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The asymmetry of a quantum state relative to a translational group is a central concept in many areas of
quantum science and technology. An important and geometrically intuitive measure of translational asymmetry
of a state is given by the trace-norm asymmetry, which is defined as the trace norm of the commutator between
the state and the generator of the translation group. While trace-norm asymmetry satisfies all the requirements for
a bona fide measure of translational asymmetry of a state within the quantum resource theoretical framework, its
meaning in terms of laboratory operations is still missing. Here, we first show that the trace-norm asymmetry is
equal to the average absolute imaginary part of the weak value of the generator of the translation group optimized
over all possible orthonormal bases of the Hilbert space. Hence, it can be estimated via the measurement of
weak value combined with a classical optimization in the fashion of quantum variational circuit which may be
implemented using the near-term quantum hardware. We then use the link between the trace-norm asymmetry
and the nonreal weak value to derive the relation between the trace-norm asymmetry with other basic concepts
in quantum statistics. We further obtain trade-off relations for the trace-norm asymmetry and quantum Fisher
information, having analogous forms to the Kennard-Weyl-Robertson uncertainty relation.
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I. INTRODUCTION

Quantum information theory promises novel schemes of
information processing technology that are exceedingly far
more efficient and secure than those based on classical means.
This is achieved by harnessing various nonclassical aspects of
quantum mechanics. One such aspect, which has garnered a
lot of attention lately, is the concept of quantum asymmetry
[1,2]. Quantum asymmetry captures the behavior of a quan-
tum state under (the unitary representation of) a certain group
of transformation. Like other nonclassical aspects of quan-
tum mechanics, it originates from the quantum superposition
principle. Significant efforts over the past decade have shown
that this manifestation of quantum superposition as asymme-
try is a prerequisite for quantum frame alignment [3–5] and
quantum metrology [6,7], and it is a key concept in the study
of quantum speed limit [8,9] and quantum thermodynamics
[4,10–14]. It is thus important to be able to characterize and
quantify the asymmetry of an unknown quantum state using
well-defined operations in the laboratory.

Consider a Hermitian operator K on a finite-dimensional
Hilbert space generating a one-parameter group of translation
unitaries: {UK,θ = e−iKθ , θ ∈ R}. A quantum state represented
by a density operator � on the Hilbert space is symmetric rela-
tive to the translation group generated by K if it is invariant un-
der the translation unitaries, i.e., e−iKθ�eiKθ = � for all θ ∈ R.
All other states are asymmetric relative to the translation
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group. For a quantum state � to be symmetric relative to the
translation group generated by K , the state must therefore
commute with the generator of the translation, i.e., [K, �] :=
K� − �K = 0, so that they are jointly diagonalizable. Assum-
ing that K is nondegenerate, and denoting the eigenstates of
K as {|k〉}, we thus have � = ∑

k pk |k〉 〈k|, where {pk} are the
real and nonnegative eigenvalues of � satisfying

∑
k pk = 1.

Hence, a symmetric state relative to a translation group is a
convex combination or a classical mixture of the eigenstates
{|k〉} of the generator K of the translation. This means that
a translationally asymmetric state is a superposition of some
elements of the eigenstates {|k〉} of K . Namely, it is coherent
with respect to the orthonormal basis {|k〉} [2].

The asymmetry of a quantum state relative to a group of
translation is better understood by regarding it as a resource
in some information processing tasks. This insight has led
to the application of the rigorous mathematical framework
of quantum resource theory [15,16] to characterize, quantify,
and manipulate the translational asymmetry [3,17,18]. In the
general framework of quantum resource theory, permissible
quantum operations are restricted to those which can be eas-
ily implemented reflecting certain physical and/or operational
constraints. Such operations are regarded as free. Accordingly,
quantum states are divided into those that can be prepared
by the set of free operations, called free states, and those
that cannot be prepared using any free operation and free
state, which are regarded as resourceful states. In the resource
theory of translational asymmetry, the free operations are
given naturally by the set of translationally covariant quantum
operations, i.e., those which commute with the translation
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unitaries [2]. Such operations map symmetric states onto
symmetric states, and they cannot create asymmetric states
from symmetric states relative to the translation group. Hence,
symmetric states are regarded as free, and asymmetric states
are resourceful.

An important measure of translational asymmetry obtained
within the framework of quantum resource theory is the trace-
norm asymmetry [2,8]. The trace-norm asymmetry of a state
� relative to a translation group generated by a Hermitian
operator K is defined as

ATr(�; K ) := 1
2‖[�, K]‖1, (1)

where ‖O‖1 := Tr
√

OO† is the trace norm (also called 1-
norm) of the operator O. The trace-norm asymmetry is not
only geometrically intuitive, it also satisfies certain plau-
sible requirements for a bona fide measure of asymmetry
within the resource theoretical framework. Most impor-
tantly, it satisfies (i) faithfulness, i.e., it vanishes if and
only if the state is symmetric, and (ii) monotonicity, i.e., it
is nonincreasing under the translationally covariant opera-
tions ATr(�(�); K ) � ATr(�; K ), where �(·) is a completely
positive trace-nonincreasing linear map satisfying the transla-
tionally covariant condition �(e−iKθ�eiKθ ) = e−iKθ�(�)eiKθ .
While the trace-norm asymmetry offers a closed formula, its
meaning in terms of laboratory operations is not clear except
when the state is pure, � = |ψ〉 〈ψ |, in the case of which the
trace-norm asymmetry can be expressed as

ATr(|ψ〉 〈ψ | ; K ) = �K (|ψ〉 〈ψ |), (2)

where, for a generic state �, �K (�)2 := Tr(K2�) − [Tr(K�)]2

is the quantum variance of the outcomes of the measurement
of observable K over the state �. A better understanding on
the operational meaning of the trace-norm asymmetry may
suggest a fresh insight into its application to characterize
certain quantum (information) protocols, and its estimation
in the laboratory. It may also reveal the relation between the
trace-norm asymmetry and other measures of asymmetry and
quantum coherence, and between the trace-norm asymmetry
and other basic concepts in quantum statistics.

In the present work, we first show that the trace-norm
asymmetry relative to a translation group is equal to the
average absolute nonreal part of the weak value [19–23] of
the generator of the translation, maximized over all possi-
ble orthonormal bases of the Hilbert space. Hence, it can
be estimated in experiment directly, i.e., without recoursing
to full state tomography, through the measurement of the
weak value [19,20,22,24–32] combined with a classical op-
timization procedure, in the fashion of variational quantum
circuit [33]. These estimation schemes should be realizable
using the presently available NISQ (noisy intermediate-scale
quantum) hardware [34]. Moreover, they lend themselves to
the operational interpretation of the trace-norm asymmetry.
Using the mathematical link between the trace-norm asym-
metry and the nonreal part of the weak value, we then derive
upper bounds for the trace-norm asymmetry in terms of quan-
tum standard deviation, quantum Fisher information [35–39],
nonreal (nonclassical) values of the Kirkwood-Dirac (KD)
quasiprobability [40–42], l1-norm coherence [43], and purity
of the quantum state. We also obtain a lower bound for the

trace-norm asymmetry and the quantum Fisher information
in terms of the maximum average noncommutativity between
the generator of the translation group and any other bounded
Hermitian operators on the Hilbert space. This leads to the
derivation of trade-off relations for the trace-norm asymmetry
and quantum Fisher information similar to the Kennard-Weyl-
Robertson uncertainty relation, suggesting an interpretation
as the trade-off relation for the genuine quantum part of the
uncertainty. Analytical computations of the results for the case
of a single qubit are given in Appendix A.

