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We present an experimentally practical method to reveal Einstein-Podolsky-Rosen (EPR) steering in non-
Gaussian spin states by exploiting a connection to quantum metrology. Our criterion is based on the quantum
Fisher information, and uses bounds derived from generalized spin-squeezing parameters that involve measure-
ments of higher-order moments. This leads us to introduce the concept of conditional spin-squeezing parameters,
which quantify the metrological advantage provided by conditional states, as well as detect the presence of an
EPR paradox.
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I. INTRODUCTION

Einstein-Podolsky-Rosen (EPR) steering was first termed
by Schrödinger [1] to describe the contradiction to local
complementarity in the EPR paradox [2]. As an intermedi-
ate correlation, EPR steering is stronger than entanglement
but not as general as Bell nonlocality [3]. Being eas-
ier to generate and detect than nonlocality renders EPR
steering a valuable resource for a variety of quantum in-
formation tasks [4–6], such as quantum teleportation [7,8],
one-side device-independent quantum key distribution (QKD)
[9–12], quantum secret sharing [13–15], and assisted quantum
metrology [16].

Typically, EPR steering is revealed from the violation of a
criterion based on a local uncertainty relation [4,17]. For this
reason, such criteria are often expressed in terms of variances
of linear operators, and therefore best suited to reveal steering
in Gaussian states, where the correlations are fully described
by first- and second-order moments. Recently, non-Gaussian
states were shown to provide more competitive advantages
in several quantum information protocols [18–21]. However,
their nontrivial correlations appear in higher-order moments
of physical operators, leading to the failure of steering cri-
teria limited to linear observables. To detect non-Gaussian
steering, some approaches have taken higher-order moments
into account [22–24]. For example, nonlinear correlations
in a three-photon down-conversion process with a quadratic
steerability index were considered in Ref. [25]. A steer-
ing criterion derived from Hillery and Zubairy’s multimode
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entanglement criterion [26] has been investigated to detect
steering in a multipartite scenario [27] and further extended to
a higher-order version in a two-well Bose-Einstein condensate
(BEC) ground state [28]. Nevertheless, these methods are
specifically tailored to particular states, and a general steering
criterion for non-Gaussian states is still highly desirable to
further unlock their potential applications.

Nonclassical spin states are many-body quantum states of
great interest for fundamental studies as well as for practical
applications. For example, squeezed spin states have attracted
increasing attention in quantum metrology for precision im-
provements to overcome the standard quantum limit and are
nowadays routinely prepared in a variety of platforms, from
solid state systems to atomic ensembles [29]. Recent studies
have in particular explored the metrological potential of non-
Gaussian spin states, both in theory [30,31] and experiment
[32–36].

Methods derived from quantum metrology [37–41] already
allow for the efficient detection and characterization of multi-
particle entanglement without addressing individual spins. In
particular, the quantum Fisher information (QFI) constitutes a
powerful tool for capturing even strongly non-Gaussian fea-
tures of quantum states by probing them for their sensitivity
under small perturbations [32]. Very recently, the QFI was
also used to formulate a criterion for EPR correlations [16],
thus providing us with a powerful method for detecting EPR
steering in non-Gaussian states.

However, accessing the QFI is often challenging. De-
termining the QFI of arbitrary mixed states requires full
knowledge of the quantum state. On the other hand, efficient
approximations based on the full counting statistics demand
that a carefully chosen observable is measured with high
resolution, which is also difficult in multipartite systems.
Spin-squeezing parameters [37] have proven to be efficient
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FIG. 1. Illustration of the investigated protocol. A non-Gaussian
(oversqueezed) spin state is prepared in an ensemble of particles,
that are then distributed to form subsystems A and B. Because of
quantum correlations, a measurement on A projects B into one of
several highly sensitive conditional states. The knowledge of A’s
measurement setting and result allow B to make the best use of
his state by optimizing his local measurement. With the criteria we
propose, steering between the two subsystems can be concluded.

alternatives with high practical relevance, especially for Gaus-
sian spin systems; suitable generalizations are also able to
capture non-Gaussian features from higher-order moments
[30]. Apart from their metrological interpretation [29], they
have also been widely used to detect and characterize mul-
tipartite entanglement [41,42], and Bell correlations [43,44].
However, so far the application of squeezing parameters has
been limited to single many-spin ensemble and collective
measurements.

