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Coupled three-mode squeezed vacuum: Gaussian steering and remote
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Multipartite Einstein-Podolsky-Rosen (EPR) steering and multimode quantum squeezing are essential re-
sources for various quantum applications. The paper focuses on studying a coupled three-mode squeezed vacuum
(C3MSV), which is a typical multimode squeezed Gaussian state and will exhibit peculiar steering property.
Using the technique of integration within ordered products, we give the normal-ordering form for the coupled
three-mode squeezing operator and derive the general analytical expressions of the statistical quantities for the
C3MSV. Under Gaussian measurements, we analyze all bipartite Gaussian steerings (including no steering,
one-way steering, and two-way steering) in detail and study the monogamy relations for the C3MSV. Then,
we study the decoherence of all these steerings in noisy channels and find that sudden death will happen in a
certain threshold time. Through the steerings shared in the C3MSV, we propose conceptual (and ideal) schemes
of remotely generating Wigner negativity by performing appropriate photon subtraction(s) in the local position.
Our obtained results may lay a solid theoretical foundation for a future practical study. We also believe that the
C3MSV will be one of good candidate resources in future quantum protocols.
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I. INTRODUCTION

Quantum correlations have been intensively investigated
in recent years and can manifest in different forms, such
as entanglement, steering, and Bell nonlocality [1]. These
correlations are established in two-party, three-party, or even
more-party systems and can be used as resources for quantum
enhanced tasks [2–5]. Entanglement is a striking feature of
describing the nonbiseparability of states for two or more
parties [6]. Bell nonlocality offers a vast research landscape
with relevance for fundamental [7] and quantum technologi-
cal applications [8,9]. Eistein-Podolsky-Rosen (EPR) steering
is intermediate between entanglement and Bell nonlocality
[10–14]. Its concept was named by Schrödinger [15] and
rigorously defined by Wiseman et al. [16,17]. EPR steering
is often the required resource enabling the protocol to pro-
ceed securely [18] and has been applied to realize different
tasks [19].

Over the past several decades, significant advances on
squeezed light generation have been made [20,21]. Squeezed
optical fields, particularly those states with multimode squeez-
ing, are essential resources in quantum technologies [22].
Nonlinear optics provides a number of promising experimen-
tal tools for realizing multipartite correlation and multimode
squeezing [23]. One conventional tool is to employ the optical
parametric oscillator technique [24]. Another mature tool is to
employ a four-wave mixing (FWM) process [25]. FWM de-
scribes a parametric interaction between four coherent fields
in a nonlinear crystal [26].
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There is a tendency for researchers to use multipartite
quantum correlations and multimode quantum squeezing as
resources. Specially, EPR steering in a multipartite scenario
has been used for the implementation of secure multiuser
quantum technologies [27]. Many schemes of generating mul-
timode squeezed and correlated states have been proposed.
Their common kernel idea is based on the basic FWM process
by using multiple pump beams [28], spatially structured pump
beams [29–31], or cascading setups [32–34]. These schemes
of cascaded FWM processes can be used to generate [35–37]
and even enhance [38] multipartite entanglement.

A two-mode squeezed vacuum (TMSV) is perhaps the
most commonly used EPR entangled resource [3]. Rather
than a TMSV, many entangled resources (such as the NOON
state [39,40] and the Greenberger-Horne-Zeilinger state [41])
have been also used in other scenarios. With the development
and requirements of quantum technology, more and more
entangled resources have been introduced and used [42–46].
Based on the energy-level cascaded FWM system, Qin et al.
constructed 11 possible Hamiltonians, which may help to
generate three-mode and four-mode quantum squeezed states
[47]. Qin and co-workers generated triple-beam quantum-
correlated states, which may show the tripartite entanglement
[34]. By FWM with linear and nonlinear beamsplitters, Liu
et al. introduced a three-mode Gaussian state [48], which
may exhibit tripartite EPR steering. Li et al. also gener-
ated quantum-correlated three-mode light beams [49]. Zhang
and Glasser [50] introduced a coupled three-mode squeezed
vacuum (C3MSV), which exhibits genuinely tripartite
entanglement.

On the other hand, Wigner negativity (WN) [51] is ar-
guably one of the most striking nonclassical features of
quantum states and has been attracting increasing interest
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[52]. Beyond its fundamental relevance [53,54], WN is also
a necessary resource for quantum speedup with continu-
ous variables. It has been seen as a necessary ingredient
in continuous-variable quantum computation and simulation
to outperform classical devices [55,56]. As two important
signatures of nonclassicality, quantum correlations can be
intertwined with WN in the conditional generation of non-
Gaussian states [57,58]. Walschaers et al. developed a general
formalism to prepare Wigner-negative states through EPR
steering [59–61]. Xiang et al. proposed schemes for remote
generation of WN through EPR steering in a multipartite
scenario [62], where they used a pure three-mode Gaussian
state (realized by a feasible linear optical network) as the
resource.

Intuitively, we think that the C3MSV will become a useful
entangled resource in future quantum protocols. Except those
properties such as squeezing and entanglement considered
by Zhang and Glasser [50], we further study steering prop-
erties for the C3MSV in this paper. Considering the effect
of the environment, we also study the decoherence of the
steering. And then, we propose schemes of remote preparation
of Wigner-negative states. One can refer to the Appendixes
for the derivation results and to the Supplemental Material
[63] for the codes. The rest of the paper is structured as
follows. In Sec. II, we make a brief introduction of the coupled
three-mode squeezing operator (C3MSO) and the C3MSV.
In Sec. III, we investigate the bipartite Gaussian steerings
in the C3MSV. In Sec. IV, we study the decoherence of the
steering. In Sec. V, we propose schemes to remotely gener-
ate WN based on the steering in the C3MSV. Conclusions
are summarized in the last section.

