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Verification of quantum-gate teleportation based on Bell nonlocality in a black-box scenario
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Quantum gate teleportation (QGT) is an excellent candidate for implementing remote quantum gate operations
in large-scale quantum computer networks as it has the minimum resource demand to realize such computing
models. The Bell nonlocality of quantum entanglement channel in QGT can be transformed into the correspond-
ing posterior statistics correlation obtained by local measurements after QGT operation, and this Bell-type-like
correlation can be used to check device and measurement loopholes or information leaking in the teleportation
systems. In this paper, we propose a verification scheme based on Bell nonlocality for quantum CNOT gate
teleportation in a black-box scenario where the vendors may not be trusted. The double criteria of high fidelity
(F̄ > 97.53%) and high CHSH inequality violation (CHSH > 2) are used for assessing a vendor’s reliability. The
clients can use our scheme to check whether vendors employ classical simulation techniques to forge nonlocal
quantum computing processes and it could provide a secure manner for the construction of quantum computer
networks in the future.
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I. INTRODUCTION

Quantum teleportation (QT) [1] plays an important role in
the field of quantum information. It allows two remote parties,
the sender Alice and the receiver Bob, to use a shared quantum
maximally entangled state to transfer an unknown quantum
state without exchanging the physical system itself. Quantum
gate teleportation (QGT) [2] is an important extension of QT,
and QGT realizes the direct teleportation of quantum con-
trolled gates. In quantum networks, QGT is considered to be a
basic component of distributed quantum computing [3,4], and
it has the minimum communication cost (one shared quantum
entanglement pair and two classical bits) [5–7] for the realiza-
tion of remote-controlled quantum computing models, which
is of great significance for the the construction of large-scale
quantum computers in the future [2,8,9]. Both the theoretical
schemes [7,10–13] and the experimental implementation of
QGT [5,6,14] have been achieved.

Optimal QT or QGT works under the assumption that
all parties are trusted and the state of quantum channel is
maximally entangled. However, there may be physical imper-
fections in the devices and measurement. Especially because
of the precious of quantum maximally entangled state re-
sources, the untrusted vendors may use classical simulation
techniques to replace quantum resources. Factors like these
can lead to not only a lower teleportation fidelity but also
the information leaking in teleportation. Fortunately, relevant
research has found that, regardless of the functioning of the
devices and quantum channels involved, the security and
reliability of QT implementation can be deduced from the
observed local measurement outcomes of the QT [15,16].
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In 1994, Popescu proved that if the two communicating
parties share no entanglement, the average fidelity for the tele-
portation of an unknown quantum state is limited by F̄ = 2

3
[17]. In 1996, Gisin’s work made this criterion no longer
credible and it proved that a average fidelity of 0.87 can be
achieved when only classic resources were used for simulating
a quantum-state teleportation [18] (exceeding the bound of
F̄ = 2

3 ). Besides the fidelity, the Bell nonlocality correlation
is introduced in a quantum teleportation verification and the
device-independent (DI) manner, which is initially introduced
in quantum key distribution [19–22], can also be used to check
quantum state teleportation processing. Through the study of
the relationship between Bell’s theorem [23] and quantum
teleportation, the work of Clifton and Pope [15] showed that
the condition of average fidelity F̄ > 0.9 would guarantee that
the observed teleportation result is not simulated by local vari-
ables. However, in the situation of using active compensation
information for calculation, the possibility for vendors to steal
and fake information has been proven [24]. In 2013, Ho et al.
proposed a new protocol to classically simulate a one-way
quantum-state teleportation with an average fidelity of 0.97
[16]. Ho also proposed a new device-independent verification
scheme for QT, which can verify the absence of such high-
fidelity classical simulations by using only posterior statistics
[16]. However, these DI verification schemes of QT cannot be
directly applied to the QGT process because the process of
QGT is more complex than QT.

As QGT is a two-way quantum information transmission
process, the target system of QGT has changed from a qubit in
QT to a quantum gate composed of two-qubits of the two com-
munication parties, which also leads to that the dimensions of
the whole target system is raised from three-dimensional to
15-dimensional in the quantum Bloch-vector space descrip-
tion [25]. When designing a nonlocality verification scheme of
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QGT, Bell nonlocality in quantum entanglement channel will
be projected into a 15-dimensional space, and the correspond-
ing local measurements required for posterior statistics may
become more complex than the ones in QT. If only performing
local measurements as in previous DI-QT schemes [16], the
CHSH inequality will not be violated with probability distri-
butions achieved in QGT scheme.

In this paper, we construct a CHSH-type verification
scheme for quantum CNOT gate teleportation. In this scheme,
we give the form of the probability distributions of four-qubit
measurements results in the QGT scheme, bring it into the
CHSH inequality [26] to find the region where the inequality
violates, and prove that Bell nonlocality of the black-box sys-
tem can be measured with our manner. With the CHSH value
> 2 criteria alone, one can only verify whether the vendor
use enough entanglement resources to perform a CNOT tele-
portation; but combined with the criteria of average fidelity
F̄ > 97.53%, one can also check whether vendors employ
classical simulation techniques to eavesdrop information and
forge nonlocal quantum computing processes. As any natural
building blocks for quantum algorithms can be achieved by
combining CNOT gates and single-qubit rotations [27], this
scheme not only is a verification of the security and reliability
of of QGT, but also provides a secure manner for the construc-
tion of quantum computer networks in the future.

This paper is organized as follows. In Sec. II, we first
review the QGT system of a CNOT gate and introduce a de-
scription of the present proposal in the black-box scenario
(Sec. II A); and then we give the geometry description for
a two-qubits system using generalized Bloch vectors in the
15-dimensional real vector space (Sec. II B); finally, we give
the measurements for Bell nonlocality verification process
design in the case of black-boxes and give the form of the
probability distributions of four-qubit measurements results
in the QGT scheme (Sec. II C). Based on this, in Sec. III, we
brought the probability distributions of measurements results
into the CHSH inequality, gave the form of corresponding
CHSH values, and discuss the relationship between observed
inequality violations and system performance. In Sec. IV, we
discussed the high fidelity classical simulation scheme of the
quantum CNOT gate teleportation system, and analyzed the
security assessment of the black-box system in the presence
of eavesdropping and classical simulation. Finally, we give
the conclusion and summary in Sec. V.

II. QGT VERIFICATION PROPOSAL
IN BLACK-BOX SCENARIO

In this section, we review the construction of a nonlocal
quantum CNOT gate [5–7,10–12], introduce the Bell nonlo-
cality verification proposal of the nonlocal quantum CNOT

gate teleportation (CNOT-QGT) in the black-box scenario, and
give the geometry description of the present proposal [25,28]
and the probability distributions of measurements results in
verification proposal.

