 − t3

⎤
⎥⎥⎥⎦.
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FIG. 2. Surfaces within the Pauli tetrahedron, defined by a con-
stant transmission distance to the identity map I represented by the
corner of the set, d iso

t (Pp,I ) = δI , for δI ∈ {0.8, 0.6, 0.4, 0.2}. All
depicted quantities are dimensionless.

If tE = 0, ρE forms a Bell-diagonal state (i.e., its eigen-
vectors are the four Bell states) and its eigenvalues are given
by the probabilities pα appearing in (52). Let us analyze
the transmission distance between maps, Eq. (16), and the
entropic channel divergence, Eq. (36), for K = 1 and K = 2
(stabilized version).

1. Transmission distance between Pauli channels

Let Pp and Pq be two Pauli channels defined by two prob-
ability distributions {pα}3

α=0 and {qβ}3
β=0, as in Eq. (49). The

corresponding Choi matrices of these maps become diagonal
in the Bell basis. The quantum Jensen-Shannon divergence
between two Pauli channels is therefore equal to the classical
Jensen-Shannon divergence evaluated in the classical tetrahe-
dron of four-point probability distributions, determined by the
spectra of both Choi states, p = {pα}3

α=0 and q = {qβ}3
β=0:

d iso
t (Pp,Pq) = √

Dc
JS(p||q). (56)

Using the three-dimensional parametrization in (52), we
can plot the surface, within the Pauli tetrahedron, defined
by those maps with the same transmission distance to the
center of the tetrahedron, which represents the completely
depolarizing map D0:

d iso
t (Pp,D0) = δ0. (57)

In Fig. 1, such “spheres” with respect to this distance are
plotted for four different radii. For a small radius δ0 such a
surface resembles a sphere, while for larger values of δ0 it
becomes deformed by the faces of the tetrahedron.

Analogously, Fig. 2 presents four spheres correspond-
ing to the fixed transmission distance to the identity map,
d iso

t (Pp, I ) = δI , with radii δI listed in the caption.

FIG. 3. Phase-flip noise teleportation: Transmission distance d iso
t

defined in (16) between the identity map, phase-flip channel, and
depolarizing channel [(53)–(55), respectively] as functions of the
depolarizing parameter x. For comparison we plot also the trace
distance T between the corresponding Choi states [see (29)] and the
entropic channel divergence dK=1

t [see (35)]. All quantities shown
have no dimensions.

In Fig. 3, we plot the transmission distance between the
maps given by (53)–(55), as functions of the depolariz-
ing parameter x ∈ [0, 1], and the trace distance between the
corresponding Choi states. For x �= 0, we observe that

d iso
t (PPF, I ) < d iso

t (PPF,D) < d iso
t (I,D), (58)

while for the trace distance (29) the following relations hold:

T (PPF,D) = T (PPF, I ) < T (I,D). (59)

2. Entropic channel divergence

Let us calculate the entropic channel divergence (36) for
two Pauli channels Pp and Pq corresponding to probabil-
ity distributions p and q, determined by the vectors cp =
(cp1, cp2, cp3) and cq = (cq1, cq2, cq3), respectively. For N =
2, there are two different entropic divergence measures la-
beled by the dimension K of the ancilla,

dK=1
t (E,F ) and dK=2

t (E,F ),

since dK ′
t (E,F ) = dK=2

t (E,F ) for K ′ > 2, as mentioned be-
fore. The Pauli channels are Pauli covariant (45), which
implies that dK=2

t (Pp,Pq ) = d iso
t (Pp,Pq) (see Sec. V C).

In the case K = 1, one has to optimize the transmission
distance between the channels over the initial pure states:

dK=1
t (Pp,Pq ) = sup

ρ∈MN

√
QJSD[Pp(ρ),Pq(ρ)],

where

QJSD[Pp(ρ),Pq(ρ)] = S[P (ρ)] − 1
2 S[Pp(ρ)] − 1

2 S[Pq(ρ)],

and P = (Pp + Pq)/2 is the average channel, which also
forms a Pauli map.

Proposition 2. Entropic channel divergence (35), between
two Pauli maps Pp and Pq, given by distortion matrices �p =
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FIG. 4. Spheres with respect to the distance dK=1
t within the

tetrahedron of Pauli channels, dK=1
t (Pp,D) = γ0 for four differ-

ent radii: γ0 ∈ {0.4, 0.3, 0.2, 0.1}. All quantities shown have no
dimensions.