II. COUPLED THREE-MODE SQUEEZED VACUUM

An interaction with the three-mode Hamiltonian HI =
ih̄(η∗

1a1a2 + η∗
2a2a3 − η1a†

1a†
2 − η2a†

2a†
3) can be realized

by using a dual-pumping FWM process, where aj (a†
j ) is

the bosonic annihilation (creation) operator in mode j. The
detailed description of the interaction has been provided by
Zhang and Glasser [50]. Associated with this Hamiltonian,
one can obtain the following unitary time evolution operator
(i.e., the C3MSO):

S3 = eξ∗
1 a1a2+ξ∗

2 a2a3−ξ1a†
1a†

2−ξ2a†
2a†

3 , (1)

where ξ j = η jt = r jeiθ j ( j = 1 and 2) are the two complex
squeezing parameters, with respective magnitude r j and phase
θ j . It is obvious to see S−1

3 = S†
3. For convenience, we re-

set (r1, r2) as (r, φ), satisfying r =
√

r2
1 + r2

2 , and cos φ =
r1/r and sin φ = r2/r, with φ ∈ [0, π/2] [see Fig. 1(a)]. A
similar three-mode squeezing interaction has also been an-
alyzed theoretically and realized experimentally by Paris’s
group. By interlinked nonlinear interactions in χ (2) media,
they addressed the generation of fully inseparable three-mode
entangled states of radiation [64,65]. In addition, they ap-
plied this three-mode entanglement in realizing symmetric
and asymmetric telecloning machines and generalized these
studies to multimode cases [66].

As illustrated in Fig. 1(b), by applying the C3MSO S3 on
the three independent vacuums |0〉|0〉|0〉, we easily obtain the

FIG. 1. (a) (r1, r2) are reset to (r, φ). (b) Conceptual generating
scheme of the C3MSV ρ123, which is obtained by applying S3 on
three independent vacuums |000〉 (represented by three small balls
separately at the top). (c) MPNs n̄1, n̄2, n̄3, and n̄T versus φ (setting
n̄T = 2).

C3MSV with the following form:

|ψ〉 ≡ S3|000〉 = 1

c
e− ε1

c a†
1a†

2− ε2
c a†

2a†
3 |000〉, (2)

whose density operator is ρ123 = |ψ〉〈ψ |. In Appendix A,
we have given the normal-ordering form for the C3MSO
by using the technique of integration within ordered prod-
ucts (IWOP) [67,68]. Here, we set c = cosh r, s = sinh r,
ε1 = seiθ1 cos φ, and ε2 = seiθ2 sin φ. In particular, if ξ2 =
0, then |ψ〉 = S2(ξ1)|00〉12 ⊗ |0〉3; if ξ1 = 0, then |ψ〉 =
|0〉1 ⊗ S2(ξ2)|00〉23, with S2(ξ1) = eξ∗

1 a1a2−ξ1a†
1a†

2 and S2(ξ2) =
eξ∗

2 a2a3−ξ2a†
2a†

3 . Moreover, if ξ1 = ξ2 (i.e., φ = π/4), the
C3MSV is a bisymmetric state, whose mode 1 and mode 3 are
symmetrical with mode 2. Zhang and Glasser have analyzed
the squeezing property and the entanglement characteristics
for the C3MSV [50], which further reflect that the C3MSO
has the utility of realizing available squeezing and genuine
tripartite entanglement.

Using the general expression for the C3MSV in Eq. (A4),
we easily obtain n̄1 = s2 cos2 φ, n̄2 = s2, n̄3 = s2 sin2 φ, and
n̄T = 2s2, i.e., the mean photon numbers (MPNs) for mode
1, mode 2, mode 3, and total modes, respectively [see
Fig. 1(c)]. By the way, we often replace r by n̄T (using
r = arcsinh

√
n̄T /2) and set θ1 = θ2 = 0 in our following nu-

merical work.

III. GAUSSIAN STEERING IN THE C3MSV

The C3MSV is a pure three-mode entangled Gaussian
state, which can be seen from its Wigner function provided
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in Eq. (C1). In this section, we analyze the distributions of bi-
partite Gaussian steerings in the C3MSV, without considering
the optical losses and thermal noises.

A. Covariance matrix of the C3MSV

The covariance matrix (CM) [69–73] of the C3MSV is
expressed as

V =

⎛
⎜⎝

(1 + 2n̄1) 12 −2sc cos φ �θ1 s2 sin 2φ Rθ2−θ1

−2sc cos φ �θ1 (1 + 2n̄2) 12 −2sc sin φ �θ2

s2 sin 2φ R̃θ2−θ1 −2sc sin φ �θ2 (1 + 2n̄3) 12

⎞
⎟⎠,

(3)

with the 2 × 2 identity matrix 12 and

�θ =
(

cos θ sin θ

sin θ − cos θ

)
, Rθ =

(
cos θ sin θ

− sin θ cos θ

)
. (4)

The matrix elements of the CM, defined by Vjk =
〈ψ |(X̂ j X̂k + X̂kX̂ j )|ψ〉, are expressed via the vector X̂ =
(x̂1, p̂1, x̂2, p̂2, x̂3, p̂3). For each mode, we define the position
operator x̂ j = 1√

2
(â j + â†

j ) and the momentum operator p̂ j =
1

i
√

2
(â j − â†

j ), accompanied by its annihilation and creation

operators â j and â†
j . It is noted that 〈x̂ j〉 = 〈p̂ j〉 = 0 for each

mode of the C3MSV. The CM V in Eq. (3) is a symmetric and
positive semidefinite matrix (with eigenvalues 1, 1, e−2r , e−2r ,
e2r , and e2r) and obeys V + i�⊕3 � 0, with � = ( 0 1

−1 0).
Moreover, we can check det V = 1 and prove that the C3MSV
is a pure state.

B. Bipartite Gaussian steering

Quantum protocols often require only states (e.g., squeezed
vacuum states) and measurements (e.g., homodyne detection)
that are simple to realize on quantum optics platforms. Un-
doubtedly, the C3MSV is a good candidate Gaussian state.
Meanwhile, one can explore the Gaussian steerings by Gaus-
sian measurements [74,75]. Moreover, the distribution of the
steering can be constrained by its monogamy relation. Reid
derived monogamy inequalities for the bipartite EPR steering
distributed among different systems [76]. Xiang et al. derived
the laws for the distribution of quantum steering among dif-
ferent parties and proved a monogamy relation of Gaussian
steering [77].