A. Quantum teleportation of a CNOT gate

Assume that there are two independent users Alice and
Bob who each hold one qubit A or B, and they need to per-
form a nonlocal quantum CNOT gate on qubits A and B (as

FIG. 1. The description of the quantum CNOT gate teleportation.
In this system scheme, Alice and Bob share a pair of EPR pairs,
U A

a and U b
B represent local quantum CNOT gates. For U A

a , A is the
control qubit and a is the target qubit. Similarly, for U b

B , b is the
control bit and B is the target qubit. Alice’s and Bob’s boxes have
additional classical information input. These information c0 and c1

represent the single-qubit measurement results of qubits a and b in
the corresponding measurement basis, respectively. Wherein, c0 is
the measurement result of Alice’s entangled qubit a, which is sent
to Bob through the classical communication channel, and c1 is the
measurement result of Bob’s entangled qubit b, which is sent to Alice
through the classical communication channel.

shown in Fig. 1).1 Meanwhile, Alice and Bob share a pair
of maximally entangled qubits (a, b) through the black-box
devices provided by the vendor, and the state of entangled
qubits is |φ+〉 = 1√

2
(|00〉 + |11〉)ab. In Alice’s black box,

there is a local CNOT gate operation performed on the qubit
A which state is |ψ〉A = α|0〉 + β|1〉 and the entangled
qubit a, and here, A is the control qubit. Then, Alice per-
forms a measurement on qubit a in the measurement basis
MZ ∈ {|0〉, |1〉}, and sends the outputs c0 ∈ {0, 1} to Bob
through the classic channel. Similarly, in Bob’s box, there
is also a CNOT gate operation between the entangled qubit b
and the input qubit B (|ψ〉B = γ |0〉 + ξ |1〉), where b is the
control qubit. Bob measures qubit b in the measurement ba-
sis MX ∈ {|0〉X = 1√

2
(|0〉 + |1〉), |1〉X = 1√

2
(|0〉 − |1〉)} and

sends the measurement outcome c1 ∈ {0, 1} to Alice. Then,
according to the result of active compensation information
(c0c1 ∈ {00, 01, 10, 11}), Alice and Bob further perform the
corresponding unitary operations ({IA ⊗ IB, σ z

A ⊗ IB, IA ⊗
σ x

B,−σ z
A ⊗ σ x

B}) on the qubits A and B, respectively, and
complete the teleportation of a nonlocal CNOT gate. Where
σ z

A = (1 0
0 −1)A and σ x

B = (0 1
1 0)B are the corresponding Pauli

operator operations on the corresponding qubit.
The vendor of quantum computing can integrate the above

processes into two boxes connected by classical channels and
quantum channels. After Alice and Bob purchase the boxes
that allegedly can perform quantum gate teleportation and
the related nonlocal computing function, they, respectively,
input one-qubit that they want to realize remote quantum gate
operation into the boxes. If the vendor of QGT is untrust-
worthy, he claims that Alice and Bob are conducting with
quantum resources. However, he actually only gave a high-
fidelity simulation using classical communications. Due to
the lack of prior evidence, it is impossible to judge whether

1The simulation of pure state situations is the most demanding for
teleportation. Therefore, in this study, we only focus on pure-state
input situations [16].
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FIG. 2. A verification scheme for the black-box of the two-qubits
QGT. In this scheme, there is no active compensation information
between the two black-boxes. �a and �b represents Alice’s and Bob’s
black-box input states, respectively. The inputs of Alice and Bob are
independent. After transmission by the QGT system, the output tar-
get state �n is the remote controlled CNOT gate state U A

B between Alice
and Bob. c0 and c1 are the black-box output results of Alice and Bob,
respectively. After QGT transmission, local measurement �za and �zb

are performed on the output states of Alice and Bob, respectively,
and independently, and the corresponding joint measurement results
β can be obtained.

the vendor’s statement is credible for Alice and Bob, espe-
cially when active compensation [24] is included, as shown
in Fig. 1. Active compensation is the process of publishing
the additional two bit input information (c0, c1) of Alice’s
and Bob’s boxes, which also provides more leeway for the
vendor to fake [16,24]. In fact, relevant research has proven
that with the active compensation, perfect teleportation can be
faked by purely classical methods [16,24,29]. Therefore, one
needs to verify the quantum nature of the black-box system
by observing the posterior statistical outcomes. In addition for
this untrusted vendor issue, we will take the CNOT-QGT black-
box system as an example to discuss the posteriori quantum
resource verification scheme of QGT. As shown in Fig. 2,
in a nonlocal verification scheme, the QGT implementation
system should be built first, and completing the basic QGT
process without publishing two bits of classical information
(c0, c1) (measurements results by performing detection on
entangled channel-qubits). Then, Alice’s and Bob’s qubits A
and B are measured and they publish all results by classical
communication to obtain statistical results through repeated
experiments. One can bring statistical results into the CHSH
inequality and prove that Bell nonlocality can be measured
using this method.

B. Bloch-vector description of a four-dimensional system

In quantum mechanics, the Bloch vector space [30–36]
can provide an intuitive geometric description of quantum
states or quantum operations. For two-dimensional quantum
systems, the density matrix representation of quantum state
can be expressed as ρ = |ψ〉〈ψ | = 1

2 (I2 + �n · �σ ), where, �σ =
(σ1, σ2, σ3) is the Pauli operator, and �n is the Bloch vector
corresponding to the quantum state ρ, for the pure state,
|�n| = 1 (mixed state |�n| < 1) [30]. Then the Bloch vector
corresponding to a two-dimensional quantum pure state |ψ〉
can be expressed as �n = (sin θ cos φ, sin θ sin φ, cos θ ), where
θ ∈ [0, π ], φ ∈ [0, 2π ], represents the two angle real parame-
ters of the unit Bloch sphere in the R3, θ represents the zenith
angle and φ is the azimuth angle [30–33]. The Bloch sphere
also can be extended to an N-dimensional quantum system.

For an N-dimensional quantum system, the N × N density
matrix ρ can be represented by a Bloch vector as

ρ = 1

N
IN + 1

2

N2−1∑
i=1

ni · λi, (1)

where IN is N × N identity matrix and λi is the genera-
tors of the algebra SU(N) group �λ [28]. In particular, for
the SU(2) group, �λ = �σ is the Pauli operator. The (N2 −
1)-dimensional vector �n = (n1, n2, . . . , nN2−1) is the corre-
sponding generalized Bloch vector for the N-dimensional
quantum system [28]. The Bloch vector space is contained
in the (N2 − 1)-dimensional space, i.e., {�n ∈ RN2−1 : |�n| �√

2(N−1)
N }. Different to the qubit case, however, it was proved

[28,37] that when N � 3, the map induced is not bijective:
not every point on the “Bloch sphere” in dimensions N2 − 1
corresponds to a physical state [37]. The Bloch vector space

is only a part of the hypersphere with radius
√

2(N−1)
N and the

(N2 − 1)-dimensional Bloch vector space has an asymmetric
structure (N � 3) [25,28]. In fact, at present, the structure of
the Bloch vector space is fully known only when N = 2, i.e.,
the three-dimensional Bloch sphere [25].