Here, we introduce the concept of conditional spin-
squeezing parameters, and based on that we propose a
practical and convenient witness for EPR steering in split non-
classical spin states, see Fig. 1. For the purpose of detecting
non-Gaussian steering, spin observables involving higher-
order moments are taken into consideration. An optimization
of the measurement within these accessible higher-order
observable ensembles leads to conditional nonlinear spin-
squeezing parameters, whose potential to detect steering in
a wider class of non-Gaussian states is explored. We demon-
strate that conditional spin-squeezing parameters approximate
the conditional QFI criterion [16] and as we increase the order
of the measured moments this approximation ultimately con-
verges to the QFI criterion. In addition, we also prove that the
conditional spin-squeezing parameter criterion detects a larger
class of steerable correlations than Reid’s criterion [4,17]. As
a detailed study, we analyze their performance using analyti-
cal results for split one-axis-twisted states, where a hierarchy
of criteria is clearly shown. Our work provides an experimen-
tally practical tool to witness non-Gaussian steering, which
helps to further investigate the quantum information of non-
Gaussian spin states and paves a way to exploiting their
promising potential.

II. PHASE ESTIMATION AND
THE SPIN-SQUEEZING PARAMETER

In a typical parameter estimation protocol, an operator H
imprints an unknown phase θ on quantum state ρ through
the unitary evolution ρ(θ ) = e−iHθρeiHθ . This evolution from
the initial state ρ = ρ(0) to ρ(θ ) is usually referred to as the
parameter encoding. Then, an observable M is measured on
the probe state ρ(θ ). This protocol is repeated m times, and
an estimator θest for θ is constructed as a function of the
measurement results. The variance of the estimator Var[θest]
represents the error of the estimate θest. The goal of quan-
tum phase estimation is to find an unbiased estimator that
minimizes this variance. An estimator is called unbiased if
it yields the true value of the parameter on average. A sim-
ple estimator known as the method of moments (since it is
based on simple measurements of low moments of an observ-
able) [29,30] is constructed from the average value of M and
yields, in the limit m � 1, the phase uncertainty Var[θest] =
χ2[ρ, H, M]/m, where

χ2[ρ, H, M] := Var[ρ, M]

|〈[H, M]〉ρ |2 (1)

is the squeezing parameter [30,37]. This parameter is widely
used in spin systems and when H and M are collective spin
observables, it coincides, up to a normalization factor, with
the Wineland spin-squeezing parameter [37]. Intuitively, the
phase uncertainty described by χ2 is small when the ex-
pectation value of M depends strongly on variations of the
parameter (leading to a large denominator) and when M has
a small variance, i.e., exhibits “squeezing” (leading to a small
numerator).

For an unbiased estimation, a fundamental limit to the
sensitivity is given by the Cramér-Rao bound Var[θest] �
(mF [ρ, H, M])−1, where F [ρ, H, M] is the Fisher informa-
tion (FI) [45,46]. By optimizing over all observables M, the
maximum value of the FI defines the quantum Fisher in-
formation (QFI), i.e., FQ[ρ, H] = maxM F [ρ, H, M], which
determines the sensitivity of the probe state ρ to unitary
evolutions generated by H [29,47,48]. Since the method
of moments is not necessarily an optimal approach, the
squeezing parameter yields a lower bound on the full sensi-
tivity and we have χ−2[ρ, H, M] � F [ρ, H, M] � FQ[ρ, H]
[40,48]. For practical experiments, the achievable sensitiv-
ity can be optimized by maximizing χ−2[ρ, H, M] over
a set of measurement operators M that can be realis-
tically implemented [30]. Denoting with M a basis for
such measurements, we can achieve the maximal sensitivity
maxM∈span(M) χ

−2[ρ, H, M].

