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Generation of entanglement via squeezing on a tripartite-optomechanical system
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We introduce a strategy to regulate the quantum entanglement in a dispersive-hybrid system where a qubit is
directly coupled to a cavity and a resonator. A dramatic transition takes place by only tuning the squeezing
parameters associated with the vibrational mode. As the squeezing amplitude becomes larger, the maximal
entanglement abruptly falls to zero at specific squeezing phases. It is also possible to generate entanglement
for bipartitions from the qubit-cavity-resonator system after applying this strategy. Entangled qubit-cavity states
are created through squeezing, even though there is no direct interaction between them. We also analyze the effect
of atomic, optical, and vibrational losses on the quantum entanglement. Finally, we discuss future realizations
to implement all these ideas and promote further studies to generalize the concept of monogamy in tripartite
systems outside qubit-composite states, in particular, (2 ⊗ 2 ⊗ n)-dimensional systems.
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I. INTRODUCTION

Entanglement or nonseparability of quantum-composite
systems is the most striking and powerful feature of quantum
mechanics [1] and was first introduced by Einstein, Podolsky,
and Rosen as an attempt to demonstrate the validity of this the-
ory [2,3]. Unlike classical theory, it has become a key resource
for the vast majority of applications in quantum information
and computation, such as quantum teleportation [4], quantum
cryptography [5], dense coding [6], and so on [7–10]. In
recent years, much effort has been devoted to quantify quan-
tum entanglement through entanglement measures, which
should be non-negative functions invariant under local oper-
ations and classical communication (LOCC) [11,12]. Until
now, this challenge has allowed the description of entangle-
ment for low-dimensional systems, in particular, well-defined
measures for two-qubit systems as well as bipartite systems
described for pure states of arbitrary dimension have been
reported [13,14]. The task is more complicated when a two-
party system is in a mixed state, but it can be analytically
calculated for special states employing the negativity [15–17].
While the number of subsystems in a given system grows, the
evaluation of entanglement is harder [18,19].

When dealing with multipartite systems, the concept of
“genuine” emerges as an important ingredient for relevant
quantum implementations [20–22]. A state is genuinely en-
tangled when it cannot be written as a convex combination
of quantum states [23]. This remarkable nonclassical prop-
erty is strongly linked to the quantum phenomenon so-called
monogamy where the entanglement contained between the
different parties of a quantum system cannot be freely trans-
ferred between themselves and is constrained by mathematical

*kjaraya@uc.cl
†Corresponding author: miguel.orszag@umayor.cl

limitations [24–26]. It makes the entanglement evaluation
for multipartite systems of three or more subsystems still an
unsolved problem in general, except in some cases such as
tripartite systems [27,28]. The Greenberger-Horne-Zeilinger
(GHZ) states and W states are chief examples of two classes
of maximally entangled states for three qubits [24,29]. One
of the first measures to characterize the genuine entangle-
ment for three-qubit systems was introduced by Coffman and
collaborators [30] regarding the residual entanglement from
an inequality involving the entanglement between bipartitions
of the full system. Since the last measure only quantifies
the GHZ-like entanglement, Ref. [31] explored a quantitative
entanglement measure for the W class. The above find-
ings were finally generalized by Osborne and Verstraete for
n-qubit systems [32]. Current studies have focused on finding
new measures for both kinds of states by using geometrical
arguments [33,34].

Despite the fact that the study of multipartite-entanglement
measures has had great advances in the last years, generation
and detection still present difficulties [35–39]. So far, various
ways for generating entangled states have been studied by re-
ducing multiparty states to a system described by fewer states
[40]. One of these is the concurrence of assistance (CoA)
[41,42] where LOOC is applied to any subsystem of the joint
system so as to maximize the entanglement of the remaining
subsystems. In this scenario, Yu et al. recently investigated
new inequality to describe how much entanglement is con-
tained in a (2 ⊗ 2 ⊗ n)-dimensional pure systems including
the concurrence of (2 ⊗ 2)-dimensional systems and the
CoA [43].

Generally, quantum entanglement is measured for discrete-
variable (DV) systems and continuous-variable (CV) systems
which are supported by a finite-dimensional and an infinite-
dimensional basis, respectively [44–46], being an easier task
for the first case than the second one due to its discrete
dimensionality. In recent years, hybrid systems composed of
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both CV and DV subsystems have gained importance because
they can be implemented for extraction, processing, and trans-
fer of information with the help of hybrid-like entanglement
[47–49]. Since hybrid states contain at least one CV sub-
system, it is rather difficult to measure their entanglement.
However, this issue has been solved for a set of states known
as nontruly hybrid states which satisfy certain conditions men-
tioned in Ref. [50], where CV-type states are orthonormalized
and converted to DV-like states [8]. As a consequence, this
particular hybrid system is supported by an overall finite-
dimensional basis allowing the quantification of entanglement
shared by the different subsystems. It has allowed investi-
gations to center on the generation of entanglement, using
principally resonant-hybrid systems mediated by detunings
of involved fields [51–53]. On the contrary, a recent work
studied a hybrid system where a mechanical object interacts
nonresonantly with a qubit and a cavity simultaneously [54].
Exploiting the dispersive property of this system and using
a resonator in a coherent field, the authors were capable of
creating qubit-cavity entanglement where it was not originally
present. However, they achieved it for a particular constraint
of the coupling constants g and λ. Here, we analyze non-
classical correlations of this hybrid system, considering the
complete system as well as the bipartite components from it.
Departing from previous studies, we use a coherent-squeezed
state in a single-vibrational mode to gradually regulate the ex-
treme regimes of the genuine and bipartite entanglement using
mechanical parameters as well as optomechanical and qubit-
mechanical coupling. At first sight, the off-resonant regime
could make us think that the squeezing parameters, which are
involved in the vibrational state, are possibly responsible for
causing the quantum entanglement transition as it happens
with quantum measurement transition [55–57]. We address
and solve the problem from this viewpoint throughout the
present article.