The CM of a bipartite Gaussian state can be expressed as

σAB =
(

VA VAB

V T
AB VB

)
, (5)

where party A and party B are the bipartite subsystems. Then,
we can quantify how much it is steerable via the following
quantity:

GA→B(V ) := max

{
0,−

∑
j: ν̄

B|A
j <1

ln ν̄
B|A
j

}
, (6)

where {ν̄B|A
j }2nB

j=1 denote the symplectic eigenvalues (nB is the
mode number in subsystem B) of the Schur complement
σB|A = VB − V T

ABV −1
A VAB of σAB . Obviously, the mathemat-

ical formalism of Gaussian steering GA→B is achieved by

FIG. 2. Bipartite assignments in the C3MSV, where A is the
steering party and B is the steered party.

Gaussian measurements in party A. This quantity GA→B is
defined as Gaussian A → B steerability, which is a monotone
under Gaussian local operations and classical communication.
Moreover, the larger GA→B is, the stronger Gaussian steerabil-
ity is [10,78].

In what follows, we take party A and party B from the three
modes of the C3MSV and construct 12 kinds of σAB’s from V
in Eq. (3). The steering party A and the steered party B are
assigned as shown in Fig. 2. According to the rule in Eq. (6),
we obtain the following steerings present in the C3MSV.

Case (a) �⇒ A(23)-B(1). In this case, we have ν̄
B|A
1 =

ν̄
B|A
2 = (c2 + s2 cos 2φ)−1 < 1, which leads to

G23→1 = 2 ln(c2 + s2 cos 2φ). (7)

Case (b) �⇒ A(13)-B(2). In this case, we have ν̄
B|A
1 =

ν̄
B|A
2 = (c2 + s2)−1 < 1, which leads to

G13→2 = 2 ln(c2 + s2). (8)

Case (c) �⇒ A(12)-B(3). In this case, we have ν̄
B|A
1 =

ν̄
B|A
2 = (c2 − s2 cos 2φ)−1 < 1, which leads to

G12→3 = 2 ln(c2 − s2 cos 2φ). (9)

Case (d) �⇒ A(1)-B(23). In this case, we have
ν̄

B|A
1 = ν̄

B|A
2 = (κ1 − √

κ2)/κ0 < 1 and ν̄
B|A
3 = ν̄

B|A
4 = (κ1 +√

κ2)/κ0 � 1, which leads to

G1→23 = 2 ln[κ0/(κ1 − √
κ2)], (10)

with

κ0 = 4 + 8s2 cos2 φ,

κ1 = 1 + 3c2 + (3 − 2 cos 2φ)s2,

κ2 = (19 − 12 cos 2φ)c2s2 + (19 − 12 cos 2φ + 2 cos 4φ)s4

+(13 − 20 cos 2φ)s2. (11)
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Case (e) �⇒ A(2)-B(13). In this case, we have ν̄
B|A
1 =

ν̄
B|A
2 = (c2 + s2)−1 < 1 and ν̄

B|A
3 = ν̄

B|A
4 = 1, which leads to

G2→13 = 2 ln(c2 + s2). (12)

Case (f) �⇒ A(3)-B(12). In this case, we have ν̄
B|A
1 =

ν̄
B|A
2 = (ι1 − √

ι2)/ι0 < 1 and ν̄
B|A
3 = ν̄

B|A
4 = (ι1 + √

ι2)/ι0 �
1, which leads to

G3→12 = 2 ln[ι0/(ι1 − √
ι2)], (13)

with

ι0 = 4 + 8s2 sin2 φ,

ι1 = 1 + 3c2 + (3 + 2 cos 2φ)s2,

ι2 = (19 + 12 cos 2φ)c2s2 + (19 + 12 cos 2φ + 2 cos 4φ)s4

+ (13 + 20 cos 2φ)s2. (14)

Case (g) �⇒ A(2)-B(1). In this case, we have ν̄
B|A
1 =

ν̄
B|A
2 = (c2 − s2 cos 2φ)/(c2 + s2) < 1, which leads to

G2→1 = 2 ln[(c2 + s2)/(c2 − s2 cos 2φ)]. (15)

Case (h) �⇒ A(1)-B(3). In this case, we have ν̄
B|A
1 =

ν̄
B|A
2 = (c2 + s2)/(1 + 2s2 cos2 φ) � 1, which leads to

G1→3 = 0. (16)

Case (i) �⇒ A(2)-B(3). In this case, we have ν̄
B|A
1 = ν̄

B|A
2 =

(c2 + s2 cos 2φ)/(c2 + s2) < 1, which leads to

G2→3 = 2 ln[(c2 + s2)/(c2 + s2 cos 2φ)]. (17)

Case (j) �⇒ A(1)-B(2). In this case, we have ν̄
B|A
1 = ν̄

B|A
2 =

(c2 − s2 cos 2φ)/(1 + 2s2 cos2 φ) � 1, which leads to

G1→2 = 0. (18)

Case (k) �⇒ A(3)-B(1). In this case, we have ν̄
B|A
1 =

ν̄
B|A
2 = (c2 + s2)/(1 + 2s2 sin2 φ) � 1, which leads to

G3→1 = 0. (19)

Case (l) �⇒ A(3)-B(2). In this case, we have ν̄
B|A
1 = ν̄

B|A
2 =

(c2 + s2 cos 2φ)/(1 + 2s2 sin2 φ) � 1, which leads to

G3→2 = 0. (20)

More interestingly, all the above steerings are indepen-
dent of phases (θ1, θ2). As we all know, EPR steering is a
directional form of nonlocality and possesses an asymmet-
ric property. This characteristic can also be reflected in our
steerings. In Fig. 3, we draw the contour plots of G12→3,
G1→23, G23→1, G3→12, G2→1, and G2→3 in the (n̄T , φ) space.
Interestingly, G12→3 with G1→23, G23→1 with G3→12, and
G2→1 with G2→3, all have the symmetry on the axis φ = π/4.
This is due to self-characteristics of the C3MSV. In Fig. 4,
we plot GA→Bs versus φ (with n̄T = 3) and GA→Bs versus n̄T

(with φ = π/8). Among them, G13→2 = G2→13 are functions
of n̄T and are not independent of φ. Moreover, we know that
G1→2 = G1→3 = G3→1 = G3→2 = 0, but G2→1 > 0 (except
φ = π/2), G2→3 > 0 (except φ = 0), and G2→1 = G2→3 for
φ = π/4. As n̄T increasing, most of the GA→B’s will increase.

