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Embedded quantum correlations in thermalized quantum Rabi systems
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We study the quantum correlations embedded in open quantum Rabi systems. Specifically, we study how
the quantum correlation depends on the coupling strength, number of qubits, and reservoir temperatures. We
numerically calculate the quantum correlations of up to three qubits interacting with a single field mode. We
find that the embedded quantum correlations exhibit a maximum for a given coupling strength, which depends
inversely on the number of subsystems and the reservoir temperature. We explore how this feature affects the
performance of a many-qubit Otto heat engine, finding numerical evidence of a direct correspondence between
the minimum of the extractable work and the maximum of the embedded quantum correlations in the qubit-cavity
bipartition. Furthermore, as we increase the number of qubits, the maximum extractable work is reached at
smaller values of the coupling strength. This paper could help design more sophisticated quantum heat engines
that rely on many-body systems with embedded correlations as working substances.
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I. INTRODUCTION

The study of quantum correlations embedded in multi-
partite quantum systems is a fundamental task in quantum
information. Entanglement has been widely recognized as a
central resource for the realization of quantum information
and quantum computation applications. A prolific amount of
research over many years led us to a deep understanding
of entangled quantum systems, their characterization, and
their applications [1–3]. In this sense, we have well-known
measures of quantum entanglement, such as entanglement
of formation, which measures the amount of entanglement
of a bipartition in a quantum system [4,5]. There are other
quantum correlations beyond entanglement to be scrutinized
in bipartite and multipartite quantum systems [6]. The calcu-
lation of all quantum correlations in a bipartite system can be
done by subtracting the classical correlations from the mutual
information, which quantifies all possible correlations, obtain-
ing the well-known concept of quantum discord (QD) [7,8].
The calculation of classical correlation, and therefore the cal-
culation of quantum discord, involves an optimization process
over all the possible projective measurements over one of the
subsystems, which for a general system is a hard task [9].

Due to the complexity in the calculation of quantum cor-
relations for high-dimension bipartite systems, its study has
mainly focused on the two-qubit case [10–14]. Nevertheless,
there have been efforts to evaluate quantum correlations in
higher dimensions. For example, for the case of entangle-
ment, there are proposals for bounds estimation [15–17], or
numerical approaches attempting to solve the optimization
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process [18,19]. In the case of quantum discord in higher
dimensions, the problem has been elusive, and to our knowl-
edge, only a few special cases have been considered [20–25].
Then, the problem deserves attention and several possibilities
to explore are still open as is suggested in Ref. [26], especially
in the context of quantum systems described by mixed states
and high-dimensional bipartitions.

An important case that presents embedded quantum cor-
relations in higher dimensions is the light-matter interaction
beyond the strong-coupling regime, described by the quantum
Rabi model. The presence of rotating and counter-rotating
interaction terms is responsible for the anharmonic spectrum
and highly correlated eigenstates [27–29]. These properties
have been studied in the context of quantum phase transi-
tions [30], quantum metrology [31], and quantum information
processing [32,33]. This model has also been extended to
multimode and multiqubit generalizations, which present dark
states in the energy spectrum allowing the development of ap-
plications for entangled state generation [34]. Therefore, the
quantum Rabi model and its variations present a good testbed
to study the role and quantification of quantum correlations
beyond entanglement for quantum technologies.

Quantum correlations embedded in eigenstates of mul-
tipartite quantum systems under the effect of a thermal
environment could play an important role as resources for
emerging quantum technologies that operate between station-
ary regimes as in the case of quantum heat engines (QHEs).
In recent years, QHEs have received increasing attention, with
fruitful experimental and theoretical progress [35–38]. In this
area, quantum Otto engines have been widely studied due
to their simplicity and clear thermodynamical interpretation.
In this context, embedded quantum correlations in the work-
ing substance may enhance the performance of the engine.
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Quantum correlations that are preserved in the thermal state
of a quantum system may be related to the enhancement of the
work extraction in QHEs [39–41]. Specifically, these systems
have shown that the difference in the quantum correlations
between the thermal states is related to the work extraction
and efficiency of the engine. However, these efforts have
been mainly focused on the case of highly entangled bipartite
systems, where the working substance is described by the
single-qubit quantum Rabi model. Thus, it would be relevant
to explore the generalization of such a hypothesis for highly
correlated multipartite systems as working substances.

In this paper, we study a multipartite quantum system
described by the multiqubit quantum Rabi model beyond
the strong coupling. This system exhibits embedded quan-
tum correlations in its eigenstates. We explore these quantum
correlations in terms of the coupling strength for different
temperatures and the number of qubits. We study the perfor-
mance of a QHE and its relation with its embedded quantum
correlations considering the multiqubit quantum Rabi model
as the working substance.

II. MODEL

We consider a set of N two-level systems (TLSs) of
frequency ωq,� interacting with a quantized field mode of fre-
quency ωr described by the multiqubit quantum Rabi model,
also called the Dicke model [42,43] which reads

H = h̄ωra†a + h̄
N∑
�

ωq,�σ
z
� + h̄

N∑
�

g�σ
x
� (a + a†), (1)

where g� stands for the coupling strength between the �th
TLSs with the field mode. The operator σ x

� (σ z
� ) corresponds

to the Pauli matrix x(z) applied over the �th TLS. Finally,
a(a†) is the annihilation (creation) bosonic operator for the
field mode. In the strong-coupling regime, g/ωr � 0.1, the
model converges to the Tavis-Cummings model which pre-
serves the number of excitations N , allowing us to express
the Hamiltonian with a finite N-dimensional subspace [44].
On the other hand, for larger coupling strength 0.1 � g/ωr

such symmetry breaks down, and the parity symmetry Z2

determines the internal Hamiltonian structure. This means that
the Hamiltonian divides the Hilbert space into two orthogonal
subspaces spanned by states with an even or odd number of
excitations, i.e., the eigenstates of the parity operator P =
exp{−iπ [

∑
(σ z

� + 1)/2 + a†a]}. Several theoretical proposals
and experimental realizations have been done for the quantum
Rabi model and its variants in different regimes, mainly in cir-
cuit quantum electrodynamics [45–49]. This model presents
eigenstates with embedded multipartite quantum correlations
which can be interesting to explore in thermal equilibrium.