For a four-dimensional quantum system m that is
composed of two-qubits A, B, the generator of the SU(4)
group λi(i = 1, 2, . . . , 15) ∈ R15 is shown in Appendix A.
The corresponding Bloch vector space is part of a sphere with

radius
√

3
2 in the 15-dimensional vector space. If the two-qubit

system is four-dimensional completely separable that can be
represented as a tensor product of two two-dimensional
systems, i.e., ρm = ρA ⊗ ρB. In addition, the ρA (|ψ〉A) and
ρB (|ψ〉B) can be expressed as a three-dimensional Bloch
vector �a = (a1, a2, a3) = (sin θ cos φ, sin θ sin φ, cos θ )
and �b = (b1, b2, b3) = (sin η cos υ, sin η sin υ, cos η)
respectively, where θ and φ are the angle real parameters
of Bloch ball corresponding to Alice. Similarly, η and
υ are the angle parameters corresponding to Bob. Also,
θ, η ∈ [0, π ] represents the zenith angle, φ, υ ∈ [0, 2π ] are
the azimuth angles [30,31,36]. According to Eq. (1), one can
denote the separable product state ρm into a 15-dimensional
Bloch vector �m = (m1, m2, . . . , m15), and the components
mi(i = 1, 2, . . . , 15) of the vector �m can be computed in
terms of components of the Bloch vectors �a and �b using
explicit realization of the generators of SU(4) [25]

m1 = b1

2
(1 + a3), m2 = b2

2
(1 + a3) , m3 = b3

2
(1 + a3),

m4 = a1

2
(1 + b3), m5 = a2

2
(1 + b3),

m6 = 1

2
(a1b1 + a2b2), m7 = 1

2
(a2b1 − a1b2),

m8 = 1

2
√

3
(a3b3 + 2a3 − b3),

m9 = 1

2
(a1b1 − a2b2), m10 = 1

2
(a1b2 + a2b1),

m11 = a1

2
(1 − b3), m12 = a2

2
(1 − b3),
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m13 = b1

2
(1 − a3), m14 = b2

2
(1 − a3),

m15 = 1√
6

(a3 + b3 − a3b3). (2)

After a perfect nonlocal CNOT operation on qubits A and B,
the corresponding density matrix of the system AB becomes
ρA,B = 1

4I4 + 1
2 (�n · �λ). The elements ni(i = 1, 2, . . . , 15) of

15-dimensional Bloch vectors �n of this two-qubit system are
shown as follows:

n1 = b1

2
(1 + a3), n2 = b2

2
(1 + a3), n3 = b3

2
(1 + a3),

n4 = 1

2
(a1b1 − a2b2), n5 = 1

2
(a1b2 + a2b1),

n6 = a1

2
(1 − b3), n7 = a2

2
(1 − b3),

n8 = 1

2
√

3
(2a3 + b3 − a3b3),

n9 = a1

2
(1 + b3), n10 = a2

2
(1 + b3),

n11 = 1

2
(a1b1 + a2b2), n12 = 1

2
(a2b1 − a1b2),

n13 = b1

2
(1 − a3), n14 = b2

2
(a3 − 1),

n15 = 1√
6

(a3 − b3 + a3b3). (3)

In addition, as the ideal quantum gate teleportation process
was described in Sec. II A, with (c0, c1) as the condition, the
teleportation state is contained in the boxes for

ρA,B = 1
4I4 + 1

2 [�n′ · �λ] = 1
4I4 + 1

2 [(Rc0,c1 · �n) · �λ], (4)

where �n′ = Rc0,c1 · �n, R00 = I, R01 = Ra(ẑ, π ), R10 =
Rb(x̂, π ), R11 = Ra(ẑ, π ) & Rb(x̂, π ). The 15-dimensional
unitary matrix form of Rc0,c1 is shown in Appendix B.

C. Measurement description of quantum CNOT gate
teleportation in the black-box scenario

As the internal workings of the black boxes are not visible,
a posterior verification approach is necessary for Alice and
Bob to avoid being deceived by the vendor. The verification
method based on the Bell nonlocality is shown in Fig. 2.
Alice and Bob can only compare the posterior results with
the expected results. Therefore, in such a black-box scenario,
Alice and Bob should be trusted for their respective input
states, and share a common reference frame for preparing
the inputs and measuring the outputs [16]. At the same time,
without active compensation, the observed phenomena are not
affected by local factors and meet the space-like separation
relationship for the relevant events of the Bell test.

After CNOT-QGT, Alice and Bob each independently per-
form a measurement on the subsystem A and B along
the direction �za and �zb, respectively, where �za = (xa, ya, za)
and �zb = (xb, yb, zb). The 15-dimensional Bloch vector �z de-
notes a separable four-dimensional quantum state ρ�z formed
by two one-qubit states ρ�za and ρ�zb which are denoted
by two three-dimensional Bloch vectors �za and �zb, respec-
tively, namely, ρ�z = ρ�za ⊗ ρ�zb . According to the definition

and properties of operator fidelity [38], the measurement re-
sults of Alice and Bob are linearly distributed with �za and
�zb, respectively [16]. That is, there are four corresponding
measuring projection directions for �z: |z1〉 → ρ �z1 = ρ�za ⊗ ρ�zb ,
|z2〉 → ρ �z2 = ρ−�za ⊗ ρ−�zb , |z3〉 → ρ �z3 = ρ−�za ⊗ ρ�zb , |z4〉 →
ρ �z4 = ρ�za ⊗ ρ−�zb . Here, ρ�x = 1

N IN + 1
2 (�x · �λ) and ρ−�x =

1
N IN + 1

2 (−�x · �λ), the relationship between the above qubit
state ρ�x and the corresponding Bloch vector �x is given
by Eq. (1). The form of the 15-dimensional Bloch vector
|z j〉 ( j = 1, 2, 3, and 4) is shown in Appendix B. Then,
the joint measurement output result is recorded as β = +1
when Alice and Bob measuring projection directions are �za

and �zb, respectively (correspondingly, the joint measurement
result is �z = �z1); otherwise, the joint measurement output
results are recorded as β = −1 (correspondingly, the joint
measurement result is �z2, �z3, or �z4). Meanwhile, the output
of Alice’s classical bit is c0 ∈ {0, 1}, and Bob’s classical bit
is c1 ∈ {0, 1}. For each group of randomly selected inputs
vectors and measurement direction are �a, �b, �za, and �zb. One
can obtain the corresponding group {�n, �z} ∈ R15. Assuming
that there is no active compensation in the system and the
input states are credible, one can extract the probability dis-
tributions P(c0, c1, β|�n, �z). In the ideal case, the probability
P(β = +1|c0, c1, �n, �z) is

P(β = +1) = Tr[ρA,B · ρ �z1 ] = 1
4 [1 + 2(Rc0,c1 · �n) · �z]. (5)

Similarly, the probability P(β = −1|c0, c1, �n, �z) is

P(β = −1) = Tr[ρA,B · ρ �z2 ] + Tr[ρA,B · ρ �z3 ] + Tr[ρA,B · ρ �z4 ]