This paper is organized in the following way: In Sec. II, we
introduce the qubit-optomechanical system and evolve it for
arbitrary times, regarding an initially noncorrelated state for
the joint system. In Sec. III, we briefly review the computable
measures of entanglement for the joint system as well as for
any bipartition of it. We also discuss how to compute the
different measures by using explicit expressions. In Sec. IV,
we discuss the fast transition of the entanglement for ex-
treme regimes of the system under consideration, including
experimental conditions. In Sec. V, we study the dynamics
of entanglement in the presence of environmental noise by
coupling a common thermal bath of phonons to the total
system. In Sec. VI, we summarize the obtained results and
mention the applicability of our findings. Appendixes A and
B show the auxiliary calculations for a better understanding
of our work.

II. MODEL

We consider a two-level system (atomic qubit) of angular
frequency ωq interacting with a single-mode resonator that
vibrates at angular frequency ωv . The latter also couples to
a single-mode cavity of angular frequency ωc via radiation
pressure [58], as illustrated in Fig. 1. The Hamiltonian that

FIG. 1. Scheme to study tripartite entanglement in a dispersive-
hybrid system. Here, a resonator is coupled to a qubit as well as
a cavity. The qubit-resonator and cavity-resonator interactions are
controlled by the coupling strengths λ and g, respectively.

describes the model is

H0 = h̄ωqσz + h̄ωvb†b + h̄ωca†a − h̄λ0σz(b† + b)

− h̄g0a†a(b† + b), (1)

where σz = |0〉q〈0| − |1〉q〈1| is the Pauli z matrix in terms of
the ground (|1〉q) and excited (|0〉q) state, λ0 is the qubit-
resonator coupling strength, and g0 is the cavity-resonator
coupling strength. The cavity (vibrational) mode is asso-
ciated with the lowering a(b) and raising a†(b†) operator,
respectively. Under a rotating-frame transformation T =
exp[i(ωqσz + ωca†a)] [54], the Hamiltonian becomes

H = h̄ωvb†b − h̄λ0σz(b† + b) − h̄g0a†a(b† + b). (2)

The dynamics of the qubit-cavity-resonator system, described
for the Hamiltonian in Eq. (2), has been studied extensively in
Refs. [59–61] by means of the evolution operator at time τ ,

U (τ ) = ei(ga†a+λσz )2(�−sin �)e(ga†a+λσz )(ηb†−η∗b)e−i�b†b, (3)

where � = ωvτ , η = 1 − exp(−i�), g = g0/ωv , and λ =
λ0/ωv are parameters scaled by ωv .

In this work, we initially assume the two-level system in a
superposition of eigenstates of σz, the cavity in a superposition
of the Fock states |0〉c and |1〉c (see experimental preparations
of an optical qubit in Refs. [62–64]), and the vibrational mode
as a coherent-squeezed state [65,66] as follows:

|ψ〉qcv = 1√
2

(|0〉q + |1〉q)
1√
2

(|0〉c + |1〉c)|β, ξ 〉v, (4)

where |β, ξ 〉v = D(β )S(ξ )|0〉v is the coherent-squeezed state
written in terms of the displacement D(β ) = exp(βb† − β∗b)
and the squeezing operator S(ξ ) = exp[(ξ ∗b2 − ξb†2)/2]
[67,68]. Here, β is real and ξ = r exp(iφξ ). The vibrational
squeezing can be generated from the scheme introduced in
Ref. [69], based on the instability dynamics of an optome-
chanical system to operate in the ultrastrong coupling regime
[70,71]. Other schemes to create mechanical squeezed states
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can be considered in further studies; which include the mod-
ulation of a driven pump on the cavity [72–75], squeezing
transfer from a parametric amplifier inside the cavity to
the resonator [76], quadratic optomechanical coupling [77],
dissipative optomechanical coupling [78], and the Duffing
nonlinearity [79,80].

Since the initial state of the joint system is chosen to
be a discrete-discrete-continuous system, the second term in
Eq. (3) will take the form of the displacement operator after
evoking the evolution [67]. Then the vibrational state will be
shifted depending on the discrete part of the tripartite system
(qubit and cavity).

We proceed to evolve the initial state in Eq. (4) at any time
τ as follows:

|φ〉qcv = U (τ )|ψ〉qcv = 1
2 (|0〉q|0〉c|ξλ〉v + |0〉q|1〉c|ξg+λ〉v

+ |1〉q|0〉c|ξ−λ〉v + |1〉q|1〉c|ξg−λ〉v ), (5)

where |ξu〉v =exp[iu2(� − sin �)]D(ηu) exp(−i�b†b)|β, ξ 〉v
with u = λ, g + λ, −λ, g − λ.

We note that the evolution generates a correlated state
between the qubit, the cavity, and the resonator as well as
bipartite entanglement. Motivated by this fact, we study the
dynamics of the entanglement for the tripartite system (qubit,
cavity, and resonator) as well as the bipartite systems such as
qubit-resonator, cavity-resonator, and qubit-cavity system.