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (a) G12→3, (b) G23→1, (c) G1→23, (d) G3→12, (e) G2→1, and
(f) G2→3 as functions of n̄T and φ.

The results tell us that three types of steerings, i.e., no steering
(A cannot steer B and B cannot steer A), one-way steering (A
can steer B while B cannot steer A), or two-way (symmetrical
or asymmetrical) steering (A can steer B and B can steer A),
are presented in the C3MSV. The main results are summarized
as follows.

(i) There is no steering between mode 1 and mode 3 be-
cause of G1→3 = 0 and G3→1 = 0 [see Eqs. (16) and (19)].

(ii) There is one-way steering between mode 1 and mode 2
because of G2→1 > 0 and G1→2 = 0 [see Eqs. (15) and (18)].

(iii) There is one-way steering between mode 2 and mode
3 because of G2→3 > 0 and G3→2 = 0 [see Eqs. (17) and (20)].

(iv) There is two-way asymmetrical steering between
mode 1 and group (23) because of G23→1 > 0 and G1→23 > 0
but G23→1 = G1→23 [see Eqs. (7) and (10)].

(v) There is two-way symmetrical steering between mode
2 and group (13) because of G13→2 = G2→13 > 0 [see Eqs. (8)
and (12)].

(vi) There is two-way asymmetrical steering between
mode 3 and group (12) because of G12→3 > 0 and G3→12 > 0,
but G12→3 = G3→12 [see Eqs. (9) and (13)].

Just like what He et al. said in their work [14], our results
also show that each mode can be steered by one or both
of the other two in the C3MSV. Moreover, we find that (a)
G2→1 > 0, but G3→1 = 0, and (b) G2→3 > 0, but G1→3 = 0.
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(a)

(b)

FIG. 4. (a) GA→B versus φ (setting n̄T = 3). (b) GA→B versus n̄T

(setting φ = π/8).

This result holds the character that two parties cannot steer
the same system [76].

C. Monogamy relations

Monogamy means that two observers cannot simultane-
ously steer the state of the third party. Both theoretical and
experimental results show the monogamous relation in mul-
tipartite EPR steering [79]. In 2017, Xiang et al. defined the
concept of the residual Gaussian steering (RGS) [77]. Here,
we use the RGS to quantify the genuine tripartite steering for
the C3MSV. Using all the above expressions from Eqs. (7) to
(20), we check that the following monogamy relations,

G (23)→1 − G2→1 − G3→1 � 0,

G (31)→2 − G3→2 − G1→2 � 0,

G (12)→3 − G1→3 − G2→3 � 0, (21)

and

G1→(23) − G1→2 − G1→3 � 0,

G2→(31) − G2→3 − G2→1 � 0,

G3→(12) − G3→1 − G3→2 � 0, (22)

(a)

(b)

FIG. 5. RGS G1:2:3 for the C3MSV with CM V (a) in the (n̄T , φ)
space and (b) versus φ with different n̄T .

hold for the C3MSV. Further, we consider the RGS,

G1:2:3 = min
〈i, j,k〉

{G ( jk)→i − G j→i − Gk→i}

= min
〈i, j,k〉

{G i→( jk) − G i→ j − G i→k}, (23)

for the C3MSV, where 〈i, j, k〉 denotes any cycle permutation
of 1, 2, and 3. In Fig. 5(a) we plot the RGS as a function of
n̄T and φ. From which, we see that the RGS is maximized
on bisymmetric C3MSV with φ = π/4, i.e., r1 = r2. In this
case, the genuine tripartite G1:2:3 reduces to the collective
steering G13→2 = G2→13 = 2 ln(c2 + s2). Figure 5(b) presents
the RGS as a function of φ with different n̄T , which are the
sections of Fig. 5(a). Indeed, the RGS acts as an indicator of
collective-steering-type correlations.

IV. DECOHERENCE OF STEERING FOR THE C3MSV

When dealing in a practical application, detector efficien-
cies and real world effects such as losses and electronic
noise will arise and become crucial in a real experimental
demonstration. Especially in the quantum realm, decoherence
properties will dominate. Following the handling ways of
Reid’s group [80] and Paris’s group [66,81,82], we study the
decoherence of the steering for the C3MSV in this section.
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FIG. 6. Each mode (mode j) in the C3MSV is independently
coupled to its respective reservoir Rj parametrized by the loss rate
γ j . These three couplings induce the decoherence of the steerings of
the C3MSV.

As shown in Fig. 6, we consider the evolution of the C3MSV
in three independent noisy channels (characterized by the loss
rates γ j and the thermal photons n̄R j ). The solution in mode j
is straightforward to evaluate by using the operator Langevin

equation [83,84]

ȧ j = −γ ja j + √
2γ j� j, (24)

which describes the evolution of the mode operator aj . Here,
the annihilation operator � j describes the thermal reservoir j
with the occupation number n̄R j , and the factor γ j of mode j
describes the decay (loss) rate that is induced by its reservoir.

Using the results provided in Appendix B, we can obtain
the CM at time t as follows:

V (t ) =

⎛
⎜⎝

A1 12 B1 �θ1 B3 Rθ2−θ1

B1 �θ1 A2 12 B2 �θ2

B3 R̃θ2−θ1 B2�θ2 A3 12

⎞
⎟⎠, (25)

with A j = 1 + 2n̄ j + 2n̄R j (1 − e−2γ j t ), B1 = −2sce−(γ1+γ2 )t

cos φ, B2 = −2sce−(γ2+γ3 )t sin φ, and B3 = s2e−(γ1+γ3 )t

sin 2φ. Equation (25) with t = 0 can be reduced to Eq. (3)
as expected. Based on the CM in Eq. (25) and using the
aforementioned steering criterion, we can analyze the
evolution of the steering.