We will focus on the thermal equilibrium of our multiqubit
quantum Rabi system (MQRS) with a reservoir at temperature
T , the density matrix of which is given by the thermal state

ρth(T, H ) =
∞∑
j=1

Pth
j (T, H )

∣∣εH
j

〉〈
εH

j

∣∣, (2)

where |εH
j 〉 is the eigenvector corresponding to the eigenen-

ergy εH
j of the MQRS the Hamiltonian H of which is given in

Eq. (1). Pth
j (T, H ) = e−εH

j /kbT /Z (T, H ) is the thermal proba-
bility of the state jth state of H at temperature T , Z (T, H ) =∑

j e−εH
j /kbT is the partition function, and kb is the Boltzmann

constant. We are interested in studying the correlations em-
bedded in a thermal state of the MQRS as a function of the
coupling strength g� and the temperature T taking as reference
a typical operational temperature achieved in superconducting
circuits, i.e., Tc = 19 mK. We explore temperatures until ten
times Tc, and different number of qubits, N , in the Hamilto-
nian given in Eq. (1). In all the discussions that follow, we
assume symmetric coupling of qubits to the field mode g� = g.

It is important to mention that the dissipative dynamics of
light-matter systems described by a master equation in the
eigenbasis provides us with different dissipation rates related
to the different available transitions of the model. This leads
to an effective colored noise, even when considering flat spec-
trum approximation. This situation yields different coherence
times for the different transitions in the multiqubit quantum
Rabi model, where the effective coherence time of the system
is on the order of 1 μs, which implies that it can thermalize in
a few microseconds [28,50].

III. QUANTUM CORRELATIONS AND OPTIMIZATION

Regarding quantum correlations, we consider the QD em-
bedded in a bipartition of a quantum system given by [7,8]

Q(ρAB) = S(ρB) − S(ρAB) + min
�B

[
S
(
ρA|�B

j

)]
, (3)

where S(ρ) = −Tr[ρ ln(ρ)] is the von Neumann entropy and
ρB = TrA[ρAB] is the reduced state of subsystem B. In our
case, we consider as part A the bosonic mode and as part B
the set of TLSs. �B = {�B

j } is a set of projection operators
describing von Neumann measurement over the system B, and
S(ρA|�B

j ) is the conditional entropy of subsystem A after a
measurement �B

j on system B. Such conditional entropy is
defined as S(ρA|�B

j ) = ∑
j p jS(ρ j ) with ρ j = �B

j ρAB�B
j /p j .

It is necessary to mention that von Neumann type measure-
ments can be written as �B

j = IA ⊗ |φ j〉B〈φ j |, where the set
of states {|φ j〉B} is an orthonormal basis for the subsystem B.
The minimization in Eq. (3) is over all possible von Neumann
type measurements, which can be found by considering an
arbitrary unitary transformation over the states |φ j〉B [10],
such as

�B
j (�θ ) = IA ⊗ V (�θ )|φ j〉B〈φ j |V †(�θ ). (4)

Then, the minimization in Eq. (3) can be done by the opti-
mization of the set of independent parameters �θ for a general
unitary operation V (�θ ). It is known that such a unitary oper-
ator can be decomposed into a product of unitary operators
acting on two-dimensional subspaces [51], such that the num-
ber of independent parameters for an arbitrary d-dimensional
unitary operator is 3d (d − 1)/2. The unitary V can be conve-
niently represented as follows:

V =
d−1∏
k=1

d−k∏
n=1

Vk,n, (5)

012433-2



EMBEDDED QUANTUM CORRELATIONS IN THERMALIZED … PHYSICAL REVIEW A 108, 012433 (2023)

where the matrix Vk,n reads

Vk,n=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ..

0 1
.. ..

vk,k vk,k+n

..

..

vk+n,k vk+n,k+n

.. ..

1 0
.. 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

where k = 1, 2, . . . , d − 1 and n = 1, 2, . . . , d − k and we
parametrize each matrix vk,n in terms of three arbitrary pa-
rameters such that vk,k = sin(φ1)eiφ2 , vk+n,k = cos(φ1)eiφ3 ,
vk,k+n = cos(φ1)e−iφ3 , and vk+n,k+n = − sin(φ1)e−iφ2 . As an
example for a bipartition of size N ⊗ 8 the general pro-
jective measurement acting on the second subspace can be
parametrized in terms of 84 angles.

In this paper, we carried out the optimization using the
PYTHON package scipy.optimize. In particular, we have used
basin hopping [52] with the conjugate gradient algorithm [53].
Basin hopping is a method that allows the optimization pro-
cess to escape from local minima and therefore be a reliable
tool for global optimization.