It is clear that the evolved state [Eq. (5)] lives in a Hilbert
space of dimension d1 × d2 × n where d1 = d2 = 2 and n =
d1d2. Hence, it can be considered a DV hybrid state or
a nontruly hybrid state [50]. As the vibrational motion is
the only system described by a continuous variable through
d1 × d2 non-orthonormal states, the Gram-Schmidt proce-
dure can be employed for orthonormalizing the set of states
{|ξλ〉v, |ξg+λ〉v, |ξ−λ〉v, |ξg−λ〉v} [8]. After this process, the new
basis is given by

|0〉v = |ψ0〉v, |0〉v = |0〉v/
√

v〈0|0〉v

|k〉v = |ψk〉v −
k−1∑
j=0

v〈 j|ψk〉v| j〉v (k = 1, 2, 3), |k〉v = |k〉v/
√

v〈k|k〉v. (6)

Here, |ψ0〉v = |ξλ〉v , |ψ1〉v = |ξg+λ〉v , |ψ2〉v = |ξ−λ〉v , and |ψ3〉v = |ξg−λ〉v . Now, we express the non-orthonormal states in terms
of the new set of states {|0〉v, |1〉v, |2〉v, |3〉v} as

|ξλ〉v = |0〉v,
|ξg+λ〉v = a0|0〉v + a1|1〉v,
|ξ−λ〉v = b0|0〉v + b1|1〉v + b2|2〉v,
|ξg−λ〉v = c0|0〉v + c1|1〉v + c2|2〉v + c3|3〉v, (7)

where

a0 = eig(g+2λ)(�−sin �)e2iβg sin �e−g2 f , a1 = (1 − |a0|2)1/2, b0 = e−4iβλ sin �e−4λ2 f ,

b1 = e−ig(g+2λ)(�−sin �)e−2iβ(g+2λ) sin �
(
1 − e−2g2 f

)−1/2[
e−(g+2λ)2 f − e−g2 f e−4λ2 f

]
, b2 = (1 − |b0|2 − |b1|2)1/2,

c0 = eig(g−2λ)(�−sin �)e2iβ(g−2λ) sin �e−(g−2λ)2 f ,

c1 = e−4igλ(�−sin �)e−4iβλ sin �
(
1 − e−2g2 f

)−1/2[
e−4λ2 f − e−(g−2λ)2 f e−g2 f

]
,

c2 = eig(g−2λ)(�−sin �)e2iβg sin �
[
1 − e−8λ2 f − (

1 − e−2g2 f
)−1(

e−(g+2λ)2 f − e−g2 f e−4λ2 f
)2]−1/2

× [
e−g2 f − e−4λ2 f e−(g−2λ)2 f − (

1 − e−2g2 f
)−1(

e−4λ2 f − e−(g−2λ)2 f e−g2 f
)(

e−(g+2λ)2 f − e−g2 f e−4λ2 f
)]

,

and

c3 = (1 − |c0|2 − |c1|2 − |c2|2)1/2, (8)

with

f ≡ f (r, φξ ,�) = (1 − cos �)[cosh(2r)

− sinh(2r) cos(� − φξ )]. (9)

The derivation of the inner products involved in the last calcu-
lations can be followed in Appendix A.

In view of the above results, the evolved state can be
rewritten as

|φ〉qcv = 1
2 [|0〉q|0〉c|0〉v + |0〉q|1〉c(a0|0〉v + a1|1〉v )

+ |1〉q|0〉c(b0|0〉v + b1|1〉v + b2|2〉v )

+ |1〉q|1〉c(c0|0〉v + c1|1〉v + c2|2〉v + c3|3〉v )], (10)

where the coefficients a j , b j , and c j were chosen to satisfy the
condition qcv〈φ|φ〉qcv = 1.

III. ENTANGLEMENT MEASURES

A. Bipartite entanglement

As pointed out, the literature has reported different mea-
sures of entanglement for bipartite systems. Throughout our
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work, we use the negativity and the concurrence to quantify
the entanglement of these systems. The negativity [16,17] of
a system with two parties A and B can be computed as

N (ρAB) =
∑

j

(|η j | − η j ), (11)

where η j are the eigenvalues of the partially transposed den-
sity matrix with respect to the system A (partial transpose can
also be taken with respect to the other system), defined as
follows: 〈

eA
j eB

k |ρTA
AB|eA

l eB
m

〉 = 〈
eA

l eB
k |ρAB|eA

j eB
m

〉
. (12)

Here, we denote by |eA
j 〉 and |eB

k 〉 two bases in the Hilbert
spaces corresponding to the systems A and B, respectively.
The expression in Eq. (11) has been multiplied by a factor
to reach a numerical value of 1 for maximally entangled
states [81].