II. OPERATIONAL INTERPRETATION AND ESTIMATION
OF TRACE-NORM ASYMMETRY VIA WEAK VALUE

MEASUREMENT

Let us first summarize the concept of weak value whose
statistics we will use to characterize the trace-norm asymme-
try defined in Eq. (1).

Definition 1. The weak value associated with a Hermitian
operator K on a Hilbert space H with a preselected state
represented by a density operator � on H and a postselected
pure state represented by a ray |φ〉 in H is defined as follows
[19–23]:

Kw(�φ|�) := Tr(�φK�)

Tr(�φ�)
, (3)

where �φ := |φ〉 〈φ| is a projector over a subset of the Hilbert
space spanned by |φ〉, and we have assumed Tr(�φ�) �= 0.

Note that the weak value is in general a complex number.
Moreover, its real part may lie outside of the eigenvalues spec-
trum of K . Such complex weak values, and weak values with
real part lying outside of the spectrum of K , are called strange
weak values, and have been used to prove quantum contex-
tuality [44–47]. In the past decade, there has been a surge of
interest in the concept of strange weak values, in particular
for its close relation with the anomalous values of the KD
quasiprobability [40–42], in broad fields of quantum science
and technology: quantum state tomography [48–50], quantum
thermodynamics [47,51,52], quantum metrology [47,53,54],
quantum information scrambling or quantum chaos in many-
body systems [55,56], and the characterization of different
forms of quantum fluctuations [28]. It has also been very re-
cently used to characterize coherence and asymmetry [57,58].
Remarkably, the real and imaginary parts of the weak value
can be measured or estimated in experiment via a number
of methods [19,20,22,24–32]. Below we shall be concerned
specifically with the imaginary part of the weak value.

We show that, combined with a classical optimization
procedure, the measurement of weak value can be used to
estimate the trace-norm asymmetry of an unknown quantum
state in the laboratory, without first recoursing to quantum
state tomography. Hereon, we shall consider quantum systems
with a finite-dimensional Hilbert space.

First, let us define the following quantity which we intro-
duced earlier in Ref. [58].

Definition 2. Let Bo(H) denote the set of all the orthonor-
mal bases of a Hilbert space H. Then, given a state � and
a Hermitian operator K on H, we define a real-valued non-
negative quantity Aw(�; K ) as the average of the absolute
imaginary part of the weak value Kw(�x|�) defined in Eq. (3)
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over the probability Pr(x|�) = Tr(�x�) to get x in the mea-
surement described by a projection-valued measure {�x},
maximized over all the orthonormal bases {|x〉} of the Hilbert
space, i.e.,

Aw(�; K ) := sup
{|x〉}∈Bo(H)

∑
x

|ImKw(�x|�)|Pr(x|�)

= sup
{|x〉}∈Bo(H)

∑
x

|Im 〈x|K�|x〉 |

= 1

2
sup

{|x〉}∈Bo(H)

∑
x

| 〈x|[K, �]|x〉 |. (4)

It is clear from the last line of Eq. (4) that Aw(�; K ) cap-
tures the maximum noncommutativity between the state � and
the Hermitian operator K over all possible orthonormal bases
{|x〉} ∈ Bo(H) under the l1 norm. We argued in Ref. [58] that
it can be used to quantify the asymmetry of � relative to the
translation group generated by K fulfilling certain plausible
requirements. Below, we show that Aw(�; K ) is in fact equal
to the trace-norm asymmetry defined in Eq. (1).

Proposition 1. The trace-norm asymmetry of a state �

relative to a translation group generated by a Hermitian op-
erator K defined in Eq. (1) can be expressed in terms of the
imaginary part of the weak value of K as

ATr(�; K ) = Aw(�; K ), (5)

where Aw(�; K ) is defined in Eq. (4).
Proof. First, recall that the trace norm of an operator O is

given by the total sum of the singular values or the eigen-
values modulus of the operator, i.e., ‖O‖1 = ∑

i |oi|, where
{oi} is the set of eigenvalues of O. Next, note that [K, �]
is a skew Hermitian operator. Hence, it has the following
spectral decomposition [K, �] = ∑

i λi |λi〉 〈λi|, where {λi}
is the set of purely imaginary eigenvalues of [K, �] with
the corresponding orthonormal set of eigenvectors {|λi〉}. We
thus have, upon inserting this into the right-hand side of
Eq. (4),

Aw(�; K ) = 1

2
sup

{|x〉}∈Bo(H)

∑
x

∣∣∣∣∑
i

λi 〈x|λi〉 〈λi|x〉
∣∣∣∣

= 1

2

∑
x∗

∣∣∣∣∑
i

λi 〈x∗|λi〉 〈λi|x∗〉
∣∣∣∣ (6)

� 1

2

∑
i

|λi|
∑

x∗

| 〈x∗|λi〉 |2 (7)

= 1

2

∑
i

|λi| = 1

2
‖[�, K]‖1 (8)

= ATr(�; K ). (9)

Here, {|x∗〉} in Eq. (6) is an orthonormal basis which reaches
the supremum, the inequality in Eq. (7) is due to the triangle
inequality, and we have used the completeness relation for
{|x∗〉} to obtain Eq. (8). On the other hand, one can see in
Eq. (6) that the equality, i.e., the upper bound, is always
attained by choosing {|x∗〉} = {|λ j〉} so that we get Eq. (5). �

Proposition 1 thus reveals a link between two seemingly
different basic concepts of quantum mechanics: the trace-
norm asymmetry which quantifies the amount of asymmetry

of the state relative to a translation group, and the anoma-
lous nonreal part of the weak value of the generator of the
translation group. A concrete analytical computation of the
equality in Eq. (5) for a single qubit with arbitrary state and
generator of translation group is given in Appendix A 1. Note
that the computation of the left-hand side of Eq. (5) is equiva-
lent to finding a basis of the Hilbert space which diagonalizes
[K, �]. By contrast, to compute the right-hand side of Eq. (5),
we have to find a basis which optimizes Eq. (4).