IV. NUMERICAL RESULTS

First, let us consider the standard quantum Rabi model,
corresponding to N = 1 in the Hamiltonian of Eq. (1). Fig-
ure 1(a) shows the energy spectrum for this case (referred
to the ground-state energy) as a function of the normalized
coupling strength g/ωr . In this case, the optimization is car-
ried out over a unitary V involving three parameters, where
Fig. 1(b) shows the QD embedded in the first four energy
states. Figure 1(c) shows the population of the different eigen-
states in a thermal state with temperature T = Tc (solid line)
and T = 10Tc (dashed line). We note that in both cases, the
five lower-energy states are enough to describe the system at
such temperatures. Finally, Fig. 1(d) shows the QD embedded
in the thermal state as a function of the normalized tempera-
ture T/Tc and the normalized coupling strength g/ωr .

At small g/ωr the Rabi model corresponds to the well-
known Jaynes-Cummings model, whose ground state is the
vacuum, |g, 0〉, and the excited states are given by |�±

n 〉 =
(|e, n〉 ± |g, n + 1〉)/

√
2. The excited states contain maximal

correlations, as can be seen in Fig. 1(b), where at g/ωr close to
zero the correlation of the excited states converges to 1 while it
is zero for the ground state. As the coupling strength increases,
the eigenstates of H involve linear combinations of number
states and can be classified according to the eigenvalues of
the parity operator. For coupling strength values g/ωr � 1.5,
the low-lying energy spectrum of the Hamiltonian H corre-
sponds to a displaced oscillator described by the Schrödinger
cat states [54,55] with |εH

0 〉 ≈ (|+, α〉 + |−,−α〉)/
√

2 and
|εH

1 〉 ≈ (|+, α〉 − |−,−α〉)/
√

2 (α = g�/ωr), where |±〉 =
(|e〉 ± |g〉)/

√
2. These states also contain maximal correla-

tion, as is shown in Fig. 1(b).
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FIG. 1. The quantum Rabi model considering N = 1 qubit.
(a) Energy spectrum of the Hamiltonian H as a function of
the normalized coupling strength g/ωr . (b) Quantum correlations
Q(|εH

j 〉〈εH
j |) of the first four energy states as a function of the

normalized coupling strength g/ωr . (c) Thermal populations of the
ground state and the first four excited states for T = Tc (solid line)
and T = 10Tc (dashed line) as a function of the normalized coupling
strength g/ωr . (d) Contour plot: Quantum correlations of the thermal
state Q(ρth) as a function of the normalized coupling strength g/ωr

and normalized temperature T/Tc. We have used ωq,l = ωr = ω and
ω/2π = 8 GHz, with Tc = 19 mK.

Now, we analyze the system and its correlations under ther-
mal equilibrium. Figure 1(c) shows the thermal population for
the single-qubit Rabi model as a function of g/ωr for two dif-
ferent temperatures T = {Tc, 10Tc}. We see that in both cases
the first two energy states dominate the behavior of the ther-
mal state. As the coupling strength increases, these two states
become asymptotically degenerate which leads to them hav-
ing essentially the same thermal population for large coupling
strength; thus, we can write ρth ≈ p0(|εH

0 〉〈εH
0 | + |εH

1 〉〈εH
1 |)

where p0 = e−βεH
0 /Z . Figure 1(d) shows the quantum correla-

tion for the thermal state as a function of the coupling strength
g/ωr for different temperature values. For small coupling
strength (g/ωr ≈ 0.1) the quantum correlation embedded in
the thermal state is close to zero; as g/ωr increases the correla-
tions increase monotonically until they reach their maximum
value; further increasing the coupling strength leads to a
monotonic decrease of quantum correlations towards zero.
This is because the main contribution comes from the sepa-
rable ground state |εH

0 〉 = |g, 0〉, which holds almost all the
thermal population at small values of the coupling strength,
and as g/ωr increases the correlations in the ground state
grow until they reach maximal correlations, similar to the
excited states. For large coupling strength values (g/ωr ≈
1.3), the thermal state can be approximated to a balanced
mixture of cat states, where the embedded correlations go
to zero. We observe that the maximal value of the quantum
correlations Q(ρTh) occurs at the ultrastrong-coupling regime
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FIG. 2. The quantum Rabi model properties for N = 2 qubits.
(a) Energy spectrum of the Hamiltonian H (referred to the ground-
state energy) as a function of the normalized coupling strength g/ωr .
(b) Quantum correlations of the thermal state Q(ρTh) as a function
of the normalized coupling strength g/ωr for temperatures from Tc to
10Tc. Corresponding temperatures for each curve from top to bottom
are indicated in the panel. We have used ωq,l = ωr = ω and ω/2π =
8 GHz, with Tc = 19 mK.

(0.1 � g/ωr � 1) and this maximum does not depend linearly
on the temperature. At low temperatures, the thermal state
corresponds mainly to the ground state. Consequently, Q(ρTh)
follows the same behavior as the ground state. Nevertheless,
as we increase the temperature, the higher excited states start
to contribute to the thermal population as depicted in Fig. 1(c),
causing a shift in the position of the maximum value of the
correlations. To summarize, the degeneration of the energy
levels that occurred on the single-qubit Hamiltonian H for
significant coupling strength leads to a mixed state of two
maximally correlated quantum states that have zero embedded
quantum correlations. Furthermore, the anharmonicity of the
spectrum at intermediate coupling strength permits obtain-
ing a thermal state with the maximal embedded quantum
correlation, which shifts for a nontrivial contribution of the
higher-energy levels as the temperature increases.