An alternative entanglement measure for qubit-qubit (2 ⊗
2) systems is the concurrence [15]. It is given by

C(ρAB) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (13)

with λ j being the eigenvalues of Hermitian matrix ρABρ̃AB in
decreasing order, where ρ̃AB = (σy ⊗ σy)ρAB(σy ⊗ σy) is the
spin-flip transformation of ρAB and σy is the Pauli y matrix

σy =
(

0 −i
i 0

)
. (14)

B. Tripartite entanglement

We now consider a pure (2 ⊗ 2 ⊗ n)-dimensional tripar-
tite state (n � 2) composed of three parties referred to as A,
B, and C. The AB-system described by the reduced density
matrix ρAB, which is obtained by tracing over the party C,
could be entangled or not. The entanglement of this system
can be increased by performing generalized measurements on
the subsystem C [8]. The maximal entanglement generated
on the (2 ⊗ 2)-dimensional system after locally measuring
is quantified by the concurrence of assistance (CoA) [40,41]
defined as

Ca(ρAB) = max
∑

i

p j C(|φ j〉AB〈φ j |), (15)

where the maximization is done over all possible combina-
tions of ρAB = ∑

j p j |φ j〉AB〈φ j | into the pure states |φ j〉AB

such that
∑

j p j = 1 and p j � 0 [82]. An explicit formula has
been derived in Ref. [42] for (2 ⊗ 2 ⊗ n)-dimensional pure
states, this is

Ca(ρAB) = F (ρAB, ρ̃AB) =
∑

j

√
λ j, (16)

where ρ̃AB and λ j were defined in the previous section. Here,

F (ρ, σ ) = [tr(ρ1/2σρ1/2)
1/2

]
2

is the fidelity [83]. The CoA is
a monotone function but it cannot be considered a genuine
entanglement measure [84].

A new measure that describes the genuine tripartite en-
tanglement of the pure state |ψ〉ABC was introduced by
Chang-shui et al. from the idea that there is a trade-off be-

tween the CoA and the concurrence [43], it is given by

τ (ρABC ) =
√

C2
a (ρAB) − C2(ρAB). (17)

It is clear that τ (ρABC ) � 0 is in agreement with the defini-
tions in Eqs. (13) and (16). Note also that τ 2(ρABC ) could
make us think that this inequality violates the monogamy of
entanglement [30] where the entanglement shared between
the different subsystems is limited, however, the property
remains. It can be better understood by rewriting Eq. (17) as

C2
a (ρAB) = C2(ρAB) + τ 2(ρABC ). (18)

Here, the CoA has two contributions, the AB entanglement
and the ABC entanglement. While subsystem C increases the
entanglement between A and B, the remaining entanglement
τ 2 decreases. In other words, the AB state is maximally entan-
gled when it completely disentangles from C.

Therefore, the τ -measure vanishes if any bipartition from
the tripartite system is separable, i.e.,

|ψ〉ABC = |ψ〉i j ⊗ |ψ〉k, (19)

with {i, j, k} = {A, B,C} (i �= j �= k) and where |ψ〉i j repre-
sents the bipartite pure state partially or maximally entangled
and |ψ〉k is the uncorrelated subsystem. This quantity is also
equal to zero when is fully separable, which can be written as

|ψ〉ABC = |ψ〉A ⊗ |ψ〉B ⊗ |ψ〉C . (20)

In any other case, τ (ρABC ) takes the nonzero value reach-
ing a maximum value for entangled states with local rank
(2, 2, n) (n � 2) [85].

Since τ (ρABC ) only describes GHZ-type entanglement
[29], another good measure to characterize the GHZ-type as
well as W -type states as one was studied in Ref. [86] by
replacing the concurrence for the negativity [see Eq. (11)].
The analytical expression is

χ (ρABC ) =
√

C2
a (ρAB) − N2(ρAB), (21)

which can be derived from the monogamy equation χ2 � 0 in
a similar way to τ .

IV. ENTANGLEMENT TRANSITION IN A CLOSED
TRIPARTITE SYSTEM

For our scheme in the study, we will compute all entan-
glement measures using the expressions presented in Sec. III.
To explore the genuine entanglement of the tripartite state
and their bipartite entanglement, we need to find the reduced
density matrices by tracing over any of the three subsys-
tems (qubit, cavity, or resonator). The bipartite states are
described by

ρqv = trc|φ〉qcv〈φ|, ρcv = trq|φ〉qcv〈φ|,
and ρqc = trv|φ〉qcv〈φ|, (22)

whose matrix representations are given in Appendix B. By
looking at Eqs. (8)–(10), if � = 2mπ (with m integer), the
resonator disentangles from qubit and cavity because η and
f are null. In this case, the qubit-cavity state goes from a
separable state to a maximally entangled state by only reg-
ulating the coupling constants g and λ and the squeezing
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FIG. 2. Method to achieve the entanglement transition in the
(a) qubit-cavity-resonator system and (b) qubit-cavity system as a
function of the squeezing phase φξ by modulating the squeezing
amplitude r. Here, we took � = 3π , g = 1/

√
2, and λ = 1/

√
72.

effects are not present. In spite of the lack of direct qubit-
cavity interaction in the Hamiltonian model [see Eq. (2)], the
qubit-cavity entanglement appears [54]. This effect is caused
by the Kerr-like factor exp[(gn ± λ)2(� − sin �)] (n = 0, 1)
after evolving the joint system [see Eq. (5)]. It is important
to highlight that the coherent effects disappear when � = mπ

[see Eq. (8)].
Following this idea, we can control the weak-to-strong

entanglement transition taking into account that the exponen-
tial function in Eq. (8) decreases as the function f increases
when � �= 2mπ . To achieve the transition, we set the cou-
pling strengths (g and λ) and adjust the squeezing parameters
(r and φξ ). Particularly, if � = (2m + 1)π (m being an inte-
ger), the squeezing function in Eq. (9) reduces to

( f )�=(2m+1)π = e2r (1 + cos φξ ) + e−2r (1 − cos φξ ). (23)

Then by taking r → ∞, f takes the nonzero value for any φξ

unless φξ = (2m + 1)π , in which case f vanishes. As seen
in Fig. 2(a), the qubit-cavity correlation changes from no cor-
relation to maximal correlation, peaking at φξ = π, 3π, . . ..
Therefore, indirect qubit-cavity entanglement was generated

FIG. 3. Fidelity of the evolved state |ψ〉qcv versus the squeezing
parameters r and φξ plotted for g = 1/

√
2, λ = 1/

√
72, and � = 3π .

from a state initially uncorrelated by using the squeezing
amplitude and phase of the vibrational mode.