Quite obviously, the dynamics of the steering is very com-
plex because the interaction is related with many parameters,
including r, φ, θ1, θ2, γ1, γ2, γ3, n̄R1 , n̄R2 , n̄R3 , and t . In
fact, EPR steering may be adjusted by varying the noise on

FIG. 7. Decoherence of several steerings of the C3MSV with n̄T = 3 and φ = π/8 and in different environments. GA→B versus γ t in
different n̄R. The solid black line refers to the case n̄R = 0. The dashed blue line refers to the case n̄R = 0.5. The dot-dashed brown line refers
to the case n̄R = 1. For each case, the sudden death will be observed at a threshold time.
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FIG. 8. Ideal and conceptual schemes of remote generated non-Gaussian states ρBa |A based on the C3MSV, without considering the loss in
any channel. Note that cases [(a)–(c)] are two-mode states and cases [(d)–(l)] are one-mode states.

different parties of the C3MSV. Similar works on manipu-
lating the direction [85] or the dynamics (such as death or
revival) [86] of EPR steering have been demonstrated. With-
out loss of generality, we only set γ1 = γ2 = γ3 = γ and
n̄R1 = n̄R2 = n̄R3 = n̄R. Using the C3MSV with n̄T = 3 and
φ = π/8 and the environments with n̄R = 0, 0.5, and 1 as an
example, we depict the evolution of several steerings in Fig. 7.
These results show that (i) the steerability will decrease as
time γ t increases, and (ii) until γ t exceeds a certain threshold
value, sudden death is observed. Moreover, the threshold time
is shorten by increasing n̄R. Taking G23→1 of Fig. 7 as an
example, the sudden deaths are observed at γ t = 0.346 574,
0.119 03, and 0.072 922 7, for n̄R = 0, 0.5, and 1, respectively.

V. PROTOCOLS OF PREPARING WIGNER
NEGATIVITY REMOTELY

As Walschaers et al. recently pointed out, when party A and
party B share a Gaussian state, party B can perform some mea-
surement on itself to create Wigner negativity on party A, if
and only if there is a Gaussian steering from party A to party B
[57]. Moreover, they provided an intuitive method to quantify
remotely generated WN by employing non-Gaussian opera-
tion of photon subtraction. Following methods in Walschaers’
work [59] and Xiang’s work [62], we investigate the remote
creation and distribution of WN in the tripartite C3MSV. Here,
we declare that we only study ideal and conceptual protocols

of preparing WN, without considering any lossy channels.
Based on the C3MSV, we keep the steered party B in the local
station and send the steering party A to the remote position.
After appropriate single-photon subtraction(s) on the steered
party B, the steering party A becomes a reduced non-Gaussian
state ρBa|A. In some cases, we can generate Wigner negative
states in the remote position. For state ρ j , we can derive its
Wigner function (WF) by Wρ j (β j ) = Tr(Ôw j ρ j ), with Ôw j =
2
π

: e−2(â†
j −β∗

j )(â j−β j ) : (: · · · : denotes the normal ordering) and
β j = (x j + iy j )/

√
2 [87,88]. Furthermore, we can quantify

the WN of ρBa|A as

N ≡
∫

|W (β )|d2nAβ − 1, (26)

with β ∈ R2nA , where nA is the mode number considered in
party A. As shown schematically in Fig. 8, we propose proto-
cols of generating 18 kinds of ρBa|A’s, whose analytical WFs
are given in Appendix C. As examples, we plot WFs for ρBa|As
with n̄T = 3 and φ = π/8 in Fig. 9, where only several WFs
exhibits the WNs.

Indeed, the amount of WN cannot be freely distributed
among different modes. It can be influenced by the considered
protocols and the interaction parameters. In order to explain
the characters, we plot some WNs N versus φ by fixing
n̄T = 3 in Fig. 10 and versus n̄T by fixing φ = π/8 in Fig. 11.
The details are explained as follows. Case A(23)B(1). In this
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FIG. 9. WFs of ρBa |A’s corresponding to Fig. 8, with n̄T = 3, φ = π/8, and θ1 = θ2 = 0. Some cases have WN and some cases have
no WN.

case, the steering party A includes mode 2 and mode 3 and
the steered party B includes mode 1. Performing appropriate
photon subtraction(s) in the local position, we can remotely
generate the following states with their respective WNs:

ρ1a|23 = Tr1(ρ1a23) → N1a|23,

ρ1a|2 = Tr1,3(ρ1a23) → N1a|2,

ρ1a|3 = Tr1,2(ρ1a23) → N1a|3, (27)

where ρ1a23 = |ε1|−2
1 â1ρ123â†

1.
We plot N1a|23, N1a|2, and N1a|3 as functions of φ in

Fig. 10(a) and as functions of n̄T in Fig. 11(a). From these
figures, we find that WNs are generated remotely in the group
(23), mode 2 and mode 3, respectively, after a single-photon
subtraction on mode 1. Moreover, we see that (i) N1a|23 is
a monotonically increasing function of φ from 0.046 82 at
φ = 0 to 0.426 14 at φ = π/2; (ii) N1a|2 remains as 0.046 82
for any φ; (iii) N1a|3 remains as 0 for any φ; (iv) N1a|23 �
N1a|2 + N1a|3; and (v) as n̄T is increasing, all these WNs will
be limited to 0.

Case A(12)B(3). In this case, the steering party A includes
mode 1 and mode 2 and the steered party B includes mode
3. Performing appropriate photon subtraction(s) in the local
position, we can remotely generate the following states with

their respective WNs:

ρ3a|12 = Tr3(ρ123a ) → N3a|12,

ρ3a|1 = Tr2,3(ρ123a ) → N3a|1,

ρ3a|2 = Tr1,3(ρ123a ) → N3a|2, (28)

where ρ123a = |ε2|−2â3ρ123â†
3.