= 1
4 [3 + 2(Rc0,c1 · �n) · ( �z2 + �z3 + �z4)]

= 1
4 [3 − 2(Rc0,c1 · �n) · �z]. (6)

That is, the probability P(β|c0, c1, �n, �z) can be represented as

P(β = ±1|�z) = 1
4 [2 − β + 2β(Rc0,c1 · �n) · �z]. (7)

Supposing that Alice and Bob have carried out an infinite
number of experiments. From the statistical data of the out-
comes, they can obtain the relevant probability distribution
P(c0, c1, β|�n, �z), which is used to verify the nature of this
CNOT-QGT. In an ideal situation, the output of (c0, c1) is al-
most uniformly distributed, and the probability P(c0, c1|�n) =
1
4 . The measurement result β has a linear distribution with �z;
then, the relevant probability distribution is

P(c0, c1, β|�n, �z) = 1
16 [2 − β + 2β(Rc0,c1 · �n) · �z]. (8)

In the situation of active compensation, Alice and Bob can
extract a vector �Mc0c1 (�n) from the boxes, which is equiva-
lent to �n in the ideal case. By randomly sampling the state
�Mc0c1 (�n), the average teleportation fidelity of the average sys-

tem can be estimated as [16]

F̄ =
∫

d�n
S

∑
c0,c1

P(c0c1)
1 + 2 �Mc0,c1 (�n) · �n

4
. (9)

With Eqs. (8) and (9), one can formally carry out the quantum
verification of the nonlocal CNOT gate teleportation system.
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III. NONLOCALITY VERIFICATION OF QUANTUM CNOT

GATE TELEPORTATION

In this section, we will move to the construction of the non-
locality verification scheme, based on the black-box scenario.
Since the Bell nonlocality test only depends on the statistical
correlation between the observed results in the experiment,
it is considered to have the minimum equipment assump-
tion requirement [22]. Here, in our verification scheme for
CNOT-QGT, the CHSH-type inequality is used to quantify Bell
nonlocality.

In the black-box scenario, Alice and Bob can choose from
two groups of input states, and correspondingly, they may
obtain two 15-dimensional Bloch vectors �n0 and �n1 as outputs
of the boxes; similarly, they can choose to make a joint mea-
surement in two bases �z0 and �z1. The possible input groups of
the corresponding two black-boxes are as follows:

ρ�n0 : U A
B [ρ�a0 ⊗ ρ�b0

]; ρ�n1 : U A
B [ρ�a1 ⊗ ρ�b1

];

ρ�z0 : [ρ�za0
⊗ ρ�zb0

]; ρ�z1 : [ρ�za1
⊗ ρ�zb1

]. (10)

Here, U A
B stands for the operator of CNOT gate. ρ�a j = 1

2 (I2 +
�a j · �σ ) and ρ�b j

= 1
2 (I2 + �b j · �σ ) ( j ∈ {0, 1}) represent the

optional input group of Alice and Bob’s black-boxes. Were,
�a j = (a j1, a j2, a j3) = (sin θ j cos φ j, sin θ j sin φ j, cos θ j ) and
�b j = (b j1, b j2, b j3) = (sin η j cos υ j, sin η j sin υ j, cos η j ),
where θ j, η j ∈ [0, π ] and φ j, υ j ∈ [0, 2π ]. And ρ�n j =
1
4I4 + 1

2 (�n j · �λ) is two-qubit quantum target states
corresponding to �n j , and the elements n ji(i = 1, 2, . . . , 15)
of 15-dimensional Bloch vectors �n j can be achieved by
Eq. (3). Correspondingly, ρ�zk = 1

4I4 + 1
2 (�zk · �λ) (k ∈ {0, 1})

is a two-qubit quantum state corresponding to �zk as
introduced in Sec. II C. In addition, ρ�zak

= 1
2I2 + 1

2 (�zak · �σ )

and ρ�zbk
= 1

2I2 + 1
2 (�zbk · �σ ), where �zak = (xak, yak, zak ) and

�zbk = (xbk, ybk, zbk ) represent the optional measurement basis
of Alice and Bob when Bell nonlocality verification is
performed.

The classical outcome of the black-box system consists
of two bits (c0, c1). We define that when the output state is
�n j ( j = 0, 1), one can extact one bit α ≡ 2c j − 1 ∈ {−1,+1}.
Then one can evaluate CHSH = E00 + E01 + E10 − E11 with

Ejk ≡ P(α = β| j, k) − P(α �= β| j, k)

= P(c j = 0, β = −1| j, k) + P(c j = 1, β = +1| j, k)

− P(c j = 0, β = +1| j, k) − P(c j = 1, β = −1| j, k),

(11)

where P(c j, β| j, k) ≡ P(c j, β|�n j, �zk ), j, k ∈ {0, 1}. If
CHSH > 2, in a loophole-free assessment, it means that
the communication parties must have shared quantum
entanglement.

By considering in a noisy channel, it is further assumed
that

�Vc0c1 (�n) = μRc0c1 �n, μ ∈ [0, 1]. (12)

Here, �Vc0c1 (�n) represents the vector shared between Alice’s
and Bob’s boxes in the noisy channel. μ ∈ {0, 1} represents
the noise influence in quantum channel, and it refers to the
overlap between actual channel state and Bell state. The

impact of the vendor’s replacement of channel-entangled re-
sources also can be denoted by μ. Equation (12) means that,
even in the case of active compensation, the system will al-
ways automatically retrieve to μ�n regardless of c0, c1. Thus,
the probability Pobs(c0, c1, β|�n, �z) in a nosiy channel is

Pobs(c0, c1, β|�n, �z) = 1
16 [2 − β + 2β · �Vc0c1 (�n) · �z]. (13)

From Eq. (11), the CHSH function of the CNOT gate telepor-
tation in black-box case is

CHSH = 1
4 (�z0 + �z1)[ �V00(�n0) + �V01(�n0) − �V10(�n0)

− �V11(�n0)] + 1
4 (�z0 − �z1)[ �V00(�n1)

+ �V10(�n1) − �V01(�n1) − �V11(�n1)]

= μ(�z0 + �z1) · �n′
0 + μ(�z0 − �z1) · �n′

1

= μ( f1 + f2), (14)

where

�n′
0 =

[
0,

b02

2
(1 + a03),

b03

2
(1 + a03),

0, 0, 0, 0,
1

2
√

3
(b03 − a03b03), 0, 0, 0, 0,

0,
b02

2
(a03 − 1),

1√
6

(a03b03 − b03)

]
,

�n′
1 =

[
0, 0, 0,

a11b11

2
,

a12b11

2
,

a11

2
,

a12

2
,

0,
a11

2
,

a12

2
,

a11b11

2
,

a12b11

2
, 0, 0, 0

]
, (15)

and

f1 = 1
2 [b02(yb0za0 + yb1za1) + b02a03(yb0 + yb1)

+ b03(zb0za0 + zb1za1) + b03a03(zb0 + zb1)],

f2 = 1
2 [a11(xb0xa0 − xb1xa1) + a11b11(xa0 − xa1)