(cp1, cp2, cp3) and �q = (cq1, cq2, cq3), takes the form

dK=1
t (Pp,Pq ) = max

i

√
f
(
c2

i

) − 1

2

[
f
(
c2

pi

) + f
(
c2

qi

)]
, (60)

where ci = (cpi + cqi )/2 and

f (x) := H2

(
1 − √

x

2

)
. (61)

Here H2(x) := −x log2 x − (1 − x) log2(1 − x) stands for the
binary entropy function for x ∈ [0, 1].

Proof. For an arbitrary Pauli map S[P (ρ)], we have

S[P (ρ)] = f
(
r2
P
)
, (62)

where rP = |rP |, rP = �Pr being the Bloch vector of P (ρ),
Eq. (50). Thus, we can write S[P (ρ)] = f (r2

P ) = f (r · �2
Pr)

and r2 = 1. Once we have rewritten the entropies of the Pauli
channels, the quantum Jensen-Shannon divergence reads

QJSD[Pp(ρ),Pq(ρ)] = f
(
r · �2

Pr
) − 1

2 f
(
r · �2

pr
)

− 1
2 f

(
r · �2

qr
)
. (63)

Let us apply the method of Lagrange multipliers to the
Cartesian coordinates of r. This leads to the following three
equations:

λri =
[

f ′
(

r · �2
Pr

)
c2

i −
(

f ′(r · �2
pr
)
c2

pi + f ′(r · �2
qr
)
c2

qi

)
2

]
ri,

with i = 1, 2, 3, which hold simultaneously with the con-
straint r2 = 1, associated to the Lagrange multiplier λ. Thus,
the previous equation defines six possible extreme values of

FIG. 5. Surfaces defined by constant entropic channel divergence
to the identity map: dK=1

t (Pp,I ) = γI with γI ∈ {0.8, 0.6, 0.4, 0.2}.
All quantities depicted are unitless.

the function (63):

r±
opt,1 = ±(1, 0, 0) = ±r1, (64)

r±
opt,2 = ±(0, 1, 0) = ±r2, (65)

r±
opt,3 = ±(0, 0, 1) = ±r3. (66)

As Eq. (63) is symmetric under reflection, r′ = −r, we have
only three extremes that lead to different values of the QJSD.
Correspondingly, the maximum is determined by Eq. (60). �

In Fig. 4, we plot the three-dimensional spheres within the
tetrahedron of Pauli channels such that

dK=1
t (Pp,D0) = γ0

for four different radii. Analogously, Fig. 5 shows surfaces of
maps of the same entropic channel divergence to the identity
map, dK=1

t (Pp, I ) = γI , for four exemplary values of γI .
Consider now the distinguishability between the identity

map, the phase-flip channel, and the depolarizing channel,
specified in (53)–(55), respectively. In this case, for any x ∈
[0, 1] the following inequalities hold:

dK=1
t (PPF, I ) = dK=1

t (PPF,D) = dK=1
t (I,D)

= d iso
t (PPF, I ). (67)

Figure 3 shows the dependence of this distance on the depo-
larizing parameter x.

A similar behavior can be obtained for the distinguishabil-
ity measures arising from the channel divergence based on the
trace distance:

dK=1
Tr (E,F ) = sup

ρ∈MN

T [E (ρ),F (ρ)]. (68)
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Proposition 3. Let N and M be two unital operations for
N = 2. Then,

dK=1
Tr (N ,M) = 1

2
max

i

√
λ�

i , (69)

where {λ�
i }i is the set of eigenvalues of the matrix

� = (�N − �M)ᵀ(�N − �M).

A proof of this result is provided in Appendix A. The
reasoning presented above implies that

dK=1
Tr (PPF, I ) = dK=1

Tr (PPF,D) = dK=1
Tr (I,D)

= T (PPF, I ). (70)

Dependence of this function on the depolarizing parameter x
is also marked in Fig. 3.

3. Noise in the quantum teleportation protocol

Quantum teleportation, one of the most important quantum
information protocols, replicates the state of one quantum
system into another without having information about the
input state. This protocol requires three qubits which are op-
erated by two different entities, usually referred to as Alice
and Bob.