We plot N3a|12, N3a|1, and N3a|2 as functions of φ in
Fig. 10(b) and as functions of n̄T in Fig. 11(b). From these
figures, we find that WNs are generated remotely in the group
(12), mode 1 and mode 2, respectively, after a single-photon
subtraction on mode 3. Moreover, we see that (i) N3a|12 is
a monotonically decreasing function of φ from 0.426 14 at
φ = 0 to 0.046 82 at φ = π/2; (ii) N3a|2 remains as 0.046 82
for any φ; (iii) N3a|1 remains as 0 for any φ; (iv) N3a|12 �
N3a|1 + N3a|2; and (v) as n̄T is increasing, all these WNs will
be limited to 0.

Case A(13)B(2). In this case, the steering party A includes
mode 1 and mode 3 and the steered party B includes mode
2. Performing appropriate photon subtraction(s) in the local
position, we can remotely generate the following states with
their respective WNs:

ρ2a|13 = Tr2(ρ12a3) → N2a|13,

ρ2a|1 = Tr2,3(ρ12a3) → N2a|1,

ρ2a|3 = Tr1,2(ρ12a3) → N2a|3, (29)
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(a) (b)

(c) (d)

FIG. 10. WNs versus φ with fixed n̄T = 3, for some ρBa |A’s in cases (a) A(23)B(1), (b) A(12)B(3), (c) A(13)B(2), and (d) A(2)B(13).

(a) (b)

(c) (d)

FIG. 11. WNs versus n̄T with fixed φ = π/8, for some ρBa |A’s in cases (a) A(23)B(1), (b) A(12)B(3), (c) A(13)B(2), and (d) A(2)B(13).
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where ρ12a3 = s−2â2ρ123â†
2.

We plot N2a|13, N2a|1, and N2a|3 as functions of φ in
Fig. 10(c) and as functions of n̄T in Fig. 11(c). From these
figures, we find that WNs are generated remotely in the group
(13), mode 1 and mode 3, respectively, after a single-photon
subtraction on mode 2. Moreover, we see that (i) N2a|13 re-
mains as 0.4683 for any φ; (ii) N2a|1 decreases from 0.4683
to 0 in [0, π/4] and remains as 0 in [π/4, π/2]; (iii) N2a|3
remains as 0 in [0, π/4] and increases from 0 to 0.4683
in [π/4, π/2]; (iv) N2a|13 � N2a|1 + N2a|3; and (v) as n̄T is
increasing, all these WNs will be limited to 0.

Case A(2)B(13). In this case, the steering party A includes
mode 2 and the steered party B includes mode 1 and mode
3. Performing appropriate photon subtraction(s) in the local
position, we can remotely generate the following states with
their respective WNs:

ρ1a3a|2 = Tr1,3(ρ1a23a ) → N1a3a|2,

ρ1a3|2 = Tr1,3(ρ1a23) → N1a3|2,

ρ13a|2 = Tr1,3(ρ123a ) → N13a|2, (30)

where ρ1a23a = 1
2 |ε1ε2|−2â1â3ρ123â†

1â†
3.

We plot N1a3a|2, N1a3|2, and N13a|2 as functions of φ in
Fig. 10(d) and as functions of n̄T in Fig. 11(d). From these fig-
ures, we find that WNs are generated remotely in mode 2, after
single-photon subtractions on each mode of the group (13)
simultaneously, or after a single-photon subtraction on mode
1 or mode 3, respectively. Here, we see that (i) N1a3a|2 remains
as 0.031 852 8, (ii) N1a3|2 and N13a|2 remain as 0.046 83;
(iii) N1a3a|2 < N1a3|2 + N13a|2; and (iv) as n̄T is increasing, all
these WNs will be limited to 0. However, although G2→1 > 0,
G2→3 > 0, and G2→(31) > 0, we cannot achieve more signif-
icant increases of the WNs in mode 2, after performing a
single-photon subtraction on each of mode 1 and mode 3.

Case A(1)B(23). In this case, the steering party A includes
mode 1 and the steered party B includes mode 2 and mode
3. Performing appropriate photon subtraction(s) in the local
position, we can remotely generate the following states with
their respective WNs:

ρ2a3a|1 = Tr2,3(ρ12a3a ) → N2a3a|1 ≡ 0,

ρ2a3|1 = Tr2,3(ρ12a3) → N2a3|1 ≡ 0,

ρ23a|1 = Tr2,3(ρ123a ) → N23a|1 ≡ 0, (31)

where ρ12a3a = (c2 + s2)−1|ε2|−2â2â3ρ123â†
2â†

3. For any n̄T

and φ, we see N2a3a|1 = N2a3|1 = N23a|1 ≡ 0. That is to say,
no WNs are generated remotely in mode 1, after single-photon
subtractions on each mode of the group (23) simultaneously,
or a single-photon subtraction on mode 2 or mode 3, respec-
tively. Surprisingly, N2a3a|1 = 0, although G1→23 > 0.

Case A(3)B(12). In this case, the steering party A includes
mode 3 and the steered party B includes mode 1 and mode
2. Performing appropriate photon subtraction(s) in the local
position, we can remotely generate the following states with
their respective WNs:

ρ1a2a|3 = Tr1,2(ρ1a2a3) → N1a2a|3 ≡ 0,

ρ1a2|3 = Tr1,2(ρ1a23) → N1a2|3 ≡ 0,

ρ12a|3 = Tr1,2(ρ12a3) → N12a|3 ≡ 0, (32)

where ρ1a2a3 = (c2 + s2)−1|ε1|−2â1â2ρ123â†
1â†

2. For any n̄T

and φ, we see N1a2a|3 = N1a2|3 = N12a|3 ≡ 0. That is to say,
no WNs are generated remotely in mode 3, after single-photon
subtractions on each mode of the group (12) simultaneously,
or after a single-photon subtraction on mode 1 or mode 2,
respectively. Surprisingly, N1a2a|3 = 0, although G3→12 > 0.

So far, we have quantified all remotely generated WNs in
terms of Eq. (26). It is obvious to see that the amount of WN
cannot be freely distributed among different modes.