III. ASSISTED PHASE ESTIMATION WITH
CONDITIONAL SQUEEZING PARAMETER

In the previous section we have discussed the typical
phase-estimation protocol, which considers a single system.
Here, let us consider instead a metrological scenario involving
two systems, Alice (A) and Bob (B). The latter acts as the
“probe,” on which θ is encoded by H , while Alice assists Bob
in performing a better measurement. In fact, if the two parties
share correlations, a local measurement performed by Alice
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can improve Bob’s measurement sensitivity, if information
about the measurement setting Y and result b is communicated
to Bob [16,49]. This information allows Bob to choose a mea-
surement observable M ∈ span(M) that is optimally tailored
to the conditional state ρB

b|Y .
Based on this assisted phase-estimation protocol [16] and

using the method of moments, Bob can achieve on average an
estimation sensitivity given by the conditional spin-squeezing
parameter [50]

(χ−2)B|A[A, H, M,Y ]

:=
∑

b

p(b|Y ) max
M∈span(M)

χ−2
[
ρB

b|Y , H, M
]
. (2)

Here, we introduced the definition of assemblagesA(b,Y ) =
p(b|Y )ρB

b|Y , which are determined by the local probability
distribution p(b|Y ) for results b conditioned on Alice’s mea-
surement observable Y and Bob’s conditional state ρB

b|Y . Note
that the ultimate limit for the precision that can be achieved
on average by Bob in the assisted phase-estimation protocol
for a specific measurement Y for Alice is expressed by the
conditional Fisher information [16]

F B|A[A, H,Y ] :=
∑

b

p(b|Y )FQ
[
ρB

b|Y , H
]
, (3)

which corresponds to Bob performing an optimal measure-
ment on each conditional state.

Since FQ[ρ, H] � χ−2[ρ, H, M] holds for arbitrary mea-
surements M [40], we obtain that the conditional spin-
squeezing parameter is a lower bound on the conditional
Fisher information. Combining this with the Cauchy-Schwarz
inequality yields the hierarchy of bounds

F B|A[A, H,Y ] �
∑

b

p(b|Y )

∣∣〈[H, M]〉ρB
b|Y

∣∣2

Var
[
ρB

b|Y , M
]

� |〈[H, M]〉ρB |2
VarB|A[A, M,Y ]

, (4)

where 〈[H, M]〉ρB = ∑
b p(b|Y )〈[H, M]〉ρB

b|Y
and we intro-

duced the conditional variance [4]

VarB|A[A, H, X ] :=
∑

a

p(a|X )Var
[
ρB

a|X , H
]
. (5)

In the following, we will use this hierarchy of bounds in
order to define and compare steering criteria with increasing
potential to uncover steerable states.

IV. CONNECTION TO EPR STEERING

Besides the estimation of the phase θ , we could be in-
terested in estimating its generator H . As θ and H are
conjugate variables, the complementarity principle prevents
their simultaneous knowledge with arbitrary precision [51].
However, by making use of EPR steering from Alice to Bob
in the assisted phase-estimation protocol, an inference of these
properties can be realized below the local uncertainty limit,
corresponding to a violation of Var[θest]Var[Hest] � (4m)−1

[16]. Here, Var[Hest] is the inference variance: Based on the
additional information of Alice’s measurement setting X and

result a, Bob uses the estimator hest(a) to predict the result
h of his local measurement H with an error Var[Hest] :=∑

a,h p(a, h|X, H )(hest(a) − h)2. We obtain Var[θest] from the
assisted phase-estimation protocol with a different choice
for Alice’s measurement settings Y and Bob’s measure-
ment M. It is worth mentioning that inference variances are
lower bounded by the conditional variances, such that, e.g.,
Var[Hest] � VarB|A[A, H, X ] [4].