The corresponding tasks to teleport the qubit state ρa of
Alice to Bob, assuming they share a two-qubit state AB in the
maximally entangled Bell state |�〉AB, are the following.

(1) Alice measures a projection onto the Bell basis for the
qubits aA and classically communicates its outcome to Bob.

(2) Bob applies suitable unitary operations, according to
the shared measurement result, on his qubit B, to replicate the
initial input state ρa of Alice.

Such a teleportation protocol is called perfect and it can be
described by the identity channel, Ia→B, with the distortion
matrix given by (53), where the subindex a → B denotes
that the channel takes states of qubit a and returns the states
of qubit B. However, the maximally entangled state |�〉AB,
preshared by Alice and Bob, can be affected by noise or
decoherence. The standard teleportation protocol consists of
the above steps, but instead of assuming preshared maximally
entanglement between the qubits AB one replaces it by a
resource state:

|�〉〈�| → ρAB.

The quantum channel between qubits a and B defined by
this protocol can always be written as a Pauli channel Pa→B,
Eq. (49), regardless of which resource state is employed ρAB

[14].
One paradigmatic type of decoherence over |�〉〈�|, which

is widely studied in the related literature, is given by a Werner
state:

ρAB = (1 − x)|�〉〈�| + x
1A ⊗ 1B

4
,

x being its decoherence parameter.
Therefore, this protocol is described by a depolarizing

channel Da→B with distortion matrix equal to �D, Eq. (55).
Another type of decoherence on |�〉〈�| leads to a tele-
portation channel described by the phase-flip channel, with
distortion matrix given by (54). This protocol will be called

phase-flip noise teleportation. Hence, Eq. (53) describes the
perfect teleportation protocol, while Eqs. (54) and (55) are
two different teleportation protocols that consider noise or
decoherence affecting their resource state.

Figure 3 shows that for any decoherence parameter x
the transmission distance d iso

t between the perfect and the
standard teleportation protocols with a Werner state as a re-
source is greater than the distances to the phase-flip noise
teleportation.

An analogous property holds also for the trace distance.
In the case of the entropic channel divergence for K = 1,
the distance between the three different channels is equal
[see Eq. (67)], similar to the case of the trace distance,
Eq. (70).

The surfaces in Figs. 2 and 5 can be interpreted now
as the standard teleportation protocols equally distant to the
perfect one, represented by the vertex c1 = c2 = c3 = 1. The
transmission distance d iso

t between quantum channels is more
restrictive regarding the values of the parameters ci, than the
entropic channel divergence and dK=1

t , which allows lower
values for ci.

B. Distinguishing operations determined by Hamiltonians

Several applications of quantum information theory in-
volve the problem of distinguishing a particular Hamiltonian
from a given set, for instance, to determine errors which
occur by a real-life realization of certain information pro-
cessing tasks. Other examples include identification of a
classical static force acting on a given quantum system
[15,36]. Consider the distinguishability between two Hamil-
tonians H1 and H2, acting on a two-dimensional Hilbert
space.

Since three Pauli matrices, extended by the identity matrix,
{1, σ}, form a Hilbert-Schmidt basis in the space of Hermitian
matrices of order 2, any single-qubit Hamiltonian can repre-
sented by its Bloch vector:

Hm = h0
m1 + hm · σ. (71)

The noiseless evolution of the state generated by a given
Hamiltonian can be described by a unitary transformation,
Um(ρ) = UmρUᵀ

m , with

Um = e−itHm = e−ith0
m (cos t1 − i sin thm · σ) (72)

where hm · hm = 1.
Making use of the Bloch form (48) of the unitary operation

Um we find the distortion matrix for both channels:

�m = cos 2t (1 − hmhᵀ
m) + sin 2t[hm] + hmhᵀ

m

= e2t[hm], (73)

with m = 1, 2. The symbol [hm] denotes the skew-symmetric
matrix defined by [hm]r = hm × r. This is evidently a uni-
tal operation and therefore its translation vector vanishes,
lm = 0.