VI. CONCLUSION AND DISCUSSION

To summarize, we studied the C3MSV and showed how it
can be used for steering. By taking different bipartite assign-
ments in the C3MSV, we investigated all bipartite Gaussian
steerings present in the C3MSV. These steerings include no
steering, one-way steering, and two-way steering. Moreover,
the steerability can be adjusted by the interaction parameters.
In addition, we also studied the decoherence of the steering
for the C3MSV and found that the steering will die suddenly
at a threshold time. Using the C3MSV as the resource, we
proposed conceptual schemes to remotely generate Wigner
negative states. We analyzed and compared the distributions
of the Gaussian steering and the WNs over different modes.
Normally, one expects that stronger steerability induces more
WN. That is, if GA→B > 0, then N > 0; and if GA→B = 0,
then N = 0. But this is not the case for the C3MSV. For ex-
ample, although G1→23 > 0 and G3→12 > 0, ρ2a3a|1 and ρ1a2a|3
cannot exhibit WN. These results further verify that quantum
correlations are not always a necessary requirement for the
conditional generation of WN [57].

People expect that the correlations can be more robust to
environmental influences (including loss and noise) [89,90].
Meanwhile, measurement will have nonunity detection effi-
ciency [91,92] accompanied with information leakage [93].
With the help of squeezed states [94] and erasure corrections
[95], one can establish quantum optical coherence over longer
distances to diminish the effect from losses and noises. In the
aspects of experiment and measurement, our paper is a reser-
voir of more discussions. Although our work is theoretical
and ideal, we still believe that our results may also lay a solid
theoretical foundation for a future practical study.

Practical quantum communications (including quantum
internet [96,97], satellite communication [98], and online
banking [99]) require multipartite correlation and high se-
curity [100,101]. Fortunately, all these problems will solved
by using protocols involved in quantum steering [102].
Specific properties of the C3MSV (including squeezing, en-
tanglement, and steering) have laid a good foundation for
applications in quantum technologies. So, we believe the
C3MSV will become a useful entangled resource in future
quantum communication. For example, following previous
works [65,66,103] and using the C3MSV, one can construct
a new scheme to teleclone pure Gaussian states.
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APPENDIX A: THE C3MSO AND THE C3MSV

In this Appendix, we give the transformation relation and
the normal ordering form for the C3MSO. In addition, we give
the general expression to calculate the expectation values we
want for the C3MSV.

About the C3MSO. Using the formula of Bogoliubov trans-
formation, we obtain the following transformation relations:

S3A†S†
3 = A†P∗ + AL∗, S3AS†

3 = AP + A†L, (A1)

where A† = (â†
1, â†

2, â†
3), A = (â1, â2, â3), and

P =
⎛
⎝κ1 0 τ

0 c 0
τ ∗ 0 κ2

⎞
⎠, L =

⎛
⎝ 0 ε1 0

ε1 0 ε2

0 ε2 0

⎞
⎠. (A2)

Here we set κ1 = sin2 φ + c cos2 φ, κ2 = cos2 φ + c sin2 φ,
and τ = 1

2 (c − 1)ei(θ2−θ1 ) sin 2φ.
According to the rule provided by Fan and co-workers

[104–106], we immediately obtain the normal ordering form
of S3 as follows:

S3 = 1√
det P

e− 1
2 A†(LP−1 )Ã†

: eA†(P̃−1−I )Ã : e
1
2 A(P−1L∗ )Ã. (A3)

Of course, we can further use : eA†(P̃−1−I )Ã := eA†(ln P̃−1 )Ã in
above expression, where P̃ denotes the transpose of P.

About the C3MSV. Here, we give the following general
expression of expectation value:〈

â†k1
1 â†k2

2 â†k3
3 âl1

1 âl2
2 âl3

3

〉
= ∂k1

μ1
∂k2
μ2

∂k3
μ3

∂ l1
ν1

∂ l2
ν2

∂ l3
ν3

× e|ε1|2μ1ν1+s2μ2ν2+|ε2|2μ3ν3+ε∗
1 ε2μ1ν3+ε1ε

∗
2 μ3ν1

× e−cε∗
1 μ1μ2−cε1ν1ν2−cε∗

2 μ2μ3−cε2ν2ν3 |μ1=μ2=μ3=ν1=ν2=ν3=0,

(A4)

from which one can study the statistical properties for the
C3MSV. Notice that k1, k2, k3, l1, l2, and l3 are non-negative
integers.

APPENDIX B: DERIVATION OF EVOLUTION
RELATION IN THE RESERVOIR

Using the Laplace transformation

ã j (p) = LT[a j (t )] =
∫ ∞

0
dt exp(−pt )a j (t ), (B1)

and LT[ȧ j (t )] = pã j (p) − a j (0), Eq. (24) yields

ã j (p) = 1

p + γ j
a j (0) + √

2γ j
�̃ j (p)

p + γ j
, (B2)

which leads to [80]

a j (t ) = e−γ j t a j (0) + √
2γ j

∫ t

0
e−γ j (t−τ )� j (τ )dτ. (B3)

Notice that the quantum reservoir operators have correla-
tions given by 〈� j〉 = 〈�†

j 〉 = 〈�2
j 〉 = 〈�†2

j 〉 = 0 and

〈�†
j (τ ′)� j (τ )〉 = n̄R j δ(τ ′ − τ ),

〈� j (τ )�†
j (τ ′)〉 = (n̄R j + 1)δ(τ ′ − τ ), (B4)

as well as 〈� j�k〉 = 〈�†
j �

†
k 〉 = 〈� j�

†
k 〉 = 〈�†

j �k〉 = 0 for
j = k. Thus, we can calculate the moments at a later time in
terms of the initial moments, in terms of the relations such as
〈aj (t )〉 = e−γ j t 〈a j (0)〉, 〈a2

j (t )〉 = e−2γ j t 〈a2
j (0)〉, and

〈a†
j (t )a j (t )〉 = e−2γ j t 〈a†

j (0)a j (0)〉 + n̄R j (1 − e−2γ j t ) (B5)

for the same mode, as well as

〈aj (t )ak (t )〉 = e−(γ j+γk )t 〈a j (0)ak (0)〉,
〈a†

j (t )ak (t )〉 = e−(γ j+γk )t 〈a†
j (0)ak (0)〉 (B6)

for different modes.