+ a12(xb0ya0 − xb1ya1) + a12b11(ya0 − ya1)]. (16)

From Eqs. (14) to (16), it can be found that for a set
of inputs and corresponding measurement bases from Al-
ice and Bob, the CHSH value is proportional to the overall
noise factor μ of the system. When Alice and Bob se-
lect input groups {�a0 = (0, 0, 1), �b0 = (0, 0, 1)}, and {�a1 =
( 1√

2
, 1√

2
, 0), �b1 = (1, 0, 0)}, by using the corresponding opti-

mal measurement basis {�za0 = (
√

6
4 ,

√
6

4 , 1
2 ), �zb0 = ( 1

2 , 0,
√

3
2 )},

{�za1 = (−
√

6
4 ,−

√
6

4 , 1
2 ), �zb1 = ( 1

2 , 0,
√

3
2 )} (which is the mea-

surement basis to maximize the CHSH value), there is
CHSHmax = 3

√
3

2 μ ≈ 2.598 in the case of μmax = 1. The
point corresponding to the above input groups that maximizes
the CHSH value is θ0 = 0, θ1 = π

2 , η0 = 0, η1 = π
2 , φ1 = π

4 ,
υ1 = 0, and φ0, υ0 ∈ [0, 2π ]. Therefore, to make sure the
quantumness of the system (CHSH > 2), the noise factor μ

should satisfy μ � 4
3
√

3
≈ 0.7698.

In addition, from Eq. (9), one can see that the critical value
of the average teleportation fidelity of the quantum nonlocal
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CNOT gate is

F̄ =
∫

d�n
S

· 1 + 2 �Vc0,c1 (�n) · �n
4

= 1 + 2μ|�n|2
4

� 1

4

(
1 + 3 · 4

3
√

3

)
≈ 0.8274. (17)

From Eq. (17), it can be concluded that for a group of
trusted inputs, there is a proportional relationship between the
noise factor μ and fidelity. If the impact of overall noise can be
expressed with μ alone, the observed CHSH value can reflect
the performance of the gate teleportation, as the fidelity is
proportional to the CHSH value also and the judgments of the
quantumness of QGT system is CHSH > 2 or F̄ > 0.8274.
However, it was proved that in the QT black-box system,
the vendor can make the average fidelity of the QT scheme
exceed the critical value under the violation boundary of Bell
inequality through classical simulation forgery [16,18]. This
makes us have to consider whether there will be a high-fidelity
classical simulation occurred in the QGT systems. Therefore,
in the next section, we will further study the high-fidelity
classical simulation methods in four-dimensional quantum
systems and improve our conclusions.

IV. HIGH-FIDELITY CLASSICAL SIMULATION AND
SECURITY ANALYSIS OF QUANTUM CNOT GATE

TELEPORTATION SYSTEM

A. High-fidelity classical simulation without CHSH > 2

The vendor can simulate a CNOT-QGT process by us-
ing a bilateral classical simulation protocol of quantum
state teleportation. For example, in Gisin’s classical sim-
ulation protocol [16,18], the Bloch sphere can be evenly
divided into four parts Sd0d1 (d0 or d1 = 0, 1), and each
part has its center vector �td0d1 which can be defined
as �t00 = 1√

3
(+1,+1,+1), �t01 = 1√

3
(+1,−1,−1), �t10 =

1√
3
(−1,+1,−1), �t11 = 1√

3
(−1,−1,+1). By using Gisin’s

protocol, any input vector �a or �b ∈ Sd0d1 can be replaced by
the corresponding �td0d1 . Alice and Bob’s boxes can contain
a series of nonmaximally entangled states for distribution in
advance, such as U A

B (�t00 ⊗ �t00), U A
B (�t00 ⊗ �t01), U A

B (�t01 ⊗ �t00),
U A

B (�t01 ⊗ �t01), and so on. There are 16 possible combinations,
and the corresponding modified states that can be realized by
local operation. These states can replace any input of Alice
and Bob. We use two �t00 ⊗ �t00 states as the inputs to verify
the violation of the CHSH inequality we derived in the black-
box scenario. According to the CHSH function in Eq. (14),
with the outputs of a series of U A

B (�t00 ⊗ �t00) and related c0c1,
the corresponding CHSHmax ≈ 1.5396μ, μ ∈ [0, 1], which
always satisfies CHSH � 2, and the average teleportation fi-
delity F̄ ≈ 0.76. The other classical simulation inputs give the
same conclusion with the corresponding CHSH � 2.

Ho et al. [16] proposed a quantum teleportation classical
simulation protocol with maximum fidelity. In this classical
simulation model, for any input, the resultant vectors must
have their individual components limited to 1√

2
. That is, for

the input �t = (x, y, z), there are six regions on the bloch
sphere where the CHSH value of DI-QT scheme [16] is larger
than 2, which are (1) z > 1√

2
; (2) z < − 1√

2
; (3) x > 1√

2
; (4)

x < − 1√
2
; (5) y > 1√

2
; (6) y < − 1√

2
. To prevent any possible

violation, the classical simulation imposes limits on the input
components in the corresponding regions. For example, if the
z component of a Bloch vector is greater than 1√

2
, this input

vector can be replaced as

�a =
⎛
⎝sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠ 
→ �aB

x =

⎛
⎜⎝

1√
2

cos φ
1√
2

sin φ
1√
2

⎞
⎟⎠ (18)

to ensure that there is no inequality violation.
One can adopt Ho’s simulation scheme and

apply it to bilateral quantum teleportation. Let us
suppose that �aB

x0 = ( 1√
2

cos φ, 1√
2

sin φ, 1√
2

), �bB
x0 =

( 1√
2

cos υ, 1√
2

sin υ, 1√
2

), �aB
x1 = ( 1√

2
cos φ′, 1√

2
sin φ′, 1√

2
),

and �bB
x1 = ( 1√

2
cos υ ′, 1√

2
sin υ ′, 1√

2
) are the inputs to verify

the violation of the CHSH inequality in Eq. (14), in the
black-box scenario, one can obtain CHSHmax ≈ 1.866μ < 2
with an average teleportation fidelity of F̄ ≈ 0.9545. The
other classical simulation inputs give the same conclusion
with the corresponding CHSH � 2. Obviously, there is
always no inequality violation and the classical simulation
results of Ho’s model cannot satisfy the our nonlocality
verification scheme.