To make the model more realistic assume that a single
qubit, controlled by a Hamiltonian Hm, suffers decoherence
induced by the depolarizing channel. The evolution of the
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FIG. 6. Visualizations of two unitary channels defined by h1 =
(0, 0, 1)ᵀ and h2 = (1, 0, 0)ᵀ, as a function of time t ∈ {0, π} applied
over a state with Bloch vector r0 = 1√

3
(1, 1, 1)ᵀ, under a depolariz-

ing channel with damping rate �. Each continues line is the trajectory
of r1(t ) = e−�t e2t[h1]r0 for different values of � ∈ {0, 0.2, 0.4, 0.8, 1}
(the opacity increase with �). The dashed lines correspond to the
trajectories r2(t ) = e−�t e2t[h2]r0 for the same values �. Both fig-
ures present the same trajectories from different perspectives. We
assume h̄ = ω = 1, so all quantities are dimensionless.

system is governed by the master equation,

dρ

dt
= −i[Hm, ρ] − �

(
ρ − 1

2
1

)
, (74)

with the damping rate �. Adopting the convention h̄ = 1 we
are assured that in these units the frequency is equal to 1.

Any Bloch vector hm determines, through Eq. (71), the
Hamiltonian Hm. Hence the master equation (74) leads to the
following dynamics of the Bloch vector r:

dr
dt

= 2(hm × r) − �r, (75)

where ρ = 1
2 (1 + r · σ ).

Solving this equation, we arrive at the time dependence:

r(t ) = e−�t e2t[hm]r0. (76)

The map Edec
m can be written as a concatenation of a unitary

dynamics and a depolarizing channel, Edec
m = D ◦ Um, with the

distortion matrix

�dec
m = e−�t e2t[hm]. (77)

In Fig. 6, we show the resulting trajectories from these
kinds of channels. We have fixed the initial Bloch vector,
r0 = 1√

3
(1, 1, 1)ᵀ, and evolved it by two Hamiltonians cor-

responding to h1 = (0, 0, 1)ᵀ and h2 = (1, 0, 0)ᵀ. Note how
the combined channel (unitary transformation and depolariz-
ing channel) becomes less distinguishable as the decoherence
parameter � increases.

Observe that a rotation of the vector hm generates a particu-
lar transformation on the distortion matrix �dec

m . Equation (73)
implies that �̃dec

m = R�dec
m Rᵀ if h′

m = Rhm with R being an
orthogonal matrix and �̃dec

m specified by h′
m.

Assume that we need to distinguish between two Hamilto-
nians, H1 and H2, related to vectors h1 and h2, respectively.
The evolved state of the system will depend on time and on
the damping parameter �. A fundamental problem in quan-
tum information is managing the decoherence effects while

keeping measurement precision. Our aim is to find the op-
timal evolution time allowing for the best distinguishability
between both Hamiltonians in view of the transmission dis-
tance between the channels and the measures proposed in
Refs. [15,16].

Comparison of distinguishability measures

We are going to analyze the transmission distance between
quantum channels. For N = 2, the Choi matrix of an arbitrary
quantum channel M can be written as [14]

ρM = 1

4

⎛
⎝1 ⊗ 1 + 1 ⊗ l · σ +

∑
i, j

�′
i jσi ⊗ σ j

⎞
⎠, (78)

where � and l denote the distortion matrix and translation
vector of the map [see Eq. (48)], while �′

i j = (C�ᵀ)i j , with
C = diag(1,−1, 1).

Following Sec. III, we have to compare the evolved Choi
states,

ρm = (
Edec

m ⊗ 1
)
(|�〉〈�|),

where Edec
m = D ◦ Um. We use the transmission distance (16),

which can be obtained by inserting Eq. (77) into Eq. (78) with
l = 0. Note that calculation of d iso

t (D ◦ U1,D ◦ U2) involves
two noncommuting Choi states.

Let us evaluate the entropic channel divergence (35) for
unital quantum channels (77), with the distortion matrix pro-
portional to a rotation matrix.

Proposition 4. The entropic channel divergence (35) be-
tween two unital maps E1 and E2, with distortion matrices
�1 = α1R1 and �2 = α2R2, respectively, reads

dK=1
t (E1, E2) =

√
f (ropt) −

[
f
(
α2

1

) + f
(
α2

2

)]
2

, (79)

with

ropt = α2
1 + α2

2 + α1α2
(
Tr

[
�

ᵀ
1 �2

] − 1
)
, (80)

and the function f (·) defined in Eq. (61).
Proof. Employing the same reasoning used to derive

Eq. (63), we arrive at

QJSD[E1(ρ), E2(ρ)] = f
[
r · (�ᵀ

E�E
)
r
]

− 1

2
f
(
α2

1

)
− 1

2
f
(
α2

2

)
, (81)

where �E = α1R1 + α2R2. To calculate the entropic chan-
nel divergence we need to optimize the function f used in
Eq. (61):

f
[
r · (�ᵀ

E�E
)
r
]
.