A quantitative criterion that reveals the EPR paradox was
first introduced by Reid in 1989 based on the idea that infer-
ence variances of two noncommuting observables below the
local uncertainty limit are incompatible with the local realism
of Bob’s system [17]. This idea can be improved by using a
metrological complementarity relation between the sensitivity
under unitary evolutions generated by H and measurements of
H [16], which implies the above-mentioned phase-generator
uncertainty relation between θ and H . In the context of
quantum foundations, an EPR paradox, or equivalently the
possibility of Alice to “steer” Bob’s system into seemingly
incompatible local quantum states, can be formalized in terms
of local hidden state (LHS) models [3]. An EPR paradox is
present when the assemblage cannot be explained in terms of
a LHS model,A(a, X ) = ∑

a,λ p(a|X, λ)p(λ)σ B
λ , for a classi-

cal random variable λ with probability distribution p(λ), that
determines both Alice’s measurement results p(a|X, λ) and
Bob’s LHS σ B

λ .
Apart from fundamental studies, detecting EPR steering

is of interest to certify the presence of necessary quantum
resources for a number of quantum information tasks [6]. In
Ref. [16], a metrological steering criterion based on the QFI
is proposed, stating that for any assemblage A that admits a
LHS model it holds

�1 := F B|A[A, H,Y ] − 4 VarB|A[A, H, X ] � 0, (6)

independently of the choices of Alice’s measurement.
As the conditional squeezing parameter provides a lower

bound to the conditional FI (4), this allows us to formulate
the following steering criterion: For any assemblage A that
admits a LHS model we have

�2 := (χ−2)B|A[A, H, M,Y ] − 4 VarB|A[A, H, X ] � 0. (7)

This criterion is one of the main results of this work. The
violation of (7) reveals useful EPR steering in the assisted
metrological protocol.

V. REDUCTION TO REID’S CRITERION

Reid’s seminal criterion for EPR steering [4,17] is based
on the uncertainty relation between two non-commuting ob-
servables H and M and reads in linearized form

�3 := |〈[H, M]〉ρB |2
VarB|A[A, M,Y ]

− 4 VarB|A[A, H, X ] � 0. (8)

The conditional variance (5) represents the average of individ-
ual variances for Bob’s conditional states, and coincides with
the minimal inference variance [4]. For linear observables,
Reid’s criterion is very powerful for Gaussian states; in a con-
tinuous variable setting, it has been shown to be necessary and
sufficient for steering detection by Gaussian measurements
[3], while it may fail to detect steering in non-Gaussian cases.
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We observe from the hierarchy (4) that the conditional
squeezing parameter yields a tighter approximation of the
metrological steering criterion than Reid’s criterion and there-
fore is able to detect more steerable states: We obtain �1 �
�2 � �3. Interestingly, both criteria �2 and �3 are based on
measurements of low moments of the same observable M; the
difference between them consists in the way the results are
processed.

A crucial advantage of �2 over Reid’s criterion �3 is the
possibility to adapt the measurement observable M to each
conditional state ρB

b|Y individually [see the maximization in
Eq. (2)], while in (8) only a single M is used for the entire
assemblage. As we will see below, this leads in particular to
an increased potential to reveal non-Gaussian EPR steering in
a wider class of states, especially when the set M contains
higher-order moments of measurement operators.

VI. REDUCTION TO LINEAR-ESTIMATE
REID’S CRITERION

If Bob’s estimator hest (a) depends linearly on Alice’s mea-
surement result a and takes the form hest (a) = ga + d , optimal
estimates are obtained by minimizing the inference variance
Var[Hest]. Based on that, a well-known linear-estimate Reid’s
criterion commonly used in experiments is

�4 := |〈[H, M]〉ρB |2
Var[Y + g′M]

− 4Var[X − gH] � 0. (9)

Note that in a Gaussian system, where quantum correlations
are well characterized with first- and second-order moments,
the best estimator equals the optimized linear estimator [4].
In this case, we have Var[X − gH] = VarB|A[A, H, X ], which
leads to �3 = �4 for Gaussian states.

We define the maximum value of the left-hand side of the
above criteria as

δi = max
H∈span(H)M∈span(M)

�i, (10)

respectively (see Secs. I B, II B, III C, and III D in the Sup-
plemental Material [52]). As a result, a hierarchy of criteria
reads

δ1 � δ2 � δ3 � δ4. (11)

In the following, we will compare these criteria for a relevant
experimental scenario.