Next, we extend the study to the MQRS with N = 2 and
3 qubits. Figure 2(a) shows the energy spectrum for N = 2
(referred to the ground-state energy) as a function g/ωr . We
observe that the energies of the ground state and first ex-
cited state begin to approach each other at smaller values of
g/ωr than when compared with the single-qubit Rabi model.
In Fig. 2(b), we calculate the quantum correlations for the
thermal state of the two-qubit Rabi model for temperature
above Tc. We observe similar behavior as in the single-qubit
case, but here we can see the maximum value of the quantum
correlations has shifted towards smaller values of the coupling
strength. We expect analogous behavior for the embedded
quantum correlations as we increase the number of qubits.
In Fig. 3, we plot the quantum correlation of the thermal
state for one, two, and three qubits for T = {Tc, 5Tc, 10Tc}.
The temperature decreases the quantum correlations in the
thermal state, as it drives the state into a mixed state of
maximally correlated states, and beyond a certain tempera-
ture the quantum correlations tend to zero. In Fig. 3, we can
also see that the maximum of the quantum correlations is
displaced towards smaller values of g/ωr as we increase the
number of qubits, which displays a collective behavior of the
quantum correlations. We could conjecture that the maximal
quantum correlations have a power-law dependence on the
number of qubits. Unfortunately, extending our calculations
beyond three qubits is too demanding from a computational
point of view, since the size of the parameter space increases
drastically and quickly becomes a hard computational task [9].
A strategy to circumvent the impossibility of evaluating the
correlation between the many qubits and the field mode could
be the evaluation of quantum correlations among different
partitions of the global system. Analyzing the correlations of
the partitions as we change the number of qubits can provide
hints regarding the exponential dependence of the maxima of
correlations and the number of qubits that we have found for
a smaller number of qubits. One interesting case arises from
the qubit subspace, after tracing the field, by studying how
correlations among qubits behave in terms of the total number
of qubits. This strategy would allow us to reduce the size of the
parameter space drastically, where we only need to optimize
the set of projective measurements on the smallest subspace.

We define ρN = Trr[ρTh] as the N qubit density matrix.
In this scenario, we can analyze the quantum correlations
embedded in several bipartitions of ρN . However, as we
have assumed symmetric coupling strength (g� = g), several
of these bipartitions will provide the same information. For
simplicity and a less demanding calculation, we consider the
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FIG. 3. The multiqubit quantum Rabi model: the quantum correlations of the thermal state Q(ρTh) for (a) N = 1, (b) N = 2, and (c) N = 3
qubits as a function of the normalized coupling strength g/ωr . The temperatures for each curve in the three cases, from top to bottom, are Tc,
5Tc, and 10Tc. We have used ωq,l = ωr = ω and ω/2π = 8 GHz, with Tc = 19 mK.
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FIG. 4. The quantum correlations, Q1,N−1, of the bipartition com-
posed by the subset of the N − 1 qubits with one qubit, as a function
of the normalized coupling strength g/ωr , considering (a) N = 2,
(b) N = 3, (c) N = 4, and (d) N = 5 qubits. The temperatures in the
four cases, for each curve from top to bottom, are correspondingly
indicated in the panel. We have used ωq,l = ωr = ω and ω/2π =
8 GHz, with Tc = 19 mK.

quantum correlations between the subset formed by the N − 1
qubit with the remaining one, denoted by QN−1,1. In Figure 4,
we depict the quantum correlations QN−1,1 as a function of the
normalized coupling strength g/ωr for different temperatures
T for N = 2, 3, 4, 5 qubits.

We see that the quantum correlation of the reduced density
matrix follows the same behavior we have observed before,
where the maximum of the quantum correlation is displaced
towards smaller values of the coupling strength as we increase
the number of qubits. In Fig. 5(a), we provide additional evi-
dence about the power-law scaling of the quantum correlation
with the number of qubits by plotting ln(g/ωr )max against
ln(N − 1) for three different temperatures, obtaining a cor-
relation coefficient R2 = 0.9978 for T = Tc, R2 = 0.9984 for
T = 5Tc, and R2 = 0.9929 for T = 10Tc. We obtain that the
maximum of the quantum correlations QN−1,1 shows a power-
law dependence with N . Based on these results, we can infer
that for any partition of the hybrid multiqubit-field interacting
system, quantum correlations among parties exhibit a collec-
tive behavior in terms of the number of qubits. In this sense,
the power-law dependence in terms of the number of qubits
can be expected for the multiqubit-field partition as shown in
Fig. 5(b), for the thermal state of one, two, and three qubits,
respectively, obtaining correlation coefficient R2 = 0.9982 for
T = Tc, R2 = 1 for T = 5Tc, and R2 = 0.9877 for T = 10Tc.

Thus far, we have focused on studying the quantum corre-
lation embedded on a MQRS in a thermal environment above
the reference temperature Tc. It is interesting to investigate
now quantum correlations for temperatures below Tc.