As f (x) is a decreasing function of x in [0,1], we have to
minimize

r · (�ᵀ
E�E

)
r = α2

1 + α2
2 + 2p1 p2r · (�ᵀ

1 �2
)
r, (82)

over the sphere r · r = 1.
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Taking �
ᵀ
1 �2 = eφ[h] for some h such that h2 = 1 [see

Eq. (73)], we find that

r · (�ᵀ
1 �2

)
r = cos φ + (1 − cos φ)(cos γ )2,

where cos γ = h · r. The minimum of the function r ·
(�ᵀ

1 �2)r in the sphere r2 = 1 is correspondingly given by the
minimum of the previous function over the parameter γ . It is
straightforward to show that γ = π/2 minimizes r · (�ᵀ

1 �2)r,
and therefore

min
r

{r · eφ[h]r} = cos φ.

Finally, employing the following equality,

cos φ = Tr[eφ[h]] − 1

2
,

we arrive at

min
r

{
r · (�ᵀ

1 �2
)
r
} = Tr

[
�

ᵀ
1 �2

] − 1

2
. (83)

By inserting this in Eq. (82), we obtain Eq. (79). �
On the other hand, if h′

m = Rhm, with R denoting an or-
thogonal matrix of order 3, the corresponding affine matrix
�dec

m transforms as

�̃dec
m = R�dec

m Rᵀ. (84)

Therefore, the quantum operation Ẽdec
m associated with �̃dec

m
can be written as Ẽdec

m = R ◦ Edec
m ◦ R−1, where R is the uni-

tary channel corresponding to the rotation matrix R, while
Edec

m is determined by �dec
m .

Since the distance measures between quantum operations
satisfy the unitary invariance (27), the distinguishability be-
tween operations Edec

1 and Edec
2 specified by h1 and h2,

respectively, depends only on the angle

θ = arccos h1 · h2,

and the damping rate �. Thus, without losing generality we
can fix the vector h1 in the direction z.

In Fig. 7, we present the transmission distance d iso
t (U1,U2)

and the Bures distance DB(U1,U2) defined in (31). Both quan-
tities are computed in the noiseless case, � = 0, and shown
as functions of time t for different values of the angle θ .
In this case the entropic channel divergence is equal to the
transmission distance (16) between quantum channels. The
Bures distance DB is based on the quantum fidelity between
the Choi matrices (see Refs. [15,16]).

The time in which the distinguishability is maximal, ac-
cording to the measures analyzed, reads

tmax =
{

π/2 if cos θ � 0
1
2 cos−1

(
cos θ+1
cos θ−1

)
if cos θ < 0

. (85)

Note that if cos θ > 0, both unitary operations cannot be
distinguished with probability 1 at any time. However, if
cos θ � 0, there exists a time in which the pure Choi states are
orthogonal and can be perfectly distinguished at the selected
interaction time tmax.

Let us take into account effects of the decoherence. The
depolarizing channel (77) transforms the original unitary ro-
tations into channels that send states closer to the maximally

FIG. 7. Transmission distance (16), Bures distance (31), and the
entropic channel divergence (35), between two unitary operations
(72), whose corresponding vectors h1 and h2 form an angle θ ∈
{π/4, π/2, 3π/4, π}, as functions of time t . We assume that h̄ =
ω = 1, so all quantities are dimensionless.

mixed state (see Fig. 6) so the problem of distinguishability
between the channels becomes more difficult.

This problem was already treated in Ref. [15], where it
was suggested to select a constant initial state, with the Bloch
vector r0 = (1, 0, 0)ᵀ, and to choose the optimal time as the
one minimizing the error probability Perror. Such an optimal
time topt corresponds to the maximal distinguishability be-
tween both evolved states:

Perror = 1
2 [1 − exp(−pt )| sin t |]. (86)

At a time topt = arctan(1/p), Perr is minimized and thus the
information gained by the measurement is maximized.