Split spin-squeezed state. Squeezed states play a key role
in measurement sensitivity enhancement, overcoming the
standard quantum limit in quantum metrology [29,37,53–
55]. Experimentally, these are routinely adopted in atom
and optical interferometers, e.g., for Ramsey spectroscopy
[29], atom clocks [56], and gravitational-wave detection [57].
Many experiments have demonstrated the preparation of spin
squeezing in atomic systems [33,58–61]. Here, we focus on
spin-squeezed states prepared via one-axis twisting (OAT)
dynamics [62], one of the paramount approaches to generate
squeezing via atomic collisions.

Initially, the atomic ensemble is prepared in a coherent
spin state, which consists of N spins polarized along the x
direction. Then, the state evolves according to the OAT Hamil-
tonian H = h̄χS2

z , where Sz = ∑
i σ

(i)
z /2 is the collective spin

operator and χ the interaction strength. This gives

|ψ (μ)〉 = 1√
2N

N∑
k=0

√(
N

k

)
e−i μ

2 (N/2−k)2 |k〉, (12)

where μ = 2χt parametrizes the time evolution, and k labels
the basis of Dicke states |k〉, i.e., symmetric states with k spins
up and N − k spins down that are simultaneous eigenstates of
S2 and Sz. For short interaction times, OAT results in near-
Gaussian spin-squeezed states, however, as time increases the
state becomes oversqueezed and significantly non-Gaussian
[30,40].

In order to use such states for assisted phase-estimation
protocols, we distribute the N spins to the two parties A and
B, see Fig. 1. In practice, this can be achieved by splitting
the atomic ensemble into two spatially separated regions, as
was done experimentally in Ref. [63]. From a theoretical point
of view, this process can be described by a beam-splitter-like
transformation on the state Eq. (12), that results in the split
spin-squeezed state [64]

|
(μ)〉 = 1

2N

N∑
NA=0

NA∑
kA=0

N−NA∑
kB=0

√(
N

NA

)(
NA

kA

)(
N − NA

kB

)

× e−i μ

2 (N/2−kA−kB )2 |kA〉NA |kB〉N−NA . (13)

Here, Nα is the number of particles in α ∈ {A, B}, and |kα〉Nα

represents the Dicke state with kα spins down and Nα − kα

spins up along the z direction.
Relevant properties of split spin-squeezed states, such as

polarization or entanglement, can be characterized by mea-
surements of local collective spin observables [42,63,64].
These are defined as Sα = ∑

i∈α σ (i)/2, where σ (i) is the vector
of Pauli matrices acting on particle i.

VII. MEASUREMENT OPTIMIZATION

The sharpest formulations of the above criteria are obtained
by optimizing the measurement observables X,Y for Alice,
and H, M for Bob, respectively. In principle, one would like
to optimize over all possible measurements, but for practical
purposes we are interested in measurements that are experi-
mentally practical. In the simplest case of linear observables,
S(1) = (Sx, Sy, Sz ) is used to describe all the local collective
spin measurements for Alice and Bob and leads to steering
criteria that contain the average values and variances of these
operators. The measurements required to evaluate the linear
criterion �

(1)
2 , e.g., 〈Sx〉 and 〈S2

z 〉, are routinely performed
in experiments with atomic ensembles [29]. We consider the
squeezing direction of the split spin-squeezed states to define
the z axis, and the antisqueezing direction to define the y
axis. Therefore, Alice’s measurement settings X and Y can be
also restricted to the yz plane. To optimize the measurement
directions of Alice’s and Bob’s observables, we construct the
moment matrix [30] and covariance matrix for Bob’s condi-
tional states (see Supplemental Material [52] Sec. II B for
details).