Figure 6 shows the correlations for the cases N = 1, 2 as a
function of the coupling strength g/ωr for different tempera-
tures below Tc. We observe in both cases that at intermediate
coupling strength values, the correlations are insensitive to the
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FIG. 5. (a) The values of the normalized coupling strength g/ωr

at the maximum of the quantum correlations Q1,N−1 as a function of
the number of qubits in the largest partition, N − 1, for temperatures
T = Tc (blue dots), T = 5Tc (orange rhombs), and T = 10Tc (red
squares). The solid lines correspond to curve fittings of the (g/ωr )max

as a function of the N − 1 qubits. (b) The values of the normalized
coupling strength g/ωr at the maximum of the quantum correlation
of the thermal state Q(ρTh) in Fig. 3, as a function of the number
of qubits N . The temperatures of the thermal state are T = Tc (blue
dots), T = 5Tc (orange triangles), and T = 10Tc (green stars). The
solid lines correspond to curve fittings of the (g/ωr )max as a func-
tion of the N qubits. The power law of each fitting is indicated in
the panels. We have used ωq,l = ωr = ω and ω/2π = 8 GHz, with
Tc = 19 mK.

changes in the temperature; this is because the population of
the thermal state is mainly concentrated on its ground state,
as can be seen in Fig. 7(b). However, close to the degeneracy
point, the correlations tend to split to the right as temperature
decreases and eventually vanishes for sufficiently large values
of g/ωr . We attribute this effect to the asymptotic degeneracy
of the ground state and the first excited state, since for any
finite temperature there will be a value of g/ωr where the
energies of both states are close enough to have the same ther-
mal population and the even mixture of these two maximally
correlated states results in zero total embedded correlations.
The splitting to the right that we see is because smaller tem-
peratures require higher values of g/ωr for the lowest-energy
states to have equal population.

We also consider an interesting regime that arises in the
low-temperature regime when the qubit frequency is signifi-
cantly larger than the mode frequency (ωr 	 ωq). In this case,
the single-qubit Rabi model experiences a quantum phase
transition (T = 0) at η = 2g/

√
ωrωq = 1 [56]. We aim to an-

alyze the quantum correlations embedded on the ground state
in this regime as we increase the qubit frequency approaching
the limit ωr 	 ωq. In Fig. 7, we plot the energy spectrum,
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FIG. 6. Low-temperature regime: Quantum correlation Q(ρTh)
in the quantum Rabi model considering (a) N = 1 and (b) N = 2
qubits as a function of the normalized coupling strength g/ωr , for
temperatures of the thermal state T from 0.001Tc to 0.01Tc, as indi-
cated in the panel for both cases, corresponding to each curve from
right to left. We have used ωq,l = ωr = ω and ω/2π = 8 GHz, with
Tc = 19 mK.

the thermal populations, and the quantum correlation for the
single- and two-qubit Rabi model as a function of the nor-
malized coupling strength g/ωr for different qubit frequencies
ωq,� = {1, 10, 20}ωr , respectively. From the figure, we appre-
ciate that these quantities shift towards smaller values of g/ωr

as we consider more qubits, depicted in the upper panel of

Fig. 7. We can also see that as we increase the qubit frequency
the point where the quantum correlations vanish is displaced
towards larger values of g/ωr . Since the transition occurs at
η = 1, keeping this ratio constant requires stronger values of
the coupling strength.

V. LIGHT-MATTER QUANTUM CORRELATIONS
ON AN OTTO QUANTUM HEAT ENGINE

As an application of our findings, we consider a QHE
with a working substance described by Hamiltonian (1) for
different numbers of qubits. Given the scaling of quantum
correlation, it is interesting to explore the consequences that
it can have on the performance of a QHE. We consider a
QHE in the Otto cycle [57,58], characterized by four con-
secutive processes: the interaction with a hot reservoir, the
adiabatic change of a parameter of the system, interaction with
a cold reservoir, and the adiabatic restoration of the parameter
changed in the second process. We will consider that the
coupling strength g will be kept constant throughout the cycle
and that the qubits and the cavity are always in resonance:
ωr = ωq,� = ω. The quantum Otto cycle can be described as
follows.

(1) Stage 1: Isochoric process. Thermalization at Th. The
system, with frequency ω = ωh and corresponding Hamil-
tonian Hh, thermalizes with an environment at temperature
Th. The change in energy in the system is due only to the
thermalization process and thus interpreted as heat.

(2) Stage 2: Adiabatic process. The system is isolated from
the thermal reservoir, and its frequency is changed from ωh

to ωc, with ωh > ωc. This process is performed slow enough
to satisfy the quantum adiabatic theorem [59] such that the
populations of the instantaneous eigenstates remain constant
throughout the process. At the end of the process, when
the system has frequency ωc we denote the corresponding
Hamiltonian by Hc.

FIG. 7. Multiqubit Rabi model considering N = 1 (upper row) and N = 2 (lower row) qubits, in the low-temperature regime, with
temperature of the thermal state T = 10−4Tc. The qubit frequencies are ωq,l = ωr (solid line), ωq,l = 10ωr (dashed line), and ωq,l = 20ωr

(dash-dotted line). In both cases, |εH
j 〉 indicates population for ground and excited states in panels (b) and (e), respectively. The energy

spectrum of H is shown in the left column, the thermal populations are shown in the middle column, and quantum discord of the thermal state
Q(ρth) is shown in the right column. We consider ωr = ω and ω/2π = 8 GHz.
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(3) Stage 3: Isochoric process. Thermalization at Tc. The
system, with frequency ω = ωc and Hamiltonian Hc, thermal-
izes with an environment at temperature Tc, Tc < Th.

(4) Stage 4: Adiabatic process. The system is isolated from
the thermal reservoir, and its frequency is returned to its initial
value, from ωc to ωh, satisfying the adiabatic approximation.
At the end of the process, the system Hamiltonian is Hh.