As mentioned earlier, the weak value can be experimen-
tally obtained via a number of methods [19,20,22,24–32].
Proposition 1 thus offers a scheme to experimentally estimate
the trace-norm asymmetry of an unknown quantum state rel-
ative to a translation group, directly, i.e., without recoursing
to full state tomograpy. To do this, one first makes the mea-
surement of the weak value Kw(�x|�) of the generator of
the translation, averages its absolute imaginary part over the
probability of outcomes Pr(x|�) = Tr(�x�) of projective von
Neumann measurement {�x}, and maximizes over all possible
orthonormal bases {|x(	λ)〉} ∈ Bo(H) of the Hilbert space H,
where 	λ is the parameters whose variation over their ranges
of values scans all the orthonormal bases of the Hilbert space.
The optimization over 	λ is carried out using some classical
methods. This estimation scheme of the trace-norm asymme-
try therefore requires the ability to implement a parametrized
unitary circuit V	λ which prepares all the orthonormal bases
{|x(	λ)〉} of the Hilbert space from the standard basis. Hence,
we have a hybrid quantum-classical scheme in the fashion of
quantum variational circuit [33] which can be realized using
the NISQ hardware [34]. This scheme of estimation of the
trace-norm asymmetry thus provides an operational interpre-
tation. In contrast to this, the estimation of the trace-norm
asymmetry based on full state tomography followed by diag-
onalization clearly does not offer operational interpretation of
the trace-norm asymmetry.

The equality in Eq. (5) suggests that the trace-norm asym-
metry can be given physical and statistical interpretation in
terms of those of the weak values. For example, within the
scheme of the estimation of the weak value based on weak
measurement with postselection [19–23], Aw(�; K ), and thus
the trace-norm asymmetry ATr(�; K ) of the state � relative to
the translation group generated by K , can be interpreted as
the maximal disturbance of the state due to the translation
unitary generated by K [59,60]. This goes in line with the
fact that the trace-norm asymmetry indeed gives the rate of
change of the state under the translation unitary generated
by K as ‖UK,δθ�U †

K,δθ − �‖1 = ‖[�, K]‖1δθ + o(δθ2). This is
also the reason why larger trace-norm asymmetry is desirable
in quantum parameter estimation, as will be corroborated in
the next section. On the other hand, within the scheme of
the measurement of weak value based on two sequences of
strong measurement [26,27], Aw(�; K ) can be interpreted as
the maximal disturbance of the state � due to the nonselective
measurement of {�k}, the eigenbasis of K . Moreover, fol-
lowing the statistical interpretation of weak value developed
in Refs. [61–63], Aw(�; K ) can also be interpreted as the
maximum absolute error in the optimal estimation of K based
on the outcomes {x} of the projective measurement described
by {�x}. Finally, we note that the idea that the imaginary part
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of the weak value captures the quantum fluctuations has been
put forward in Refs. [63,64].

III. UPPER AND LOWER BOUNDS FOR TRACE-NORM
ASYMMETRY AND UNCERTAINTY RELATIONS

As an immediate application of the mathematical equality
of Eq. (5) connecting the trace-norm asymmetry relative to
a translation group and the nonreal part of the weak value
of the generator of the translation, we may obtain results for
the former by studying the statistics of the latter. Using this
approach, in this section, we derive some relations between
the trace-norm asymmetry and certain important concepts in
quantum statistics.

A. Upper bounds: Quantum standard deviation, quantum
Fisher information, l1-norm coherence and purity

First, we have the following proposition.
Proposition 2. The trace-norm asymmetry of a state � rel-

ative to a translation group generated by a Hermitian operator
K is bounded from above by the quantum standard deviation
of K over �, i.e.,

ATr(�; K ) � �K (�), (10)

where equality is reached for all pure states.
Proof. First, as shown in Appendix B, Aw(�; K ) defined in

Eq. (4) is upper bounded by the quantum standard deviation
of K over � as

Aw(�; K ) � �K (�). (11)

Combining this with Eq. (5), we thus obtain Eq. (10). For pure
states, as mentioned in Eq. (2), the trace-norm asymmetry of
� = |ψ〉 〈ψ | relative to the translation group generated by K is
exactly equal to the quantum standard deviation of K over � =
|ψ〉 〈ψ | so that the inequality in Eq. (10) becomes equality.
The case of a single qubit is given in Appendix A 2. �

Proposition 2 thus generalizes Theorem 1 of Ref. [58]
where we have derived Eq. (11) and showed that equality is
obtained for a pure state single qubit. A different sketch of
a proof of Proposition 2 based on state purification and the
fact that ATr(�; K ) = ‖[�, K]‖1/2 is a monotonic measure of
asymmetry and �K (�) is not is suggested in Ref. [8]. Here
we have proven it using a decomposition of the trace-norm
asymmetry in terms of the average absolute imaginary part of
the weak value of the generator of the translation relative to
which the asymmetry is defined.

Note further that unlike the trace-norm asymmetry (or any
other measures of coherence), the upper bound �K (�) in
Eq. (10), i.e., the quantum standard deviation, is not sensitive
to whether the state is pure or mixed. To see this, consider,
for instance, two extreme cases of maximally coherent state
|ψmc〉 = 1√

d

∑
k eiθk |k〉, θk ∈ R and maximally mixed state

�mm = I/d , where d is the dimension of the Hilbert space.
Then, in both cases, the upper bound in Eq. (10) yields the
same value: �K (|ψmc〉 〈ψmc|) = �K (�mm ). Hence, quantum
standard deviation cannot distinguish the maximally coherent
state from the maximally mixed state. This is because the
quantum standard deviation does not only capture the gen-
uine quantum uncertainty arising from the noncommutativity

between the state � and the generator K , it also counts the
uncertainty arising from the (classical) statistical mixing in the
preparation of the state � when it is not pure. It is desirable to
have an upper bound which depends on the purity of the state.
Such a bound will be given later.

Proposition 2 thus suggests that ATr(�; K ) = Aw(�; K ) can
be seen as to capture the genuine quantum part of the uncer-
tainty arising in the measurement of the observable K over
the quantum system prepared in a state � which originates
from their noncommutativity. Namely, ATr(�; K ) = Aw(�; K )
satisfies the following plausible requirements for any quantity
which quantifies the genuine quantum uncertainty of K in �

[65–68]: (i) it vanishes if and only if K and � commute; (ii)
it is convex, i.e., Aw(

∑
j p j� j ; K ) � ∑

j p jAw(� j ; K ), where
{pj},

∑
j p j = 1, are probabilities of preparing the system in

the states {� j}; and (iii) it is upper bounded by the quantum
standard deviation and they are equal for all pure states. The
property (ii) of convexity of Aw(�; K ) can be seen directly
from the definition of Aw(�; K ) in Eq. (4) due to the triangle
inequality. The above observation also suggests to interpret
the difference between the quantum standard deviation of
K over � and the trace-norm asymmetry of � relative to a
translation group generated by K , i.e., �K (�) − Aw(�; K ), as
the classical part of the measurement uncertainty.