This method can be applied to cause a fast transition of the
tripartite entanglement, as shown in Fig. 2(a), where the en-
tanglement reaches its maximum value when φξ �= π, 3π, . . ..
For 0 � φξ < π , we note that the qubit-cavity-resonator en-
tanglement decreases while the qubit-cavity entanglement
increases until a break point at φξ = π . Then both correlations
have the opposite trend in the interval π < φξ � 2π . This
behavior does not violate the monogamy of entanglement (see
Sec. III B) and repeats at intervals of 2π .

To compute the fidelity of the evolved state in Eq. (10),
we consider the maximally entangled state with local rank
(2, 2, 4) [85] expressed as

|ψmax〉qcv = 1
2 (|0〉q|0〉c|0〉v + |0〉q|1〉c|1〉v + |1〉q|0〉c|2〉v
+ |1〉q|1〉c|3〉v ). (24)

The qubit-cavity-resonator fidelity can be simply obtained as

Fqcv = |qcv〈ψmax|φ〉qcv|2 = 1
16 (1 + a1 + b2 + c3)2, (25)

where a1, b2, and c3 were expressed in Eq. (8). In Fig. 3,
the maximal fidelity is achieved for a large r and φξ �=
(2m + 1)π , especially if φξ = 2mπ . In this case, the state is
|ψmax〉qcv in accordance with the maximal tripartite entangle-
ment [see Fig. 2(a)]. Additionally, the fidelity reaches a min-
imum when r → ∞ and φξ = (2m + 1)π . It is easy to check
that (Fqcv )r→∞, φξ �=(2m+1)π = 1 and (Fqcv )r→∞, φξ =(2m+1)π =
1/16.

It should be noted that the genuine entanglement vanishes
when any of the coupling constants is equal to zero (see Fig. 4)
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FIG. 4. Genuine entanglement for (a) the joint system |ψ〉qcv and
(b) generation of entanglement in the qubit-cavity system ρqc as a
function of φξ for different values of the coupling strengths g and λ.
We selected r = 2.2 and � = 3π .

or both of them are simultaneously null (fully separable state).
In the first case, the resonator decouples from the qubit or
the cavity. When there is no interaction between the cavity
and resonator (g = 0), the cavity-resonator and qubit-cavity
entanglements are zero [Figs. 4(b) and 5(b)] and the qubit-
resonator entanglement is described by

(Nqv )g=0 =
√

1 − e−8λ2 f (r,φξ ,�), (26)

which can be regulated through the squeezing parameters of
the function f [Eq. (9)], for fixed λ [see Fig. 5(a)]. Analo-
gously, the cavity-resonator entanglement, for λ = 0, takes the
form

(Ncv )λ=0 =
√

1 − e−2g2 f (r,φξ ,�). (27)

Choosing moderate coupling constants g and λ, a dramatic
transition undergoes on the tripartite as well as the bipartite
entanglement, which only depends on the parameters r and φξ

(see Figs. 4 and 5). In the limits, g → 0, λ → 0, or {g, λ} → 0,
the qubit and the cavity tend to disentangle. The third case
implies that the evolution operator is U (τ ) = I [see Eq. (3)],

FIG. 5. Entanglement dynamics of the reduced density operators
ρqv (the upper panel) and ρcv (the lower panel) as a function of
squeezing angle φξ taking different values for the coupling constants
g and λ. Here, we chose r = 2.2 and � = 3π .

thus, the initial tripartite state in Eq. (4) is not affected by the
qubit-optomechanical Hamiltonian [see Eq. (2)].

On the other hand, the dimension of the vibrational mode
can be reduced to three by selecting g = 2λ. Under this
condition, the resonator can be described as a qutrit. The en-
tanglement transition between the extreme regimes is directly
controlled by the qubit-resonator coupling strength and the
squeezing parameters. The entanglement transition between
extreme regimes is faster as λ gets smaller (see Fig. 6).

It is highlighted that all our parameters are in agreement
with the experimental realizations where optomechanical and
qubit-mechanical couplings have been reported for different
regimes including the ultrastrong regime [70,87–90]. Besides,
we take into account the high mechanical squeezing achieved
in Refs. [73,74].

V. DISSIPATIVE DYNAMICS OF ENTANGLEMENT

So far we have studied quantum correlations in closed
systems which do not interact with the environment. When
the system is subject to environmental noise, decoherence of
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FIG. 6. The weak-to-strong transition entanglement for a qubit-
qubit-qutrit system as a function of the qubit-resonator coupling λ,
where the correlation is modified by fixing the squeezing phase and
the vibrational angle at φξ = 2π and � = 5π , respectively. Several
values of r were chosen.