During the isochoric process the energy change in the
system is interpreted as heat, while the energy change in
the adiabatic process is understood as work [35]. Since the
system thermalizes in our isochoric processes, after complet-
ing the cycle, the system returns to its initial configuration.
This means that the net energy change during the cycle is
zero, which allows us to equate the total work extracted in
a single cycle to the total heat exchange between system and
environment. Denoting by Qh(c) the heat exchanged during the
hot (cold) isochoric stage, we can write

Qh =
∑

n

Eh
n [Pn(Th) − Pn(Tc)], (7)

Qc =
∑

n

Ec
n [Pn(Tc) − Pn(Th)], (8)

W = Qh + Qc =
∑

n

(
Eh

n − Ec
n

)
[Pn(Th) − Pn(Tc)]. (9)

It must be stressed that this equation is only valid for an
idealized quantum Otto cycle where dQ is always zero in
the adiabatic process and dW is always zero in the isochoric
process.

First, let us consider the total work extracted in relation to
the number of qubits in the working substance. In Fig. 8(a)
we show the total work extracted as a function of the coupling
g/ω for different numbers of qubits in the working substance,
ranging from N = 1 to 5. Here, we can see that as we increase
the number of qubits, the maximum and minimum values of
the total work extracted move towards smaller values of the
coupling strength g/ω. We find that the values of g/ω for the
maxima and minima of the total work extracted, denoted by
(g/ω)max and (g/ω)min, respectively, follow a power-law rela-
tion with the number of qubits, N , which is shown in Fig. 8(b),
where the coefficient R2 = 0.9985 and 0.9986 for the red and
blue curve, respectively. It is interesting to note that this result
is reminiscent of Figs. 5(a) and 5(b) with similar power-law
scalings for maxima and minima of quantum correlations and
the number of qubits.

A previous work studied the role of quantum correlations
in an Otto cycle with a working substance involving an N = 1
hybrid light-matter system [41]. In particular, it was stated
that the difference in quantum correlations in the hot iso-
choric stage is indicative of the behavior of the total work
extracted. It is interesting to study if this feature prevails as
we increase the number of qubits. We have implemented a
calculation of quantum correlations for every step in the Otto
cycle, for three different operating temperatures, as can be
seen in Fig. 9, where correlations embedded in steps 1 to 4
are shown for N = 1 and 2 qubits. As we understand from
these calculations, for one qubit, in the hot isochoric stage the
difference in quantum correlations �Q1,4 ≡ Q(ρ1) − Q(ρ4)
decreases as the temperature increases, but they can be well
distinguished even for large temperatures. However, for N =
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FIG. 8. (a) The total work extracted in a single cycle of the
QHE, Wtotal, as a function of the coupling strength g/ωr for N =
1, 2, 3, 4, 5 qubits from right to left. (b) The values of the coupling
strength g/ω correspond to the maximum (red dots) and minimum
(blue squares) of the total work extracted in terms of the number
of qubits N . The red curve presents a coefficient R2 = 0.9985 and
the blue one presents R2 = 0.9986. The red and blue solid lines
correspond to curve fittings of the (g/ωr )max,min as a function of
the number of qubits N . The power laws are indicated in the panel.
We have used ωh = 2ω, ωc = ω, and ω/2π = 8 GHz, with reservoir
temperatures Tc = 19 mK and Th = 9Tc.

2, �Q1,4 decreases with increasing temperature to the point
where distinguishability is practically lost. This vanishing
behavior does not carry onto the total work extracted, which
means that as we increase the number of qubits �Q1,4 is
no longer a good indicator of the behavior of the total work
extracted. In contrast, the difference of quantum correlations
for the cold isochoric stage �Q2,3 ≡ Q(ρ2) − Q(ρ3) is less
distinguishable for lower temperatures compared to the hot
isochoric stage, and for larger temperatures the distinguisha-
bility of �Q2,3 increases.

We now study the behavior of the quantum correlations in
the cold isochoric stage �Q2,3 in relation to the total work
extracted, Wtotal as a function of g/ω. In Fig. 10(a), we plot
�Q2,3 andWtotal (Wtotal should be dimensionless in the plot)
as a function of g/ω for N = 1, 2, 3, and we can see that
�Q2,3 shows the inverse behavior of the total work extracted.
Here, the region where �Q2,3 attains a minimum is also where
Wtotal reaches its maximum value, and thus �Q2,3 acts as
an indicator of Wtotal for N = 1, 2, 3. Figure 10(b) shows
that the maximum and minimum values of �Q2,3 follow a
power law with accurate fittings of R2 = 0.9996 and 0.9997
for the maxima and minima, respectively. Summarizing, we
have found that the difference in quantum correlations in the
cold isochoric stage is indicative of the total work extracted in
a quantum Otto heat engine operating with a strongly interact-
ing multiqubit-field hybrid system.
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FIG. 9. QHE in the Otto cycle: Quantum correlations of the four stages Q(ρstage ) as a function of the coupling strength g/ω, considering a
working substance of N = 1 (upper row) and N = 2 (lower row) qubits interacting with the cavity mode. We consider three different operating
temperatures of the hot reservoir Th = 3Tc (left column), Th = 6Tc (middle column), and Th = 9Tc (right column). We have used ωh = 2ω,
ωc = ω with cold reservoir temperature Tc = 19 mK. For each case we show Q(ρ1) in solid line, Q(ρ4) in dotted line, Q(ρ2) in dashed line,
and Q(ρ3) in dot-dashed line.
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FIG. 10. (a) Difference of quantum correlations in the cold iso-
choric stage, �Q2,3 = Q(ρ2) − Q(ρ3) (solid lines), and total work
extracted, Wtotal (dashed lines), both in terms of the coupling
strength g/ω for N = 1, 2, 3 qubits from right to left. (b) The values
of the coupling strength g/ω corresponding to the maximum (red
dots) and minimum (blue squares) of �Q2,3 as a function of the num-
ber of qubits N . The red curve presents a coefficient R2 = 0.9996,
and the blue one presents R2 = 0.9997. The red and blue solid lines
correspond to curve fittings of the (g/ω)max,min as a function of the
number of qubits N . The power laws are indicated in the panel. The
parameters chosen are ωh = 2ω, ωc = ω, and ω/2π = 8 GHz, with
reservoir temperatures Tc = 19 mK and Th = 9Tc.