Let us proceed to use the equality in Eq. (5) to explore
a connection between the trace-norm asymmetry and quan-
tum Fisher information [35–39]. Consider an imprinting of
a scalar parameter θ to the quantum state of a probe via
a quantum process: �θ = �θ (�), where �θ is a completely
positive trace-preserving map, and � is the initial quantum
state of the probe. Let MPOVM(H) denote the set of all
POVMs (positive-operator-valued measures): {Mx}, Mx � 0,∑

x Mx = I, describing the most general measurement al-
lowed by quantum mechanics with the outcomes {x}, when
the postmeasurement states are not of concern.

Definition 3. The quantum Fisher information about the
parameter θ encoded in �θ is defined as [37–39]

Jθ (�θ (�)) := sup
{Mx}∈MPOVM(H)

∑
x

[∂θ ln Pr(x|�θ )]2Pr(x|�θ ),

(12)

where Pr(x|�θ ) = Tr(Mx�θ ) is the probability to get x in the
measurement described by a POVM {Mx}.

Quantum Fisher information is a central quantity in
quantum metrology based on quantum parameter estimation
[35,36,69], wherein one wishes to estimate the value of the
parameter θ encoded in the quantum state of the probe �θ

via some measurement {Mx}. It characterizes the optimal pre-
cision of such parameter estimation based on the quantum
Cramér-Rao inequality [37–39]. Below, we are interested in
the case where the state of the probe �θ is obtained using a
translation unitary generated by a Hermitian operator K , i.e.,
�θ = �θ (�) = e−iKθ�eiKθ , and denote the associated quan-
tum Fisher information as Jθ (�θ ; K ). It is known that, in this
case, the quantum Fisher information is independent of the
parameter θ , i.e., Jθ (�θ ; K ) = Jθ (�; K ). Moreover, it has also
been shown that the quantum Fisher information Jθ (�; K ) is a
faithful and monotonic measure of the asymmetry of the state
� relative to the translation group generated by K [2]. It is thus
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instructive to study the relation between the quantum Fisher
information and the trace-norm asymmetry.

We obtain the following result.
Proposition 3. The trace-norm asymmetry of � relative to

a translation group generated by a Hermitian operator K is
upper bounded by the quantum Fisher information about a
parameter θ contained in the state �θ obtained via a unitary
imprinting generated by K as

ATr(�; K )2 � Jθ (�; K )/4. (13)

Moreover, for pure states, the inequality becomes equality
and the supremum in Eq. (12) is obtained by a measurement
described by a projection-valued measure.

Proof. First, from Eq. (12) and noting the fact that the
set MPOVM(H) of measurements described by POVM {Mx}
includes the set MPVM(H) of measurements described by
projection-valued measure {�x}, we have

Jθ (�; K ) = Jθ (�θ ; K )

� sup
{�x}∈MPVM(H)

∑
x

[∂θ ln Pr(x|�θ )]2Pr(x|�θ ). (14)

On the other hand, from the unitary imprinting
�θ = e−iKθ�eiKθ , we have ∂θ�θ = −i[K, �θ ], so that noting
Pr(x|�θ ) = Tr(�x�θ ), the imaginary part of the weak value
of K with the preselected state �θ and postselected state |x〉
can be expressed as

ImKw(�x|�θ ) = 1

2i

〈x|[K, �θ ]|x〉
〈x|�θ |x〉 = 1

2

∂θPr(x|�θ )

Pr(x|�θ )
. (15)

Using this relation in Eq. (14), we thus obtain

Jθ (�; K )

� 4 sup
{|x〉}∈Bo(H)

∑
x

[ImKw(�x|�θ )]2Tr(�x�θ )

� 4

[
sup

{|x〉}∈Bo(H)

∑
x

|ImKw(�x|�θ )|Tr(�x�θ )

]2

(16)

= 4Aw(�θ ; K )2 = 4Aw(�; K )2 (17)

= 4ATr(�; K )2. (18)

Here, Eq. (16) holds due to the Jensen inequality, and
to get Eq. (17) we have used Eq. (4) and the fact that
Aw(�; K ) is invariant under translation unitary UK,θ = e−iKθ ,
i.e., Aw(�θ ; K ) = Aw(UK,θ�U †

K,θ ; K ) = Aw(�; K ), which can
be proven directly from the definition [58]. Finally Eq. (18)
is just Eq. (5).

For pure states, � = |ψ〉 〈ψ |, from Proposition 2 we
have ATr(|ψ〉 〈ψ | ; K )2 = �2

K [|ψ〉 〈ψ |]. On the other hand,
it is known that for pure states with the unitary im-
printing |ψθ 〉 = e−iKθ |ψ〉, we also have Jθ [|ψ〉 〈ψ | ; K] =
4�2

K [|ψ〉 〈ψ |] [39]. From these two equalities for pure states,
we thus obtain Eq. (13) with inequality replaced by equality,
i.e., ATr(�; K )2 = Jθ (�; K )/4. Note that as shown in Ap-
pendix A 3, for a single qubit, this equality applies even for
arbitrary mixed states. Hence, for pure states � = |ψ〉 〈ψ |,
the quantum Fisher information can be expressed as, using

Eqs. (5) and (4),

Jθ (|ψ〉 〈ψ | ; K )

= 4ATr(�; K )2 = 4Aw(�; K )2

= 4 sup
{|x〉}∈Bo(H)

[ ∑
x

|ImKw(�x|�)|Pr(x|�)

]2

= sup
{�x}∈MPVM(H)

[ ∑
x

∣∣∣∣∂θPr(x|�)

Pr(x|�)

∣∣∣∣Pr(x|�)

]2

, (19)

where we have again used Eq. (15). Comparing Eq. (19) to
Eq. (12), for pure states, the supremum in Eq. (12) is thus
obtained for measurement described by a projection-valued
measure. �

Equation (13) of Proposition 3 in particular shows that a
quantum state � with larger trace-norm asymmetry relative
to a translation group generated by a Hermitian operator K
is sufficient for a larger quantum Fisher information about θ

conjugate to K . In view of the quantum Cramér-Rao inequal-
ity, such a state is thus desirable, i.e., it may lead to a better
precision, in quantum parameter estimation of θ .

Next, we use the result of Eq. (5) to connect the trace-
norm asymmetry to an apparently different concept of
nonclassicality captured by the nonclassical values of KD
quasiprobability.

Definition 4. The KD quasiprobability associated with a
state � on a Hilbert space H over a pair of orthonormal bases
{|x〉} ∈ Bo(H) and {|k〉} ∈ Bo(H) is defined as [40–42]

PrKD(k, x|�) := Tr(�x�k�). (20)

KD quasiprobability gives correct marginal probabili-
ties, i.e.,

∑
x PrKD(k, x|�) = Tr(�k�) = Pr(k|�) and∑

k PrKD(k, x|�) = Tr(�x�) = Pr(x|�), where Pr(·) is
the classical, i.e., real and nonnegative, probability.
However, because of the noncommutativity among the
state and the projection valued measures {�x} and {�k}
corresponding to the two defining orthonormal bases, unlike
the Kolmogorovian classical probability, KD quasiprobability
may assume complex values and its real part may be negative.
In this sense, the nonreality and/or the negativity of the KD
quasiprobability therefore captures a form of nonclassicality.
Remarkably, the nonreality and/or the negativity of KD
quasiprobability, a.k.a. KD nonclassicality, has been shown to
be tighter than noncommutativity [70,71]. Moreover, recent
works showed that KD nonclassicality plays crucial roles in
various areas of quantum science [28,44–58].