the quantum system arises and entanglement between the dif-
ferent parts of the system generally decreases due to atomic,

mechanical, and optical losses [54]. Taking into account these
facts, we examine how the entanglement of the qubit-cavity-
resonator and qubit-cavity systems change in the presence of
dissipative effects. In our scheme, the joint system is coupled
to a common thermal bath with an average number of phonons
nv = [exp(h̄ωv/kBTv ) − 1]−1 (kB is the Boltzmann constant
and Tv is the temperature of the bath). Here, the optical effects
are neglected because we are working in optical frequencies
ωc � 1 and thus the average number of photons nc ≈ 0. To
describe the dynamics of the total system under the cavity
and vibrational leakages as well as two-level decay, we can
use the standard master equation in the Born-Markov approx-
imation (SME) when the qubit-resonator and cavity-resonator
couplings are weak ({g, λ} 
 1), which do not affect the
eigenstates of the total system’s Hamiltonian [91]. However,
recent optomechanical systems have reached strong and ul-
trastrong couplings causing a strong impact on the system’s
eigenstates [92]. To solve this problem, a new treatment, the
so-called dressed master equation (DME), was derived in
Refs. [92,93] to study the system evolution under the new
coupling assumptions. Then the qubit-cavity-resonator state
ρqcv is governed by the equation

dρqcv

dt
= − i

h̄
[H, ρqcv] + γ (nv + 1)D[b − ga†a]ρqcv

+γ nvD[b† − ga†a]ρqcv + κD[a]ρqcv + �(nv + 1)D[σ−]ρqcv

+�nvD[σ+]ρqcv + γd

2
D[σz]ρqcv + 4γ g2

ln
( nv+1

nv

)D[a†a]ρqcv (28)

which is expressed in terms of the Lindbladian dissipator
D[L]ρqcv = (2LρqcvL† − ρqcvL†L − L†Lρqcv )/2, the bosonic
operators a (b) and the atomic ladder operators σ± = (σx ±
iσy) (in terms of the Pauli spin operators). Here, the cavity
(resonator) decay rate is κ (γ ). The qubit losses are quantified
by the qubit relaxation rate � and dressed qubit dephasing rate
γd = �d + 4γ λ2/ln[(nv + 1)/nv]. The latter is a function of
the qubit pure dephasing �d . All dissipative factors are scaled
by the vibrational frequency ωv and thus rendered dimension-
less. Notice that, in the limit {g, λ} → 0, the DME in Eq. (28)
tends to the SME [91], where the coupling strengths are not
strong enough to cause significant decoherence in the total
system.

To research the noise effect on entanglement in our
scheme, we assume the total system described by the uncor-
related state in Eq. (4). Considering the different losses of the
system in contact with the environment, we evolve the joint
system by using the DME in Eq. (28). The dissipative fac-
tors for the qubit are maintained (� = 10−3 and γd = 10−2)
whereas the optical and vibrational decay rates are varied for
the range of values κ = 0.02–0.2 and γ = 10−5–10−2. The
thermal bath attached to the system has an occupation number
nv = 50 which is consistent with the assumption of the DME
(nv � 1) [91]. The cavity-resonator and qubit-resonator in-
teractions modulated by the coupling strengths g and λ are
selected to be in the ultrastrong regime (g = 1/

√
2 and λ =

1/
√

72). Note that these factors are greater than the dissipative

factors {κ, γ , �, γd}. With these values in agreement with
experimental realizations [58], one gets a high-quality factors
for the vibrational mode Qv = ωv/γ , between 103 and 105,
which causes a little effect on the resonator.

In the absence of dissipation, the quantum correlation of
the total system (qubit, cavity, and resonator) reaches the
maximum value when � = (2m + 1)π (m being integer),
φξ �= (2m + 1)π , and r → ∞ while the qubit-cavity corre-
lation achieves the maximum values for the same values for
the latter case but φξ = (2m + 1)π . Therefore, the threshold
value for our analysis is {Cqc, τ

2} = 1 which corresponds to
the maximal entanglement [see Fig. 2]. As seen in Fig. 7, the
qubit and cavity are not maximally entangled for any value of
κ and it is influenced by the optical loss γ . For the value κ =
0.2 and γ = 10−2, the entanglement experiences the maxi-
mal loss, where Cqc ≈ 0.3. One can say that 70 percent of
entanglement between the qubit and the cavity was lost. One
might expect that the qubit-cavity-resonator entanglement ex-
periences similar losses as in the above case, however, the
entanglement only falls to τ 2 ≈ 0.9977 for the maximal decay
rates allowed in our scheme (κ = 0.2 and γ = 10−2).

VI. CONCLUSION AND DISCUSSION

In this work, we proved that genuine entanglement for
an off-resonant hybrid system experiences a dramatic entan-
glement transition from the weak-to-strong regime by just
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FIG. 7. Evolution of entanglement as a function of cavity decay κ for the qubit-cavity system (upper panel) and the qubit-cavity-resonator
system (bottom system) characterized by the concurrence and the tau-measure, respectively. The different graphs plot for different vibrational
decay rates γ = 10−5–10−2 and an average number of the bath nv = 50. We fixed the qubit losses � = 10−3 and γd = 10−2. The coupling
constants are chosen to be g = 1/

√
2 and λ = 1/

√
72. For the upper panel, we chose r = 2, φξ = π , and � = 3π . For the bottom panel, we

selected r = 2, φξ = 2π , and � = 3π .

adjusting the squeezing phase and by gradually varying the
squeezing amplitude to a large value, for a fixed qubit-
resonator and cavity-resonator couplings. More specifically,
we achieve this remarkable transition when leading the factor
� − φξ from (2m + 1)π (m being an integer) to a different
value of it for r → ∞. This would be a difficult task to
achieve because of the three parameters involved, however,
we set the frequency angle � to be (2m + 1)π so that the
coherent effect vanishes. It allows us to tune the tripar-
tite entanglement from the strongest regime at φξ �= (2m +
1)π (maximally entangled states) to the weakest regime at
φξ = (2m + 1)π (separable states). In fact, this method is
used to cause the break in the entanglement for bipartitions of
the full system. As pointed out in Ref. [54], entangled qubit-
cavity states can be generated where no direct interaction
between them was initially present by using a coherent state as

a vibrational mode. Nevertheless, it is possible under certain
conditions for the couplings g and λ, which are not allowed to
be large enough due to experimental factors [89,94]. We solve
this problem by considering a coherent-squeezed field in the
resonator and by only varying the squeezing parameters. Fol-
lowing this idea, we can generate qubit-cavity entanglement
with the help of the squeezing parameters without limiting the
coupling constants, as seen in Fig. 2(b).