To understand why the quantum correlations in the cold
isochoric stage are more descriptive of the work extracted, we
analyze the effect of the adiabatic process chosen here on the
thermal populations and quantum correlations. In the quan-
tum Rabi model, the ground and first excited state become
asymptotically degenerate with increasing coupling g/ω. This
means that for any thermal state at finite temperature, T ,
there will be a value of g/ω where ε1 − ε0 ∼ kBT and the
ground and first excited state become almost equally ther-
mally mixed, as can be seen in Fig. 7(b). Now, in our quantum
Otto cycle, during the adiabatic processes we change the
effective value of g/ω, alternating between g/ωc and g/ωh

where ωh > ωc ⇒ g/ωc > g/ωh, and because of asymptotic
degeneracy this means �εh

1,0 > �εc
1,0, where �ε

c(h)
1,0 = ε

c(h)
1 −

ε
c(h)
0 . Therefore, there can be a region of values of g/ωc

where during the cycle we may have that for the cold iso-
choric stage �εc

1,0 ∼ kBTc ⇒ Pth
0 (Tc, Hc) ∼ Pth

1 (Tc, Hc), and
yet for the hot isochoric stage �εh

1,0 > kBTh ⇒ Pth
0 (Th, Hh) >

Pth
1 (Th, Hh); therefore, the cold thermal state will have more

thermal mixing than the hot thermal state, since it is enhanced
by degeneracy as we can see in Fig. 11, where we show
the population of the different energy levels as a function
of the coupling strength for the thermal state. Now, because
the adiabatic process preserves the populations, when we do
the adiabatic process ρ3 = ρth(Tc, Hc) → ρ4 if we have a cold
thermal state with degeneracy enhanced mixing, the hot iso-
choric process will actually partially unmix the state, creating
quantum correlations in the process.

On the other hand, the quantum correlations of the ground
state, Q(|εH

0 〉 〈εH
0 |), and the first excited states, Q(|εH

1 〉 〈εH
1 |),

play an important role in the behavior of �Q1,4 and �Q2,3.
In Fig. 12, we show the Q(|εH

0 〉 〈εH
0 |) and Q(|εH

1 〉 〈εH
1 |) as

a function of g/ω, and we can see that the excited state is
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FIG. 11. QHE in the Otto cycle, involving the working substance interacting with cold and hot reservoirs through four stages. Upper row:
Thermal population of the ground state and first three excited states corresponding to the hot Hamiltonian Hh, considering a working substance
of the (a) N = 1, (b) N = 2, and (c) N = 3 qubits interacting with the cavity mode. Lower row: Thermal population of the ground state and
three first excited states as a function of the coupling strength g/ω corresponding to the cold Hamiltonian Hc, considering a working substance
of the (d) N = 1, (e) N = 2, and (f) N = 3 qubits interacting with the cavity mode. We have used ωh = 2ω, ωc = ω with reservoir temperatures
Tc = 19 mK and Th = 9Tc. In all figures we show the ground state in dashed line and the first excited state in dot-dashed line.

always in an entangled state whereas the ground state starts
with zero correlations when g/ω ≈ 0 and eventually reaches
maximally entangled state as g/ω increases. Notice that the
states become approximately degenerate in the same region
where their quantum correlations become similar. Since for
the cold thermal state the complete mixing occurs for large
values of g/ωc, where both the ground state and the excited
states are maximally entangled states, their equal mix results
in zero quantum correlations. A special situation occurs when
the degeneracy makes the cold thermal state more mixed than
the hot thermal state, but the ground state in the hot Hamilto-
nian has not yet reached the same amount of correlations as
its excited state. This is important because of state ρ4 which
combines the thermal populations from the cold thermal state
and the eigenstates of the hot Hamiltonian. In this situation,

as we increase the coupling g/ωh, in ρ4 appears a competition
between the degeneracy induced mixing, which decreases the
quantum correlations of ρ4, and the quantum correlations of
the ground state that increase with g/ωh in this region. This
competition ends by distorting the ability of the correlation
difference �Q1,4 to indicate the behavior of the total work
extracted. On the other hand, �Q2,3 never has this issue and
its behavior is more stable, which makes it a better indicator
of the total work extracted.