We further introduce the following normalized trace-norm
asymmetry.

Definition 5. The normalized trace-norm asymmetry of �

relative to the translation group generated by a Hermitian
operator K is defined as

ÃTr(�; K ) := ATr(�; K )/‖K‖max = ATr(�; K̃ ), (21)

where for any bounded Hermitian operator O on finite-
dimensional Hilbert space, Õ is defined as Õ := O/‖O‖max

with ‖O‖max the spectral radius, i.e., the maximum singular
value, of O.

We then have the following result.
Proposition 4. The normalized trace-norm asymmetry of

� relative to the translation group generated by a Hermitian
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operator K is upper bounded by the total sum of the absolute
imaginary part of the KD quasiprobability defined over the
eigenbasis {|k〉} of K , and a second orthonormal basis of
the Hilbert space, maximized over all possible choices of the
latter as

ÃTr(�; K ) � sup
{|x〉}∈Bo(H)

∑
k,x

|ImPrKD(k, x|�)|

:= CKD(�; {|k〉}). (22)

Proof. Using Eqs. (5), (4), and (20), we first have the
following relation:

ATr(�; K ) = sup
{|x〉}∈Bo(H)

∑
x

∣∣∣∣∑
k

kImTr(�x�k�)

∣∣∣∣
� ‖K‖max sup

{|x〉}∈Bo(H)

∑
k,x

|ImPrKD(k, x|�)|, (23)

where we have used the spectral decomposition K =∑
k k |k〉 〈k|. Dividing both sides with the spectral radius of

K , i.e., ‖K‖max, and noting Eq. (21), we obtain Eq. (22).
For a single qubit, the inequality in Eq. (22) can be checked
analytically, as shown in Appendix A 4. �

Next, it was shown in Ref. [57] that the right-hand side of
Eq. (22) gives a lower bound to the l1-norm coherence [43] of
the state � relative to the orthonormal basis {|k〉} defined as
Cl1 (�; {|k〉}) := ∑

k �=k′ | 〈k|�|k′〉 |, i.e.,

CKD(�; {|k〉}) � Cl1 (�; {|k〉}). (24)

Moreover, the inequality becomes equality for an arbitrary
state of a single qubit. Noting this, we thus obtain the first
corollary of Proposition 4.

Corollary 1. The normalized trace-norm asymmetry of a
state � relative to a translation group generated by a Hermitian
operator K is upper bounded by the l1-norm coherence of �

relative to the orthonormal basis {|k〉} of K , i.e.,

ÃTr(�; K ) � Cl1 (�; {|k〉}). (25)

Moreover, for a single qubit, assuming the eigenvalues of K
are {1,−1}, the above inequality becomes an equality.

Proof. First, the inequality is obtained by chaining the
inequalities of Eqs. (22) and (24). To prove the second
half of the corollary, we note that for the case of a single
qubit with K having the spectrum of eigenvalues {1,−1}, we
have, as shown in Appendix A 1 [see Eq. (A4)], ÃTr(�; K ) =
2| 〈k+|�|k−〉 |, where |k±〉 is the eigenvectors of K belonging
to the eigenvalues ±1. On the other hand, for a single qubit
with arbitrary state � and orthonormal basis {|k〉} we have
Cl1 (�; {|k〉}) = 2| 〈k+|�|k−〉 |. Combining these two equali-
ties, we obtain Eq. (25), with the equality replaced by an
equality. �

Now, consider the set �{k} of all bounded Hermitian oper-
ators K on a Hilbert space with a fixed nontrivial spectrum
of eigenvalues {k}. By nontrivial we mean that not all the
eigenvalues are equal, so that K �= k0I for some k0 ∈ R. Then,
we obtain the following corollary of Proposition 4.

Corollary 2. The maximum normalized trace-norm asym-
metry of a state � relative to the translation groups generated
by all K ∈ �{k} having a fixed nontrivial spectrum {k} is
bounded from above by the maximum total sum of the abso-

lute imaginary part of the KD quasiprobability associated with
� over all possible pairs of the defining orthonormal bases of
the Hilbert space:

sup
K∈�{k}

ÃTr(�; K )

� sup
{|k〉}∈Bo(H),{|x〉}∈Bo(H)

∑
k,x

|ImPrKD(k, x|�)|. (26)

Conversely, Eq. (26) can be read as follows. Given a quan-
tum state �, the maximum total nonreality of the associated
KD quasiprobability over all possible pairs of the defining
orthonormal bases of the Hilbert space is bounded from below
by the maximum normalized trace-norm asymmetry relative
to the translation groups generated by all Hermitian operators
K ∈ �{k}. From this viewpoint, and noting the fact that the
right-hand side of Eq. (26) is independent of the eigenvalues
{k} of K , the inequality in Eq. (26) can be strengthened as
follows.

Corollary 3. The maximum total sum of the imaginary part
of the KD quasiprobability associated with � over all possible
pairs of the defining orthonormal bases is never less than the
maximum normalized trace-norm asymmetry of the state �

relative to the translation groups generated by all bounded
Hermitian operators K on the Hilbert space:

sup
{|k〉}∈Bo(H),{|x〉}∈Bo(H)

∑
k,x

|ImPrKD(k, x|�)|

� sup
K∈O(H)

ÃTr(�; K ), (27)

where O(H) is the set of all bounded Hermitian operators on
the Hilbert space H.

We show in Appendix A 4 that for a single qubit with
arbitrary state �, the generator K of the translation group
which reaches the equality in Eq. (27) has the form K∗ =
k+ |k+〉 〈k+| + k− |k−〉 〈k−|, where {k+, k−} are the real eigen-
values of K corresponding to the eigenvectors {|k+〉 , |k−〉}
satisfying k+ = −k−. This is the case, e.g., when K∗ = 	n · 	σ ,
where 	n is a unit vector, and 	σ = (σx, σy, σz )T with σx, σy, and
σz Pauli operators, so that k+ = −k− = 1.

These results show that the nonclassical aspect of quantum
mechanics captured by the concept of asymmetry relative to a
translation group is related to the nonclassicality captured by
the imaginary part of the KD quasiprobability where one of
the defining bases is given by the eigenbasis of the generator
of the translation group. It thus suggests that the translational
asymmetry of a quantum state may be a key quantum ingredi-
ent in diverse quantum phenomena where the nonclassicality
captured by the anomalous KD quasiprobability has been
shown to play an important role, and vice versa.