Regarding entropic distinguishability measures, Fig. 8 dis-
plays behavior of the transmission distance under unitary evo-
lution and decoherence, for angle θ = π/2 and exemplary val-
ues of the damping rate, � ∈ {0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8}.

FIG. 8. Transmission distance d iso
t (D ◦ U1,D ◦ U2) as a function

of time t , where the affine decomposition of the maps D ◦ Ui is given
by (77). The angle between the Bloch vectors defining both Hamil-
tonians (h1 and h2) is θ = π/2. Here D denotes the depolarizing
channel with damping rate �, which labels the curves. The larger
damping rate, the shorter time tmax of maximal distinguishability. We
assume that h̄ = ω = 1, so all quantities depicted are unitless.
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FIG. 9. Optimal times as a function of the noise parameter �, in
the distinguishability of Hamiltonians (see Sec. VI B). The maps are
given by (77). The dashed line corresponds to optimal times for the
probability of error, Perr [see (86)]. The continuous line represents
the transmission distance d iso

t between quantum channels (16), while
the dotted line corresponds to the optimal times in the case of the
entropic channel divergence, dK=1

t [see (35)]. All quantities are di-
mensionless (h̄ = ω = 1).

The entropic channel divergence is given by taking αi =
e−�t and �i = e2t[hi], with i = 1, 2, in Eq. (79). In this way
one obtains

Tr
[
�

ᵀ
1 �2

] = 2 cos(2θ ) sin4(t ) + 2 cos(θ ) sin2(2t ) + cos(2t )

+ 3

4
cos(4t ) + 5

4
, (87)

where θ denotes the angle between both Bloch vectors, h1 and
h2. Inserting (83) into (81), we arrive at the dependence of the
entropic channel divergence on the angle θ , the time t , and the
damping parameter �.

One can pose a natural question: Which interaction time is
optimal to distinguish Hamiltonians H1 and H2 under decoher-
ence? In the noiseless situation � = 0, the entropic channel
divergence results to be equal to the transmission distance
between quantum channels, Eq. (16), therefore the interaction
time (85) is optimal for this measure as well. In presence
of decoherence, each distinguishability measure has its own
behavior, leading to different values of optimal interaction
times. Figure 9 shows that the best times to measure the
distinguishability related to the transmission distance d iso

t are
shorter than those arising from minimizing the error proba-
bility of distinguishing the two evolved states (86), proposed
in Ref. [15]. This is a noteworthy behavior because one
might think that the dense coding capacity is completely
defined by the distinguishability of the maps E and F , cap-
tured in this case by the entropic channel divergence dK=1

t .
However, each quantity has its own optimal time suggest-
ing a more complex relation between channel discrimination
and dense coding. This topic will be considered in future
investigations.

VII. CONCLUDING REMARKS

We have introduced two entropic measures of distinguisha-
bility between quantum operations using the square root of

the quantum Jensen-Shannon divergence, also called trans-
mission distance. We have investigated their properties and
physical interpretations.

In the case of the transmission distance between quantum
channels d iso

t , we have shown that this measure satisfies sev-
eral criteria for a suitable distance measure between maps.
Even though this quantity does not satisfy the chaining prop-
erty, this is the case if one of the maps applied first is
bistochastic, which is a key property for estimating errors in
quantum information protocols [1]. Furthermore, the trans-
mission distance between quantum channels does not require
any optimization procedure and it can be directly obtained by
calculating the entropy of a map, defined in Ref. [27]. Regard-
ing the physical interpretation of this measure, d iso

t is the dense
coding capacity for a noiseless dense coding protocol. It is
therefore fair to expect that the transmission distance between
quantum channels is a good candidate for error or diagnostic
measures.

In Sec. IV, we have introduced the entropic channel di-
vergence dK

t , parametrized by the size K of the ancilla. In
addition to the requirements mentioned in Refs. [1,16], we
have shown that dK

t satisfies the chain rule. This property
allows one to prove the amortization collapse of the entropic
channel divergence, which can be useful to obtain new single-
letter converse bounds on the capacity of adaptive protocols in
channel discrimination theory [12]. Regarding physical moti-
vation, dK

t is the square root of the quantum reading capacity
in the equiprobable case [31], and it can be identified as the
capacity of a dense coding protocol with a resource influenced
by decoherence [30].