Interestingly, the interaction between qubit and resonator
takes importance when g is vanishingly small and it can
simply be described by Eq. (26). In particular, the cavity
completely decouples from the resonator if g = 0 as Fig. 5(b)
shows us. Therefore, our useful technique can be implemented
easily for qubit-mechanical systems [61,95], having a alter-
native to producing entanglement from squeezing. The same
method can be used for optomechanical systems [59]. We also
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point out an important property when taking g = 2λ. In this
case, the vibrational mode is fully described by a qutrit and
the entanglement transition can be influenced by the coupling
λ, as illustrated in Fig. 6. We observe that the transition gets
faster while λ decreases and r goes to infinity, facilitating the
abrupt change in the entanglement.

Looking at Figs. 4(b), 5(a), and 5(b), we notice that
the qubit-cavity entanglement reaches a peak when φξ =
(2m + 1)π while the qubit-resonator and cavity-resonator
entanglement deeply falls to zero. At φξ �= (2m + 1)π , the
resonator maximally entangles with the qubit and the cavity
at the same time (g = 1/

√
2 and λ = 1/

√
72). This strange

finding makes us think about the validity of the entangle-
ment monogamy for (2 ⊗ 2 ⊗ n)-dimensional systems, which
leaves us the hard task of studying a new monogamy inequal-
ity by using alternative measures as the convex-roof extended
negativity (CREN) [96].

As seen in Sec. V, the maximal entanglement achieved
with the squeezing technique is altered when the entire system
is connected to the environment through a thermal bath. The
qubit, the cavity, and the resonator losses generated by the
noise cause an abrupt decrease in the qubit-cavity entangle-
ment. As illustrated in Fig. 7, the main responsible for the fall
of entanglement are the optical and vibrational leakages char-
acterized by κ and γ , respectively. While γ and κ increase,
the indirect entanglement between the qubit and the cavity
gets smaller, with a maximal loss for κ = 0.2 and γ = 10−2.
Surprisingly, the qubit-cavity-resonator entanglement experi-
ences a loss of only 0.23 percent concerning the maximal
value τ 2 = 1 for the same decay rates. Because environmental
effects are the main difficulty to maximally entangle sub-
systems of optomechanical systems, the minimal losses in
the tripartite entanglement obtained in our study could be
employed for applications to quantum information processing

and quantum communication [51–53,97,98], as well as gener-
ation of maximally entangled states in the presence of noise
[99,100].
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APPENDIX A: PROOF OF SOME USEFUL INNER
PRODUCTS

In this Appendix, we show the method to find inner prod-
ucts which are necessary for getting the main expressions in
this article. First, we consider the state

|ξu〉 = exp[iu2(� − sin �)]D(ηu) exp(−i�b†b)|β, ξ 〉, (A1)

where η = 1 − exp(−i�) and |β, ξ 〉 = D(β )S(ξ )|0〉 is the
coherent-squeezed state, with D(β ) = exp(βb† − β∗b) and
S(ξ ) = exp[(ξ ∗b2 − ξb†2)/2] [67,68]. The coherent and
squeezed parameters are real β and ξ = r exp(iφξ ).

The inner product between |ξg1±λ1〉 and |ξg2±λ2〉 is

〈ξg1±λ1 |ξg2±λ2〉 = ei[(g2±λ2 )2−(g1±λ1 )2](�−sin �)

×〈β, ξ |ei�b†bD{η[g2 − g1 ± (λ2 − λ1)]}
× e−i�b†b|β, ξ 〉, (A2)

where was used the property D(α1)D(α2) = exp[iIm(α1α
∗
2 )]

D(α1 + α2) [101]. By using the last one as well as
the transformation exp(xb†b) f (b, b†)exp(−xb†b) =
f [b exp(−x), b†exp(x)] [102], Eq. (A2) becomes

〈ξg1±λ1 |ξg2±λ2〉 = ei[(g2±λ2 )2−(g1±λ1 )2](�−sin �)〈0|S(−ξ )D(−β )D{ηei�[g2 − g1 ± (λ2 − λ1)]}D(β )S(ξ )|0〉
= ei[(g2±λ2 )2−(g1±λ1 )2](�−sin �)e2iβ[(g2−g1 )±(λ2−λ1 )] sin �〈0|S(−ξ )D{ηei�[g2 − g1 ± (λ2 − λ1)]}S(ξ )|0〉. (A3)

With the help of the property

D(α1)S(ξ ) = S(ξ )D(α2), (A4)

where α2 = μα1 + να∗
1 in terms of μ = cosh r and ν =

sinh rexp(iφξ ) [101], Eq. (A3) reduces to

〈ξg1±λ1 |ξg2±λ2〉
= ei[(g2±λ2 )2−(g1±λ1 )2](�−sin �)e2iβ[(g2−g1 )±(λ2−λ1 )] sin �

×〈0|[g2 − g1 ± (λ2 − λ1)](μηei� + νη∗e−i�)〉. (A5)