For the metrological characterization of non-Gaussian spin
states, higher-order moments of physical observables are of
great importance [30]. Note that in Ref. [25], the criterion
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FIG. 2. Steering detection for split spin states |
(μ)〉 with total atom number N = 21. (a) A hierarchy of criteria with optimized
measurement operators, where the dashed lines represent the optimized second-order criteria δ

(2)
2 and δ

(2)
3 involving the nonlinear spin operator

ensemble S(2). (b) Comparison among first terms of optimized criteria δ1,2,3, which is also the chain of inequalities in (4).

�4 was first applied to measurements of nonlinear oper-
ators. Here, we also extend the criterion �2 based from
the conditional spin-squeezing parameter and Reid’s crite-
rion �3 to nonlinear versions that can be further optimized
by taking into account a set M of possible higher-order
measurements for Bob (i.e., M). When M is a product of
up to n linear spin observables, optimized nonlinear δ

(n)
2,3

are still upper bounded by the Fisher criterion δ1, but this
bound becomes increasingly tight as n grows larger. To be
concrete, let us start with the second-order criteria, M =
S(2), where we choose the measurement observable M from
an ensemble of linear and quadratic spin operators S(2) =
(Sx, Sy, Sz, S2

x , S2
y , S2

z ,
1
2 {Sx, Sy}, 1

2 {Sx, Sz}, 1
2 {Sy, Sz}). We re-

fer to Ref. [35] for an experimental measurement of such
observables. Moreover, it was shown in Ref. [31] how such
observables may become accessible by a second OAT evo-
lution before the measurement of a linear spin observable.
For our second-order criteria �

(2)
2 and �

(2)
3 , Alice’s measure-

ments X,Y and Bob’s generator H for the phase imprinting
evolution are still linear, but the measurement operator for
Bob takes into account second-order operators M = m · S(2),
with m ∈ R9. Analogously, we can also obtain higher-order
criteria, leading to another chain of inequalities

δ
(1)
i � δ

(2)
i � δ

(3)
i � · · · � δ1, (14)

for both criteria i = 2, 3.
As illustrated in Fig. 2(a), for a split spin-squeezed state

with N = 21 atoms, we obtain analytically optimized crite-
ria δi evolved with the OAT squeezing parameter μ, where
both the hierarchy relations (11) and (14) are shown clearly.
At small squeezing levels μ, the evolution generates near-
Gaussian split spin-squeezed states: All criteria detect steering
and tend to converge. However, if only linear operators
are considered, Reid’s criteria δ4 and δ

(1)
3 decay soon in the

non-Gaussian area for longer evolution times, while the condi-
tional spin-squeezing parameter criterion δ

(1)
2 reveals steering

in a wider range of states. Furthermore, when it comes to
the nonlinear version, the second-order δ

(2)
2 shows significant

advantages. The Fisher criterion δ1 bounds all other criteria

from above during the entire dynamics, but the conditional
spin parameter criterion δ2 is more practical experimentally.
Moreover, as a consequence of the convergence of nonlinear
spin-squeezing parameters to the quantum Fisher information
for an optimal observable [30], it will tend towards the Fisher
criterion as higher-order measurement operators are involved.
All of these criteria compare the phase-estimation sensitivity
[first term in Eqs. (6)–(9)] to the estimation variance for the
generator (second term). While the second term hardly varies
between the criteria, the hierarchy can be traced back to the
chain of inequalities (4), which is reflected in Fig. 2(b).

VIII. CONCLUSIONS

We have proposed a non-Gaussian steering criterion based
on conditional spin-squeezing parameters. By introducing
nonlinear operators and optimizing measurement within ac-
cessible higher-order observables, the criterion shows an
improved ability to reveal EPR steering with a larger range
of non-Gaussian states. This approach is more powerful than
Reid’s criteria, and leads to a hierarchy of approximations to
the most powerful metrological approach to steering. One key
advantage of metrology-based steering criteria is the ability to
adjust the measurement observable to each conditional state
individually. Our steering criterion is experimentally feasi-
ble and constitutes a general method to reveal non-Gaussian
steering in a bipartite scenario. This work provides a powerful
approach to further investigate nonlinear EPR correlations in
non-Gaussian states and takes a step further to unlock the
promising applications for non-Gaussian systems.
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