Concerning the calculation leading to Fig. 9, we have
considered a dimensional reduction of the N-qubit Hilbert
space. As can be easily understood from Eq. (1), for ho-
mogeneous coupling of qubits to the field mode, the ground
and first excited states of the system reside on the symmetric
multiplet of the qubit Hilbert space. Expressing the states
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FIG. 12. Quantum correlations of the ground Q(|εH
0 〉 〈εH

0 |) (dashed line) and first excited states Q(|εH
1 〉 〈εH

1 |) (dot-dashed line) as a function
of the coupling strength g/ω for the hot (upper row) and cold (lower row) Hamiltonian, considering N = 1 (left column), N = 2 (middle
column), and N = 3 (right column) qubits interacting with the cavity mode. We have used ωh = 2ω, ωc = ω with reservoir temperatures
Tc = 19 mK and Th = 9Tc.
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belonging to the angular momentum basis, for two qubits the
singlet corresponding to j = 0 is a dark state with energy
E = h̄ωrn independent of the coupling strength. The ground
and first excited states are combinations of even states involv-
ing symmetric states of the j = 1 triplet. For three qubits,
states belonging to j = 1/2 doublets are excited states, and
the ground and first excited state is a combination of even
states involving the states belonging to the j = 3/2 multiplet.
Summarizing, the calculation of correlations can be carried
out in reduced Hilbert space, namely, d = 3 for two qubits and
d = 4 for three qubits, instead of d = 4 and 8, respectively.
This dimensional reduction allows a drastic reduction in the
number of parameters needed for the optimization problem.

In addition, we mention briefly how our analysis can
be related to the efficiency of the engine. Previous studies
have shown that the efficiency of light-matter quantum heat
engines is closely related to the amount of quantum correla-
tions created or destroyed during the adiabatic stages [41].
These processes depend on two key elements, the amount
of quantum correlations present in each thermal state and
the particular Hamiltonian transformation being done in the
adiabatic stage. This second element is crucial in the analy-
sis, since the efficiency will only be related to the quantum
correlations if the adiabatic process modifies the quantum
correlations present in the system. Thus, our analysis on quan-
tum correlations could help determine optimal conditions, i.e.,
best adiabatic process, for efficiency in light-matter quantum
heat engines, although such effort is beyond the scope of the
present paper.

Furthermore, our analysis could also be applied in other
models of quantum heat engines, such as the quantum Carnot
cycle [60], composed of isothermal and adiabatic processes,
where the working substance arrives to a thermal state at
each process. Although the Carnot cycle already operates at
maximum efficiency, it could be interesting to study the role
of thermal quantum correlations for work extraction.

Finally, it is important to mention that the main focus of
the present paper is to analyze the quantum resources that are
present in the thermal states of strongly correlated systems.
For the particular system we have chosen, the quantum Rabi
model and its variants, we note its experimental feasibility
by highlighting its experimental implementation in supercon-
ducting circuits, as mentioned before, and that it can be easily
simulated in trapped-ion systems by the simultaneous activa-
tion of the red and blue sidebands [61].

VI. CONCLUSION

In this paper, we have studied the quantum correlations
embedded in a thermal state of a hybrid light-matter system
described by the multiqubit quantum Rabi model. Specifically,
we studied the behavior of the quantum correlations, given
by the quantum discord, as a function of the temperature, the
coupling strength, and the number of qubits. We found that in
thermal equilibrium, the correlations exhibit a maximum for
a given coupling strength; as the number of qubits increases,
the coupling strength that attains the maximum value of cor-
relations becomes smaller, obtaining numerical evidence of a
power-law dependence.

We found that the quantum correlations of the thermal state
are dominated by the correlations in the ground state, which
grow from zero at low coupling strength and monotonously
increase until a highly correlated state at sufficiently high
coupling strength. For N = 1, we found that the ground state
and excited state reach an effective maximally correlated state
between the qubit and the single quantum field mode. In
the thermal state, the correlations are close to zero at low
coupling strength; as the coupling strength increases, the cor-
relations reach a maximum value. If the coupling strength
increases past this point, the quantum correlations asymp-
totically decrease toward zero. The local maximum in the
quantum correlations of the thermal state is a consequence
of the competition between the increase in correlations in
the ground state and the thermal mixing that is enhanced by
the degeneracy in the energy spectrum of the quantum Rabi
model. The asymptotic degeneracy of the spectrum enhances
the mixing of eigenstates in thermal equilibrium, and the
quantum correlations tend to zero as the coupling strength
increases. As a consequence, even for very small finite tem-
peratures, there is always a sufficiently high coupling strength
for which the thermal state has zero correlations.

We have calculated the quantum discord for the set of one,
two, and three qubits with the single quantum field mode.
As the optimization process is computationally demanding,
we have considered up to six qubits where the calculation
of the quantum correlations considers a bipartition between
one of the qubits and the rest, N − 1, by tracing the quantum
field mode. In this case, we obtained similar power-law-like
dependence for the quantum correlations, suggesting that the
correlations embedded in the set of qubits represent the whole
system. The computational cost of the numerical calcula-
tion strongly prohibits considering a much larger number of
particles. Nevertheless, previous efforts have considered the
thermodynamical limit of quantum correlations in cooperative
systems, but always in the context of pure states or qubit-qubit
bipartitions [62,63].

Quantum correlations in thermal states have potential ap-
plications in emerging quantum technologies, such as in
quantum thermodynamics. We have considered as a possible
application of our paper a thermal machine using the quantum
Otto cycle, with a working substance consisting of a hybrid
light-matter system described by the multiqubit Rabi model.
We have found that the difference in quantum correlations in
the cold isochoric stage is a good indicator of the operating
regime and total work extracted in a quantum Otto heat engine
operating with a strongly interacting multiqubit-field hybrid
system. This is because in our model when the degeneracy
causes the cold thermal state to be more mixed than the hot
thermal state, the hot isochoric stage tends to unmix the state,
negatively impacting the difference of quantum correlations.
On the other hand, the cold isochoric stage is not affected
by degeneracy enhanced mixing and can perform as a good
indicator of total work extracted for cases with an increasing
number of qubits.
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