Then by taking into account 〈α1|α2〉 = exp[−(|α1|2 + |α2|2 −
2α1α

∗
2 )/2] [101], one gets

〈ξg1±λ1 |ξg2±λ2〉
= ei[(g2±λ2 )2−(g1±λ1 )2](�−sin �)e2iβ[(g2−g1 )±(λ2−λ1 )] sin �

× e− 1
2 [g2−g1±(λ2−λ1 )]2|μηei�+νη∗e−i�|2 . (A6)

After some calculations, it is easy to show that

|μηei� + νη∗e−i�|2
= 2(1 − cos �)[cosh(2r) − sinh(2r) cos(� − φξ )]. (A7)

Considering the above, one can finally obtain

〈ξg1±λ1 |ξg2±λ2〉
= ei[(g2±λ2 )2−(g1±λ1 )2](�−sin �)e2iβ[(g2−g1 )±(λ2−λ1 )] sin �

× e−[g2−g1±(λ2−λ1 )]2 f (r,φξ ,�), (A8)

where f (r, φξ ,�) = (1 − cos �)[cosh(2r) − sinh(2r)
cos(�−φξ )] is the squeezing function.

Following the similar procedure, it is straightforward to
derive

〈ξg1±λ1 |ξg2∓λ2〉
= ei[(g2∓λ2 )2−(g1±λ1 )2](�−sin �)e2iβ[(g2−g1 )∓(λ1+λ2 )] sin �

× e−[g2−g1∓(λ1+λ2 )]2 f (r,φξ ,�). (A9)

Through this work, we take {g1, g2} = {0, g} and
{λ1, λ2} = {0, λ}.
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APPENDIX B: REDUCED MATRICES OF THE QUBIT-CAVITY-RESONATOR SYSTEM

The reduced density operators, which were defined in Eq. (22), can be represented as follows:

ρqv = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + |a0|2 a0a∗
1 0 0 b∗

0 + a0c∗
0 b∗

1 + a0c∗
1 b∗

2 + a0c∗
2 a0c∗

3

a1a∗
0 |a1|2 0 0 a1c∗

0 a1c∗
1 a1c∗

2 a1c∗
3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

b0 + c0a∗
0 c0a∗

1 0 0 |b0|2 + |c0|2 b0b∗
1 + c0c∗

1 b0b∗
2 + c0c∗

2 c0c∗
3

b1 + c1a∗
0 c1a∗

1 0 0 b1b∗
0 + c1c∗

0 |b1|2 + |c1|2 b1b∗
2 + c1c∗

2 c1c∗
3

b2 + c2a∗
0 c2a∗

1 0 0 b2b∗
0 + c2c∗

0 b2b∗
1 + c2c∗

1 |b2|2 + |c2|2 c2c∗
3

c3a∗
0 c3a∗

1 0 0 c3c∗
0 c3c∗

1 c3c∗
2 |c3|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

ρcv = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + |b0|2 b0b∗
1 b0b∗

2 0 a∗
0 + b0c∗

0 a∗
1 + b0c∗

1 b0c∗
2 b0c∗

3

b1b∗
0 |b1|2 b1b∗

2 0 b1c∗
0 b1c∗

1 b1c∗
2 b1c∗

3

b2b∗
0 b2b∗

1 |b2|2 0 b2c∗
0 b2c∗

1 b2c∗
2 b2c∗

3

0 0 0 0 0 0 0 0

a0 + c0b∗
0 c0b∗

1 c0b∗
2 0 |a0|2 + |c0|2 a0a∗

1 + c0c∗
1 c0c∗

2 c0c∗
3

a1 + c1b∗
0 c1b∗

1 c1b∗
2 0 a1a∗

0 + c1c∗
0 |a1|2 + |c1|2 c1c∗

2 c1c∗
3

c2b∗
0 c2b∗

1 c2b∗
2 0 c2c∗

0 c2c∗
1 |c2|2 c2c∗

3

c3b∗
0 c3b∗

1 c3b∗
2 0 c3c∗

0 c3c∗
1 c3c∗

2 |c3|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

and

ρqc = 1

4

⎛
⎜⎜⎜⎜⎝

1 a∗
0 b∗

0 c∗
0

a0 |a0|1 + |a1|2 a0b∗
0 + a1b∗

1 a0c∗
0 + a1c∗

1

b0 b0a∗
0 + b1a∗

1 |b0|1 + |b1|2 + |b2|2 b0c∗
0 + b1c∗

1 + b2c∗
2

c0 c0a∗
0 + c1a∗

1 c0b∗
0 + c1b∗

1 + c2b∗
2 |c0|1 + |c1|2 + |c2|2 + |c3|2

⎞
⎟⎟⎟⎟⎠. (B3)

The density matrices ρqv(cv) and ρqc were written in the basis

{|00〉qv(cv), |01〉qv(cv), |02〉qv(cv), |03〉qv(cv), |10〉qv(cv), |11〉qv(cv), |12〉qv(cv), |13〉qv(cv)} (B4)

and

{|00〉qc, |01〉qc, |10〉qc, |11〉qc}, (B5)

respectively. Here, we used the notation | jk〉 ≡ | j〉|k〉. The coefficients aj , b j , and c j are given by Eq. (8).
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