Ho’s scheme needs to compress a three-dimensional Bloch
vector in six regions [16]. For the CNOT-QGT scheme, we
can propose a classical simulation protocol PGate in which the
three-dimensional input Bloch vector is only compressed in
two regions, and it can achieve higher fidelity while avoiding
CHSH inequality violations. To construct this protocol, one
should abandon the hypothesis requirement of Eq. (12), but
only that the compensated �Vc0c1 form a consistent description,
i.e., μ = 1 and ∀ �nx, ∃ �nB

x s.t. Rc0c1
�Vc0c1 (�nx ) = �nB

x .
Then, by reviewing the CHSH inequality we previously

derived, for each group of inputs �a and �b, there are two kinds
of optimal simulation schemes. For vectors �a and �b that do not
cause CHSH inequality violations regardless of the measure-
ment basis �z, we have

�a 
→ �aB
x = �a, �b 
→ �bB

x = �b, �n 
→ �nB
x = �n, (19)

which retains its own state.
For the CHSH inequality defined in Eq. (14), according to

the maximum CHSH value situation (i.e., using the optimal
measurement basis that maximizes the CHSH value), the input
range of Alice and Bob that can make CHSH > 2 (inequality
violation) is (as shown in Figs. 3 and 4)

(i) 0 � θ < 0.4π, φ ∈ [0, 2π ],

0 < η < 0.32π, υ ∈ [0, 2π ],

(ii) 0.276π < θ < 0.724π, 0 � φ < 0.57π or

1.93π < φ � 2π

0.1π < η < 0.9π, 0 � υ < 0.4π or

1.6π < υ � 2π. (20)

According to this simulation protocol, to avoid the situ-
ation of CHSH > 2, vectors �a and �b in this region should
be replaced by the assignment vectors �aB

x and �bB
x . Then, to
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FIG. 3. The first input range of Alice and Bob that makes the inequality violated. The blue arc surface represents Alice’s input range and
the yellow one represents Bob’s input range: 0 � θ < 0.4π and φ ∈ [0, 2π ]; 0 < η < 0.32π and υ ∈ [0, 2π ].

maximize the simulation average fidelity, our protocol sets the
assignment vector as

�a =
⎛
⎝sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠ 
→ �aB

x =
⎛
⎝sin (0.37π ) cos φ

sin (0.37π ) sin φ

cos (0.37π )

⎞
⎠,

�b =
⎛
⎝sin η cos υ

sin η sin υ

cos η

⎞
⎠ 
→ �bB

x =
⎛
⎝sin (0.34π ) cos υ

sin (0.34π ) sin υ

cos (0.34π )

⎞
⎠. (21)

Substituting Eq. (21) into Eq. (3), the vendor can obtain a new
vector �nB

x instead of the original vector �n. Then, from Eq. (14),
Alice and Bob can obtain the result of CHSHB

x ≈ 1.9 < 2,
which will not cause the violation of inequality. Meanwhile,
according to Eq. (9), in the range of Eq. (20)-(i), the average
fidelity of classical simulation is

F̄1 = 1

4
+

∫
2Vc0c1 (�n) · �n

4
= 1

4
+ 1

2

∫
�nB

x · �n

= 1

4
+ 1

2

∫ 2π

0

∫ 2π

0

∫ 0.4π

0

∫ 0.32π

0 �nB
x · �n sin θ sin η dηdθdυdφ∫ 2π

0

∫ 2π

0

∫ 0.4π

0

∫ 0.32π

0 sin θ sin η dηdθdυdφ

≈ 0.8983. (22)

Similarly, in the range of Eq.(20)-(ii), the average fidelity of
classical simulation is

F̄2 = 1

4
+

∫
2Vc0c1 (�n) · �n

4
= 1

4
+ 1

2

∫
�nB

x · �n

= 1

4
+ 1

2

∫ ∫ ∫ 0.724π

0.276π

∫ 0.9π

0.1π �nB
x · �n sin θ sin η dη dθdυdφ∫ ∫ ∫ 0.724π

0.276π

∫ 0.9π

0.1π
sin θ sin η dη dθdυdφ

≈ 0.7924. (23)

For the area outside the range described in Eq. (20), the
input vectors �a and �b will not cause CHSH > 2. According
to Ho’s protocol, these vectors can be teleported with perfect
fidelity, and for such inputs we have F̄3 = 1.

The overall average fidelity of our classical simulation
protocol PGate is

F̄p = 1

16π2
· {[2π × (1 − 0.536) × 2π × (1 − 0.309)] · F̄1

+ [0.638π × 0.647 × 2 × 0.8π × 0.951 × 2] · F̄2}

+ 1

16π2
· {16π2 − [2π × (1 − 0.536) × 2π

× (1 − 0.309)] − [0.638π × 0.647 × 2 × 0.8π

× 0.951 × 2]}F̄3 ≈ 0.9755. (24)

FIG. 4. The second input range of Alice and Bob that makes the inequality violated. The blue arc surface represents Alice’s input range
and the yellow one represents Bob’s input range: 0.276π < θ < 0.724π and 0 � φ < 0.569π or 1.931π < φ � 2π ; 0.1π < η < 0.9π and
0 � υ < 0.4π or 1.6π < υ � 2π
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According to the above analysis, Eq. (24) is the maximum
value that can be achieved by classical simulations of CNOT-
QGT systems, which actually provides another boundary for
evaluating the quantumness of a CNOT-QGT black-box sys-
tem. If the average fidelity of the system is greater than
97.55%, it can be considered that the possibility of high fi-
delity classical simulation in the black-box system is very
low. This also shows that with this local simulation method,
vendors can use purely classical methods to forge the QGT
protocol and still output high average fidelity results. In this
case, only measuring the fidelity of the QGT system will
not fully guarantee the security. If the average fidelity of the
system only exceeds the lower bound of the fidelity given in
Eq. (17), the determination of the quantumness of the system
may be positive. However, to eliminate the pseudointerference
of the high-fidelity classical simulation scheme and improve
the reliability of verification, it is necessary to further measure
the CHSH value to confirm the quantumness of the system to
fully evaluate the implementation effect of the scheme.

B. Security assessment of high-fidelity
and high-inequality violations

In the Sec. IV A, one mainly consider the situation
of maximizing the average fidelity of classical simula-
tion without CHSH > 2. Further consider the situation
that the vendor uses other simulation states for substitu-
tion. Taking the input state �a0 = (0, 0, 1), �b0 = (0, 0, 1), and
�a1 = ( 1√

2
, 1√

2
, 0), �b1 = (1, 0, 0) that can maximize the CHSH

value given in Eq. (14) as the example (where θ0 = 0, φ0 =
0, η0 = 0, υ0 = π

2 , θ1 = π
2 , φ1 = π

4 , η1 = π
2 , υ1 = 0). In this

situation, the maximum CHSH value can be obtained, which
is about 2.5908, while the corresponding overall average sim-
ulation fidelity is F̄P ≈ 94.17%. A more general simulated
states form for CHSH verification can be denoted as

θ ′
0 = 0 + θB

x , η′
0 = 0 + ηB

x ,

θ ′
1 = π

2
− 13

37
θB

x , η′
1 = π

2
− 8

17
ηB

x . (25)

Here, θB
x and ηB

x are the deviations between a input sates
and simulation states. One choose the starting point of
simulation state group as {θ0 = η0 = 0, φ0 = 0, υ0 = π

2 , θ1 =
η1 = π

2 , φ1 = π
4 , υ1 = 0}, i.e., θB

x = 0, ηB
x = 0; and the

endpoint of simulation state group as {θ0 = θ1 = 0.37π, η0 =
η1 = 0.34π, φ0 = 0, υ0 = π

2 , φ1 = 0.21π, υ1 = 0}, i.e.,
θB

x = 0.37π, ηB
x = 0.34π , which is the simulated state that

maximizes the fidelity as Eq. (21).
To clearly illustrate the performance of classical simula-

tion, we numerically calculated the simulation CHSH value
and the simulation average fidelity as a function of θB

x and ηB
x .