We further obtain an upper bound for the trace-norm asym-
metry in terms of state purity.

Proposition 5. The normalized trace-norm asymmetry of a
state � on d-dimensional Hilbert space relative to a translation
group generated by a Hermitian operator K is bounded from
above by the purity of the state, i.e., Tr(�2), as

ÃTr(�; K ) �
√

(d − 1)[dTr(�2) − 1]1/2. (28)

Proof. Using the relation between the trace-norm asym-
metry and the KD quasiprobability of Eq. (22), we

012431-6



OPERATIONAL INTERPRETATION AND ESTIMATION OF … PHYSICAL REVIEW A 108, 012431 (2023)

have

ÃTr(�; K )

� sup
{|x〉}∈Bo(H)

∑
k,x

∣∣∣∣ ∑
k′ �=k

Im(〈x|k〉 〈k|�|k′〉 〈k′|x〉)

∣∣∣∣ (29)

� sup
{|x〉}∈Bo(H)

∑
k

∑
x,k′ �=k

| 〈x|k〉 〈k|�|k′〉 〈k′|x〉 |

�
∑

k

⎛
⎝ ∑

k′ �=k,x∗

| 〈x∗|k〉 〈k|�|k′〉 |2
∑

k′′ �=k,x′∗

| 〈k′′|x′
∗〉 |2

⎞
⎠

1/2

(30)

=
∑

k

√
d − 1

⎛
⎝∑

k′,x∗

| 〈x∗|k〉 〈k|�|k′〉 |2 − 〈k|�|k〉2

⎞
⎠

1/2

(31)

=
∑

k

√
d − 1(〈k|�2|k〉 − 〈k|�|k〉2)1/2 (32)

�
√

(d − 1)d

( ∑
k

〈k|�2|k〉 − 〈k|�|k〉2

)1/2

(33)

=
√

(d − 1)d

(
Tr(�2) −

∑
k

〈k|�|k〉2

)1/2

. (34)

Here, to get Eq. (29) we have inserted an identity∑
k′ |k′〉 〈k′| = I and noted the fact that the diagonal terms

k = k′ are real, in Eq. (30) {|x∗〉} is a basis which achieves the
supremum and we have used the Cauchy-Schwartz inequality,
to get Eq. (31) we have used the completeness relation and
completed the sum over k′ (to include also the case k′ = k), to
get Eq. (32) we have used the completeness relation, and to get
Eq. (33) we have again used the Cauchy-Schwartz inequality.
Finally, noting that

∑d
k=1 〈k|�|k〉2 � 1/d in Eq. (34), we get

Eq. (28). �
Notice that for the maximally mixed state, �mm = I/d , the

upper bound in Eq. (28) is indeed vanishing, as desired since
translational asymmetry can be seen as a form of coherence.
By contrast, for pure states, the upper bound is given by d − 1.

B. Lower bounds: Maximum average noncommutativity
and uncertainty relations

We first derive a lower bound for the trace-norm asymme-
try.

Lemma 1. Consider the set �{x} of all bounded Hermitian
operators X on a Hilbert space with a fixed nontrivial spectrum
of eigenvalues {x}. Then, the trace-norm asymmetry of � rel-
ative to a translation group generated by a Hermitian operator
K can be bounded from below as

ÃTr(�; K ) � sup
X∈�{x}

|Tr([X̃ , K̃]�)|/2. (35)

Proof. Using Eqs. (21), (5), and (4), we directly have

ÃTr(�; K )

= sup
{|x〉}∈Bo(H)

1

‖X‖max‖K‖max

∑
x

‖X‖max|ImTr(�xK�)|

� sup
{|x〉}∈Bo(H)

1

‖X‖max‖K‖max
|ImTr(XK�)|

= sup
{|x〉}∈Bo(H)

|ImTr(X̃ K̃�)|

= sup
X∈�{x}

|Tr([X̃ , K̃]�)|/2, (36)

where we have used X := ∑
x x�x. For a single qubit, it can

be again checked analytically as shown in Appendix A 5. �
Hence, the trace-norm asymmetry of a state � relative

to a translation group generated by K is lower bounded by
the maximum average noncommutativity between K and any
other possible bounded Hermitian operators X ∈ �{x} whose
eigenbasis spans the Hilbert space, divided by their spectral
radiuses. Notice that the lower bound takes a form similar to
the lower bound of the Kennard-Weyl-Robertson uncertainty
relation.

Furthermore, noting the fact that the left-hand side of the
inequality in Eq. (35) does not depend on the eigenvalues {x}
of X , the inequality can be further tightened as follows.

Corollary 4. The trace-norm asymmetry of � relative to a
translation group generated by a Hermitian operator K can be
bounded from below as

ÃTr(�; K ) � sup
X∈O(H)

|Tr([X̃ , K̃]�)|/2, (37)

where the supremum is taken over the set O(H) of all bounded
Hermitian operators on the Hilbert space H.

We show in Appendix A 5 that for a single qubit, denoting
the eigenvalues of X as {x} = {x+, x−}, x+, x− ∈ R, the in-
equality in Eq. (37) becomes equality by choosing x+ = −x−.
For example, when x+ = 1, we may take X∗ = 	n · 	σ , where 	n
is a unit vector and 	σ = (σx, σy, σz )T.

Combining Corollaries 3 and 4, and taking the supremum
to both sides of Eq. (37) over all bounded Hermitian operators
K ∈ O(H) on the Hilbert space H, we thus obtain the follow-
ing ordering of quantities:

sup
{|k〉}∈Bo(H),{|x〉}∈Bo(H)

∑
k,x

|Im[PrKD(k, x|�)]|

� sup
K∈O(H)

ÃTr(�; K ) � sup
K∈O(H)

sup
X∈O(H)

|Tr([X̃ , K̃]�)|/2.

(38)

Now, using Lemma 1, we obtain the following proposition.
Proposition 6. The trace-norm asymmetries of a state �

relative to groups of translation generated by Hermitian op-
erators K and X satisfy the following trade-off relation:

ÃTr(�; K )ÃTr(�; X ) � 1
4 |Tr([K̃, X̃ ]�)|2. (39)

Proof. First, exchanging the role of K and X in Eq. (37),
we have

ÃTr(�; X ) � sup
K∈O(H)

|Tr([X̃ , K̃]�)|/2, (40)

where the supremum is taken over all bounded Hermitian
operators K ∈ O(H) on the Hilbert space H. Multiplying
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Eqs. (37) and (40), we finally obtain

ÃTr(�; K )ÃTr(�; X )

� |Tr([X̃∗, K̃]�)||Tr([X̃ , K̃∗]�)|/4

� |Tr([X̃ , K̃]�)|2/4, (41)

where X∗ and K∗ are the Hermitian operators which respec-
tively achieve the supremum in Eqs. (37) and (40). �

Proposition 6 clarifies the intuition that when the expecta-
tion value of the commutator between the Hermitian operators
K and X over � is nonvanishing, then the state � must be
asymmetric relative to both the translation group generated
by K and that generated by X . Moreover, the associated trace-
norm asymmetries satisfy the trade-off relation of Eq. (39).
Let us translate this trade-off relation in the language of
coherence. Suppose that the lower bound in Eq. (39) is nonva-
nishing. Then, the state � cannot be commuting with all the
eigenprojectors {�x} of X and with all the eigenprojectors
{�k} of K . This means that the state is coherent relative to
both the orthonormal eigenbases {|x〉} and {|k〉}. Moreover,
the amount of respective coherences that are quantified by
the trace-norm asymmetries satisfy the trade-off relation of
Eq. (39). Finally, recall that ATr(�; K ) can be seen as the
genuine quantum part of the uncertainty of the outcomes of
the measurement of the observable K when the system is
prepared in the state �. Equation (39) can thus be seen as
the trade-off relation between the genuine quantum part of
the uncertainty in measurement of two noncommuting observ-
ables [65–68]. Let us mention that a similar trade-off relation
is suggested in Ref. [66], wherein the genuine quantum un-
certainty associated with the measurement of K over � is
identified by the Wigner-Yanase skew information defined as
IWY(�; K ) = − 1

2 Tr([
√

�, K]2) [72].
Next, combining Eqs. (13) and (37), we obtain the follow-

ing corollary.
Corollary 5. Consider a setting whereby a parameter θ is

encoded into the quantum state of a system via a translation
unitary generated by K as �θ = e−iKθ�eiKθ . Then the quantum
Fisher information about θ contained in �θ is bounded from
below as

J̃θ (�; K )1/2 � sup
X∈O(H)

|Tr([X̃ , K̃]�)|, (42)

where J̃θ (�; K ) is a normalized quantum Fisher information
about θ in �θ defined as J̃θ (�; K ) := Jθ (�; K )/‖K‖2

max.
The case of a single qubit is discussed in Appendix A 6,

where equality in Eq. (42) is obtained when the spectrum of X ,
i.e., {x} = {x+, x−}, x+, x− ∈ R, satisfies x− = −x+. Corol-
lary 5 shows that the optimal sensitivity of the state � relative
to the translation unitary generated by K , or equivalently, the
optimal sensitivity in the quantum parameter estimation of θ

conjugate to K , is lower bounded by the maximum average
noncommutativity between K and any other Hermitian opera-
tors X ∈ O(H) whose eigenbasis spans the Hilbert space H.

We thus obtain the following result.
Proposition 7. Consider two Hermitian operators K and X ,

so that they generate unitary imprinting of scalar parameters
to the quantum state of the probe in the protocol of quan-
tum parameter estimation, respectively, as �θK = e−iKθK �eiKθK

and �θX = e−iXθX �eiXθX , where θK is the scalar parameter

conjugate to K and θX is to X. Then, the normalized quantum
Fisher information about θK in �θK and about θX in �θX satisfy
the following trade-off relation:

J̃θK (�; K )1/2J̃θX (�; X )1/2 � |Tr([X̃ , K̃]�)|2. (43)

Proof. Equation (43) can be directly obtained from Eq. (42)
by following similarly the proof of Proposition 6. �

Since the quantum Fisher information is a monotonic mea-
sure of asymmetry as coherence, Eq. (43) admits a similar
interpretation as the uncertainty relation of Eq. (39) for trace-
norm asymmetry. Moreover, Eq. (43) shows that when the
quantum expectation value of the noncommutativity between
the Hermitian operators K and X over the state � is not vanish-
ing, then the state must be sensitive relative to the translation
unitaries generated by K and by X , and their sensitivities
as quantified by the quantum Fisher information satisfy the
trade-off relation (43).

Finally, from Eqs. (40) and (42) and following again simi-
larly the proof of Proposition 6, we obtain the following result
relating the sensitivity of the state relative to the translation
unitary generated by K quantified by the quantum Fisher
information, and the coherence of the state relative to the
eigenbasis of X quantified by the trace-norm asymmetry.

Proposition 8. The trace-norm asymmetry of � relative to
a translation generated by a Hermitian operator X and the
quantum Fisher information about θ in the state �θ obtained
via a unitary imprinting generated by a Hermitian operator K
satisfy the following trade-off relation:

J̃θ (�; K )1/2ÃTr(�; X ) � |Tr([X̃ , K̃]�)|2/2. (44)

As an implication of the Proposition 8 we have the follow-
ing corollary.

Corollary 6. Consider a quantum state � and two Hermitian
operators K and X . Then, the quantum Fisher information
about θ contained in �θ obtained via a translation unitary gen-
erated by K and the l1-norm coherence of the state � relative
to the eigenbasis {|x〉} of X satisfy the following trade-off
relation:

J̃θ (�; K )1/2Cl1 (�; {|x〉}) � |Tr([X̃ , K̃]�)|2/2. (45)

Proof. The trade-off relation of Eq. (45) can be obtained
directly by imposing the inequality (25) of Corollary 1 to
Eq. (44). �

IV. CONCLUSION AND REMARKS

To conclude, we first showed that the trace-norm asym-
metry of a state relative to a translation group is equal to
the average absolute imaginary part of the weak value of
the generator of the translation, maximized over all possible
orthonormal bases of the Hilbert space. Hence, the trace-norm
asymmetry of an unknown quantum state can be estimated
in experiment using a number of methods for measuring
the weak value proposed in the literatures, combined with
a classical optimization procedure, in the fashion of a hy-
brid quantum-classical variational circuit which should be
implementable using the presently available NISQ hardware.
It also suggests the physical and statistical interpretation of
the trace-norm asymmetry in terms of the interpretations of
the imaginary part of the weak value.
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Using the mathematical link between the trace-norm asym-
metry and the nonreal weak value, we then derived upper
bounds for the trace-norm asymmetry relative to a translation
group in terms of the quantum uncertainty of the generator
of the translation, the quantum Fisher information about a
parameter imprinted via the translation unitary, the imaginary
part of the corresponding KD quasiprobability, the l1-norm
coherence relative to the eigenbasis of the generator of the
translation, and the purity of the state. We also obtain a lower
bound in terms of the maximum average noncommutativ-
ity between the generator of the translation and any other
bounded Hermitian operator on the Hilbert space. We then
derived trade-off relations for the trace-norm asymmetry and
the quantum Fisher information associated with two noncom-
muting generators of the translation unitary, with a lower
bound reminiscent of that for the Kennard-Weyl-Robertson
uncertainty relation.