In Sec. V C, we have considered the case of Choi-
stretchable channels. For these kinds of quantum oper-
ations, d iso

t and dN
t are equal, establishing a particular

situation, in which the transmission distance between quan-
tum operations is equal to the stabilized entropic channel
divergence (36).

To demonstrate the analyzed measures in action, we have
investigated the distinguishability of two Pauli channels and
provided analytical expressions for the distance d iso

t and the
entropic divergence dK=1

t . As the standard teleportation pro-
tocol can be written as a Pauli map, we have studied the
presence of noise in quantum teleportation by calculating
both distinguishability measures. The transmission distance
d iso

t between quantum channels occurred to be the most sen-
sitive to decoherence, while the trace distance between the
corresponding Choi states is more sensitive than the entropic
channel divergence.

In the case of a Hamiltonian evolution under decoherence,
we have compared the distance d iso

t and the divergence dK=1
t

between the quantum operations with the Bures distance be-
tween the corresponding Choi states and the probability of
error, originally studied in Ref. [15]. In the absence of noise,
the distance measures defined by employing the transmission
distance become equal, d iso

t = dK=1
t , showing a smoother be-

havior than the Bures distance and exhibiting equal times of
maximal distinguishability.

To distinguish between dynamics generated by two
Hamiltonians subjected to decoherence, we have stud-
ied the entropic measures d iso

t and dK=1
t and compared

them with the error probability Perr. For these measures
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we identified the time window of maximal distinguisha-
bility while varying the decoherence rate �. The above
observations suggest that the measures of the distance be-
tween quantum operations based on the square root of
the Jensen-Shannon divergence (in this case equivalent to
the Holevo quantity) introduced in this paper will find
their applications in further theoretical and experimental
studies.
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APPENDIX A: CHANNEL DIVERGENCE WITH TRACE
DISTANCE BETWEEN UNITAL CHANNELS

Let us calculate

dK=1
Tr (E,F ) = sup

ρ∈MN

T [N (ρ),M(ρ)],

for two arbitrary unital quantum operations N and M with
N = 2, T (·, ·) being the trace distance.

Performing required calculations we arrive at an expres-
sion,

dK=1
Tr (N ,M) = 1

2 max
r

√
r · �r, (A1)

where r denotes the Bloch vector ρ and � = (�N −
�M)ᵀ(�N − �M).

We need now to optimize
√

r · �r over the sphere r2 = 1.
As � is a symmetric positive square matrix, we can take its
spectral decomposition:

� =
∑

i

λ�
i xix

ᵀ
i , (A2)

where xi denotes the eigenvector of � corresponding to the
eigenvalue λi. One obtains, therefore,

r · �r =
∑

i

λ�
i (r · xi )

2.

Having in mind that λ�
i � 0 and (r · xi )2 ∈ [0, 1] for any i,

it is clear that the maximum is achieved when r = xk with k
such that λ�

k � λ�
i for all i. This implies directly Eq. (69),

specifically,

dK=1
Tr (N ,M) = 1

2 max
i

√
λ�

i ,

FIG. 10. Square root of the trace distance
√

T (E,F ) between
random Choi states, and their entropic distance DE (E,F ), defined in
Eqs. (29) and (32), between 1000 pairs of channels taken randomly
according to the flat measure in the regular tetrahedron of Pauli
channels. As points are scattered on both sides of the diagonal, these
results show that the min function should be used in the upper bound
(B1). All quantities depicted are dimensionless.

where {λ�
i }i is the set of eigenvalues of the matrix

� = (�N − �M)ᵀ(�N − �M).

APPENDIX B: UPPER BOUND FOR
THE TRANSMISSION DISTANCE

Two different upper bounds for the transmission distance
dt between quantum states can be found in the literature: one
in terms of the entropic distance DE defined in Eq. (13) [21]
and the other one based on the square root of the trace distance√

T [9].
In Eq. (33) we have included the corresponding bound for

quantum maps:

d iso
t (E,F ) � min{

√
T (E,F ), DE (E,F )}. (B1)

Note that the function minimum appears in this bound. In
Fig. 10, we analyze an ensemble of random pairs of Choi
states of order 4, corresponding to unital Pauli maps, and
compare the distances given by

√
T and DE between them.

Numerical results show that for some pairs of channels it holds
that

√
T > DE and for others

√
T < DE . These observations

imply that using the function minimum in Eq. (B1) is justified
as it makes the upper bound stronger.
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