The results are shown in Fig. 5. From Fig. 5 one can see that
the simulation average fidelity increases with the increase of
θB

x and ηB
x [as shown in Fig. 5(a)], and the simulation CHSH

value decreases with the increase of θB
x and ηB

x [as shown in
Fig. 5(b)]. It seems to be a negative correlation between the
classical simulation average fidelity and the CHSH violation.
To better represent this negative correlation relationship, we
drew the boundary extreme value relationship curve between
the classical simulation average fidelity and the CHSH value

FIG. 5. Relationship between simulated state parameters θB
x and

ηB
x and simulated average fidelity and CHSH value. Where, θB

x ∈
[0, 0.37π ], ηB

x ∈ [0, 0.34π ]. Panel (a) shows the simulated average
fidelity, which increases with θB

x and ηB
x . Panel (b) shows the CHSH

value, which decreases as θB
x and ηB

x increase.

under the condition of θB
x = ηB

x , as shown in the red solid line
in Fig. 6.

Figure 6 shows that in the case where eavesdropping ex-
ists and the eavesdropper can perform classical simulation
forgery based on the eavesdropped information, the verifica-
tion method relying only on the average fidelity or CHSH
violation may not be completely credible. In the Fig. 6 that the
red region represents where classical simulation exists. The
range above the red solid line (green range) in Fig. 6 can be
considered as an area that cannot be achieved under this clas-
sical simulation and the combination of (CHSH, F̄P) values
given by the red solid line is the corresponding threshold for
security assessment.

FIG. 6. The correspondence between the classical simulation
average fidelity F̄P and the CHSH value in the case of classical
simulation. The red solid line is the relationship between the F̄P

and the CHSH maximum on an arbitrary measurement basis, and
when CHSH = 2, the F̄P is about 97.53%; The red dotted line is
the correspondence between the F̄P and the CHSH value when the
measurement basis is fixed (fixed as the measurement basis discussed
above which can maximize the CHSH value). When the verification
results of the inequality and fidelity are in the green area of the figure,
the CNOT-QGT system can be considered safe and reliable.
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The verification method based on nonlocality can verify
the security loopholes of the commonly used method of taking
fidelity as the performance criterion of the QGT scheme. The
best method to evaluate the implementation effect and security
of CNOT-QGT system should be based on the double criteria
of “high inequality violation and high fidelity.” When the
verification results have high inequality violation and fidelity
at the same time, that is, they are located in the green area
in Fig. 6, the black-box system can be considered safe and
reliable. Otherwise, the QGT system is not credible.

V. CONCLUSION AND SUMMARY

In this paper, the double verification criteria of “high-
fidelity and high-inequality violation” for the CNOT-QGT
process are proposed, and the basic principle of the reliabil-
ity verification mechanism of the quantum gate teleportation
scheme is clarified. The assumption of the black-box scenario
in this verification scheme protects the supplier’s equipment
information, and at the same time, the scheme avoids the
possibility of the vendor using classical resources to simulate
fraud. Therefore, our verification scheme ensures the bidirec-
tional security of the QGT implementation process. Not only
can the classic simulation schemes with high fidelity, such as
the Gisin model [18] and Ho’s model [16], be detected by
our verification methods, but also the nonuniform bilateral
Bloch ball compression method with higher fidelity can be
effectively detected by our scheme.

In terms of experimental verifiability, it is mainly necessary
to consider the two parts that make up the QGT nonlocality
verification experiment, namely, (1) the QGT experimental
implementation system and (2) independent measurements of
quantum states A and B. Compared with QGT, the verification
scheme based on nonlocality assessment in this work only
adjusts the release time of classical information (c0, c1) and
adds measurement for the target state system. Therefore, in
principle, all experimental systems that can complete QGT
with high quality can complete our plan. This paper presents
an important parameter that characterizes the impact of noise
in the implementation of CNOT gate teleportation. Under op-

timal parameter conditions, when μ > 0.7698, the CHSH
value is greater than 2, which violates the CHSH inequality.
That is, when the implementation fidelity of the CNOT gate
scheme is greater than 0.8274, the violation of the CHSH in-
equality can be detected. According to the existing CNOT-QGT
experiments based on linear optical systems [5], trapped-ion
system [6], and so on, the fidelity of these experimental
systems are all greater than 0.84. Therefore, our scheme
can be effectively demonstrated in these QGT experimental
systems.

This study proposes a reliable verification method for QGT
based on the nonlocality characteristics of entangled quantum
resources to address the issue of untrusted vendors. In future
research work, we also hope to further promote the applica-
tion of this scheme. For example, how to apply the resource
verification scheme based on Bell nonlocality in the black-box
scenario of controlled quantum teleportation with a third party
is an important question. On the other hand, the work of this
paper uses CHSH inequality to verify Bell’s nonlocality, so is
it possible to find a better boundary by using inequalities other
than CHSH? These questions are expected to be answered in
future research.
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APPENDIX A: GENERATOR OF Su(4) GROUP

The generator of Su(4) group

λ1 =

⎛
⎜⎜⎝

0 1
1 0

0 0
0 0

0 0
0 0

0 0
0 0

⎞
⎟⎟⎠, λ2 =

⎛
⎜⎜⎝

0 −i
i 0

0 0
0 0

0 0
0 0

0 0
0 0

⎞
⎟⎟⎠, λ3 =

⎛
⎜⎜⎝

1 0
0 −1

0 0
0 0

0 0
0 0

0 0
0 0

⎞
⎟⎟⎠, λ4 =

⎛
⎜⎜⎝

0 0
0 0

1 0
0 0

1 0
0 0

0 0
0 0

⎞
⎟⎟⎠,

λ5 =

⎛
⎜⎜⎝

0 0
0 0

−i 0
0 0

i 0
0 0

0 0
0 0

⎞
⎟⎟⎠, λ6 =

⎛
⎜⎜⎝

0 0
0 0

0 0
1 0

0 1
0 0

0 0
0 0

⎞
⎟⎟⎠, λ7 =

⎛
⎜⎜⎝

0 0
0 0

0 0
−i 0

0 i
0 0

0 0
0 0

⎞
⎟⎟⎠, λ8= 1√

3

⎛
⎜⎜⎝

1 0
0 1

0 0
0 0

0 0
0 0

−2 0
0 0

⎞
⎟⎟⎠,
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λ9 =

⎛
⎜⎜⎝

0 0
0 0

0 1
0 0

0 0
1 0

0 0
0 0

⎞
⎟⎟⎠, λ10 =

⎛
⎜⎜⎝

0 0
0 0

0 −i
0 0

0 0
i 0

0 0
0 0

⎞
⎟⎟⎠, λ11 =

⎛
⎜⎜⎝

0 0
0 0

0 0
0 1

0 0
0 1

0 0
0 0

⎞
⎟⎟⎠, λ12 =

⎛
⎜⎜⎝

0 0
0 0

0 0
0 −i

0 0
0 i

0 0
0 0

⎞
⎟⎟⎠,

λ13 =

⎛
⎜⎜⎝

0 0
0 0

0 0
0 0

0 0
0 0

0 1
1 0

⎞
⎟⎟⎠, λ14 =

⎛
⎜⎜⎝

0 0
0 0

0 0
0 0

0 0
0 0

0 −i
i 0

⎞
⎟⎟⎠, λ15 = 1√

6

⎛
⎜⎜⎝

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 −3

⎞
⎟⎟⎠.