APPENDIX C: WIGNER FUNCTIONS OF REMOTELY
GENERATED STATES

The WF for the C3MSV is

Wρ123 = 8

π3
e−2[(2n̄1+1)|β1|2+(2n̄2+1)|β2|2+(2n̄3+1)|β3|2]

× e−8[Re(cε∗
1 β1β2 )+Re(ε∗

1 ε2β1β
∗
3 )+Re(cε∗

2 β2β3 )], (C1)

which has the Gaussian form.
The analytical WFs of ρBa|A’s are given as follows. For

convenience of writing, we set ω0 = c2 + s2 = cosh 2r, ω1 =
c2 − s2 cos 2φ, and ω2 = c2 + s2 cos 2φ. If φ = 0, then ε2 =
0, r = r1, ω1 = 1, and ω2 = ω0. If φ = π/2, then ε1 = 0,
r = r2, ω1 = ω0, and ω2 = 1.

(a) The WF for ρ1a|23 is obtained by

Wρ1a |23 = 4e−2[ω1|β2|2+ω0|β3|2+4 Re(cε∗
2 β2β3 )]/ω2

π2ω3
2

× (4|cβ2 + ε2β
∗
3 |2 − ω2). (C2)

When φ = 0, Eq. (C2) will be reduced to Wρ1a |23 =
(2/π )e−2|β2|2/ω0 (4c2ω−3

0 |β2|2 − ω−2
0 ) × (2/π )e−2|β3|2 .

(b) The WF for ρ2a|13 is obtained by

Wρ2a |13 = 4e−2[ω1|β1|2+ω2|β3|2−4Re(ε∗
1 ε2β1β

∗
3 )]/ω0

π2s2ω3
0

× (4c2|ε∗
1β1 + ε∗

2β3|2 − ω0s2). (C3)

When φ = 0, Eq. (C3) will be reduced to Wρ2a |13 =
(2/π )e−2|β1|2/ω0 (4c2ω−3

0 cos2 φ|β1|2 − ω−2
0 ) × (2/π )e−2|β3|2 .

When φ = π/2, Eq. (C3) will be reduced to Wρ2a |13 =
(2/π )e−2|β3|2/ω0 (4c2ω−3

0 sin2 φ|β3|2 − ω−2
0 ) × (2/π )e−2|β1|2 .

(c) The WF for ρ3a|12 is obtained by

Wρ3a |12 = 4e−2[ω2|β2|2+ω0|β1|2+4 Re(cε∗
1 β1β2 )]/ω1

π2ω3
1

× (4|cβ2 + ε1β
∗
1 |2 − ω1). (C4)

When φ = π/2, Eq. (C4) will be reduced to Wρ3a |12 =
(2/π )e−2|β2|2/ω0 (4c2ω−3

0 |β2|2 − ω−2
0 ) × (2/π )e−2|β1|2 .

(d) The WF for ρ2a3a|1 is obtained by

Wρ2a3a |1 = 2e−2|β1|2/ω2

πω0ω
5
2

× [
ω2

2ω1 + 4|ε1β1|2
(
4c4 + 4c2|ε1β1|2 − ω2

1

)]
.

(C5)
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When φ = π/2, Eq. (C5) will be reduced to Wρ2a3a |1 =
(2/π )e−2|β1|2 .

(e) The WF for ρ1a3a|2 is obtained by

Wρ1a3a |2 = 2e−2|β2|2/ω0

πω5
0

(
ω2

0 + 8c4|β2|4 − 8ω0c2|β2|2
)
, (C6)

which is independent of φ.
(f) The WF for ρ1a2a|3 is obtained by

Wρ1a2a |3 = 2e−2|β3|2/ω1

πω0ω
5
1

× [
ω2

1ω2 + 4|ε2β3|2
(
4c4 + 4c2|ε2β3|2 − ω2

2

)]
.

(C7)

When φ = 0, Eq. (C7) will be reduced to Wρ1a2a |3 =
(2/π )e−2|β3|2 .

(g) The WFs for ρ1a|2 and ρ1a3|2 are obtained by

Wρ1a |2 = Wρ1a3|2 = 2e−2|β2|2/ω0

πω3
0

(4c2|β2|2 − ω0), (C8)

which is independent of φ.
(h) The WFs for ρ3a|1 and ρ23a|1 are obtained by

Wρ3a |1 = Wρ23a |1 = 2e−2|β1|2/ω2

πω3
2

(4|ε1β1|2 + ω2). (C9)

When φ = π/2, Eq. (C9) will be reduced to Wρ3a |1 = Wρ23a |1 =
(2/π )e−2|β1|2 .

(i) The WFs for ρ3a|2 and ρ13a|2 are obtained by

Wρ3a |2 = Wρ13a |2 = 2e−2|β2|2/ω0

πω3
0

(4c2|β2|2 − ω0), (C10)

which is independent of φ.
(j) The WFs for ρ2a|1 and ρ2a3|1 are obtained by

Wρ2a |1 = Wρ2a3|1

= 2e−2|β1|2/ω2

πω3
2

(4c2|β1|2 cos2 φ − ω2 cos 2φ). (C11)

When φ = π/2, Eq. (C11) will be reduced to Wρ2a |1 =
Wρ2a3|1 = (2/π )e−2|β1|2 .

(k) The WFs for ρ1a|3 and ρ1a2|3 are obtained by

Wρ1a |3 = Wρ1a2|3 = 2e−2|β3|2/ω1

πω3
1

(4|ε2β3|2 + ω1). (C12)

When φ = 0, Eq. (C12) will be reduced to Wρ1a |3 = Wρ1a2|3 =
(2/π )e−2|β3|2 .

(l) The WFs for ρ2a|3 and ρ12a|3 are obtained by

Wρ2a |3 = Wρ12a |3

= 2e−2|β3|2/ω1

πω3
1

(4c2|β3|2 sin2 φ + ω1 cos 2φ). (C13)

When φ = 0, Eq. (C13) will be reduced to Wρ2a |3 = Wρ12a |3 =
(2/π )e−2|β3|2 .
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