APPENDIX B: FIFTEEN-DIMENSIONAL FORM OF THIS PAPER

1. Fifteen-dimensional Bloch-vector form of |z j〉
According to the discussion in the paper, for the measurement base �z composed of �za = (xa, ya, za) and �zb = (xb, yb, zb), there

are four corresponding projection directions of equal probability distribution. According to Eqs. (1) and (2), the Bloch vectors
corresponding to these four projection directions are, respectively,

(i) |z1〉 → �z1 = �z = [ xb
2 (1 + za), yb

2 (1 + za), zb
2 (1 + za), xa

2 (1 + zb), ya

2 (1 + zb), 1
2 (xaxb + yayb), 1

2 (yaxb − xayb), 1
2
√

3
(zazb +

2za − zb), 1
2 (xaxb − yayb), 1

2 (yaxb + xayb), xa
2 (1 − zb), ya

2 (1 − zb), xb
2 (1 − za), yb

2 (1 − za), 1√
6
(za + zb − zazb)];

(ii) |z2〉 → �z2 = [− xb
2 (1 − za),− yb

2 (1 − za),− zb
2 (1 − za),− xa

2 (1 − zb),− ya

2 (1 − zb), 1
2 (xaxb + yayb), 1

2 (yaxb −
xayb), 1

2
√

3
(zazb − 2za + zb), 1

2 (xaxb − yayb), 1
2 (yaxb + xayb),− xa

2 (1 + zb),− ya

2 (1 + zb),− xb
2 (1 + za),− yb

2 (1 + za), 1√
6
(−za −

zb − zazb)];
(iii) |z3〉 → �z3 = [ xb

2 (1 − za), yb

2 (1 − za), zb
2 (1 − za),− xa

2 (1 + zb),− ya

2 (1 + zb),− 1
2 (xaxb + yayb),− 1

2 (yaxb −
xayb), 1

2
√

3
(−zazb − 2za − zb),− 1

2 (xaxb − yayb),− 1
2 (yaxb + xayb),− xa

2 (1 − zb),− ya

2 (1 − zb), xb
2 (1 + za), yb

2 (1 + za), 1√
6
(−za +

zb + zazb)];
(iv) |z4〉 → �z4 = [− xb

2 (1 + za),− yb

2 (1 + za),− zb
2 (1 + za), xa

2 (1 − zb), ya

2 (1 − zb),− 1
2 (xaxb + yayb),− 1

2 (yaxb −
xayb), 1

2
√

3
(−zazb + 2za + zb),− 1

2 (xaxb − yayb),− 1
2 (yaxb + xayb), xa

2 (1 + zb), ya

2 (1 + zb),− xb
2 (1 − za),− yb

2 (1 − za), 1√
6
(za −

zb + zazb)].

2. Fifteen-dimensional unitary matrix form of Rc0,c1

In the ideal teleportation simulation of the system in this paper, with (c0, c1) as the condition, the teleportation state contained
in boxes for

ρA,B = 1
4I4 + 1

2 [(Rc0,c1 · �n) · �λ], (B1)

where �n′ = Rc0,c1 · �n, and R00 = I, R01 = Ra(ẑ, π ), R10 = Rb(x̂, π ), R11 = Ra(ẑ, π ), and Rb(x̂, π ). Rc0,c1 represents the local
operation on the input states of Alice and Bob, and Rj (î, π ) represents the rotation π of the vector �j corresponding to the
input state along the orthogonal direction corresponding to the σi operator, that is,

(i) R00 = I : �a = (a1, a2, a3), �b = (b1, b2, b3) → �a′ = (a1, a2, a3), �b′ = (b1, b2, b3);
(ii) R01 = Ra(ẑ, π ) : �a = (a1, a2, a3), �b = (b1, b2, b3) → �a′ = (−a1,−a2, a3), �b′ = (b1, b2, b3);
(iii) R10 = Rb(x̂, π ) : �a = (a1, a2, a3), �b = (b1, b2, b3) → �a′ = (a1, a2, a3), �b′ = (b1,−b2,−b3);
(iv) R11 = Ra(ẑ, π ) & Rb(x̂, π ) : �a = (a1, a2, a3), �b = (b1, b2, b3) → �a′ = (−a1,−a2, a3), �b′ = (b1,−b2,−b3).
Then, the method of constructing 15-dimensional Bloch vectors corresponding to four-dimensional separable states and

four-dimensional CNOT gate states based on two-dimensional states, that is, Eqs. (2) and (3), can obtain the 15-dimensional
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unitary matrix form of Rc0,c1 :

R00 = I15;

R01 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 −1

0 0
0 0

0 0
0 0

0 0
0 0

−1 0
0 −1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

−1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

−1 0
0 −1

0 0
0 0

0 0
0 0

0 0
0 0

−1 0
0 −1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 0
0 0

0 0
0 0

0 0
0 0

0 0 0 0 0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0 0 0 0 0

1
0

0
1

0
0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R10 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 −1

0 0
0 0

0 0
0 0

0 0
0 0

−1 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
1 0

0 0
0 0

0 0
1 0

0 1
0 0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 1
0 0

0 0
0 0

0 1
0 0

0 0
1 0

0 0
0 1

3

0 1
0 0

0 0
0 0

0 0
1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0
0

0
0

0
2
√

2
3

0
0

0
0

0
0

0
0

0
0

0
0

0 0
0 0

0 0
0 0

0 0
0 0

0 0 0 0 0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 2
√

2
3

0 0 0 0

1
0

0
−1

0
0

0 0 − 1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B2)

R11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 −1

0 0
0 0

0 0
0 0

0 0
0 0

−1 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
−1 0

0 0
0 0

0 0
−1 0

0 −1
0 0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 −1
0 0

0 0
0 0

0 −1
0 0

0 0
−1 0

0 0
0 1

3

0 −1
0 0

0 0
0 0

0 0
−1 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0
0

0
0

0
2
√

2
3

0
0

0
0

0
0

0
0

0
0

0
0

0 0
0 0

0 0
0 0

0 0
0 0

0 0 0 0 0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 2
√

2
3

0 0 0 0

1
0

0
−1

0
0

0 0 − 1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
(B3)
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