We hope that by expressing the geometrical trace-norm
asymmetry in terms of the operationally well-defined imag-
inary part of the weak value and KD quasiprobability, it may
shed light on the applications of trace-norm asymmetry in a
plethora of fields in which the strange weak values and the
nonclassical anomalous values of KD quasiprobability have
played crucial roles [28]. Conversely, our results may pro-
vide insight in promoting the concept of strange weak values
and the nonclassical values of KD quasiprobability, which
have played important roles in quantum foundation, as useful
tools to access the nonclassicality captured by the concepts of
asymmetry, coherence, nonclassical correlation, and entangle-
ment, which are the key resources for quantum information
processing and quantum technology. It is also interesting to
extend the present approach to study the asymmetry relative
to general quantum channels [73].
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APPENDIX A: SOME ANALYTICAL COMPUTATIONS
FOR A SINGLE QUBIT

1. The equality of Eq. (5) for a single qubit

Assume first that the Hermitian generator of the translation
group takes the form K = k0 |0〉 〈0| + k1 |1〉 〈1|, k0, k1 ∈ R,
where {|0〉 , |1〉} are the eigenvectors of the Pauli z-spin op-
erator σz. Then, computing the trace-norm asymmetry, one
directly gets

ATr(�; K ) = ‖[�, K]‖1/2 = |k0 − k1|| 〈0|�|1〉 |. (A1)

On the other hand, to compute Aw(�; K ) defined in Eq. (4), we
need to parametrize the whole orthonormal bases {|x(	λ)〉} ∈
Bo(H) of the Hilbert space H, so that varying the parameters
	λ = (λ1, . . . , λN )T over their ranges of values will scan all the
orthonormal bases of the Hilbert space over which we make

the optimization. For the two-dimensional Hilbert space of
interest, let us use the parametrization of the whole orthonor-
mal bases {|x〉} = {|x+〉 , |x−〉} ∈ Bo(C2) based on the Bloch
sphere as

|x+(α, β )〉 := cos
α

2
|0〉 + eiβ sin

α

2
|1〉 ,

|x−(α, β )〉 := sin
α

2
|0〉 − eiβ cos

α

2
|1〉 , (A2)

α ∈ [0, π ], β ∈ [0, 2π ). Hence, one can scan all the possible
orthonormal bases of the two-dimensional Hilbert space by
varying the angular parameters α and β over their ranges of
values. Using this expression for the defining basis in Eq. (4),
we directly get

Aw(�; K )

= sup
{|x(α,β )〉}∈Bo(C2 )

∑
x={x+,x−}

|Im 〈x(α, β )|K�|x(α, β )〉 |

= max
(α,β )∈[0,π]×[0,2π )

|k0 − k1|| 〈0|�|1〉 || sin α|| sin(β + φ01)|
= |k0 − k1|| 〈0|�|1〉 | = ATr(�; K ), (A3)

where φ01 = arg 〈0|�|1〉 and the last equality is just Eq. (A1).
Note that the maximum is obtained for the basis of the form
(A2) with α = π/2 and β = π/2 − φ01.

The above result can be generalized to an arbitrary
Hermitian operator generating a translation unitary to the
state on two-dimensional Hilbert space: K = k+ |k+〉 〈k+| +
k− |k−〉 〈k−|, with the eigenvalues k+, k− ∈ R, and the cor-
responding orthonormal eigenvectors {|k+〉 , |k−〉}. First, the
trace-norm asymmetry can be computed directly to get, noting
Eq. (A1),

ATr(�; K ) = ‖[�, K]‖1/2 = |k+ − k−|| 〈k+|�|k−〉 |. (A4)

Let us show that Aw(�; K ) defined in Eq. (4) also yields
the same value in accord with Proposition 1. To do this, we
first show that for arbitrary state � and Hermitian operator
K on finite-dimensional Hilbert space, Aw(�; K ) is unitarily
covariant. Namely, for any unitary transformation V , we have

Aw(V �V †;V KV †)

= sup
{|x〉}∈Bo(H)

∑
x

|Im 〈x|V KV †V �V †|x〉 |

= sup
{|x′〉}∈Bo(H)

∑
x′

|Im 〈x′|K�|x′〉 | (A5)

= Aw(�; K ), (A6)

where we have defined a new orthonormal basis {|x′〉} =
{V † |x〉} to get Eq. (A5), and Eq. (A6) holds since the set
of the new orthonormal bases {|x′〉} is the same as the set
of the old orthonormal bases {|x〉} given by set Bo(H) of all
the orthonormal bases of the same Hilbert space H, so that
sup{|x〉}∈Bo(H)(·) = sup{|x′〉}∈Bo(H)(·).

Now, for the case of a single qubit of interest, let us choose
the following unitary transformation: V = |0〉 〈k+| + |1〉 〈k−|,
so that we have V KV † = k+ |0〉 〈0| + k− |1〉 〈1|, and V �V † =
〈k+|�|k+〉 |0〉 〈0| + 〈k+|�|k−〉 |0〉 〈1| + 〈k−|�|k+〉 |1〉 〈0| +
〈k−|�|k−〉 |1〉 〈1|. Noting these facts and using Eq. (A3), we
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thus obtain

Aw(�; K ) = Aw(V �V †;V KV †)

= |k+ − k−|| 〈k+|�|k−〉 | = ATr(�; K ), (A7)

where the last equality is just Eq. (A4).

2. Trace-norm asymmetry vs quantum standard deviation
of Eq. (10) for a single qubit

Assume first, as in Appendix A 1, the following form
of generator of translation group: K = k0 |0〉 〈0| + k1 |1〉 〈1|,
k0, k1 ∈ R. For our purpose, it is convenient to write the state
as � = (I + rxσx + ryσy + rzσz )/2, where (rx, ry, rz ) are real
numbers satisfying r2

x + r2
y + r2

z = r2 � 1, and (σx, σy, σz )
are the three Pauli operators. Then one directly obtains

�K (�) = 1

2
|k0 − k1|

√(
1 − r2

z

)
� 1

2
|k0 − k1|

√(
r2 − r2

z

)
= 1

2
|k0 − k1||rx − iry|

= |k0 − k1|| 〈0|�|1〉 |
= ATr(�; K ), (A8)

where the last equality is just Eq. (A1). Equality is reached
when r = 1, i.e., for pure states as expected. The above result
can be generalized to an arbitrary Hermitian operator on two-
dimensional Hilbert space K = k+ |k+〉 〈k+| + k− |k−〉 〈k−|,
k+, k− ∈ R and arbitrary state �, by first noting that �K (�),
like ATr(�; K ), is unitarily covariant, i.e., �V KV † (V �V †) =
�K (�) for arbitrary unitary transformation V , and by choosing
a unitary transformation V = |0〉 〈k+| + |1〉 〈k−|, and noting
further the fact that the unitary transformation conserves the
state purity.

3. Trace-norm asymmetry vs quantum Fisher information
of Eq. (13) for a single qubit

Let us write the density operator in terms of its spectral
decomposition: � = λ1 |λ1〉 〈λ1| + λ2 |λ2〉 〈λ2|, λ1, λ2 ∈ R+.
Then, assuming �θ is obtained via a unitary imprinting gen-
erated by K , i.e., �θ = UK,θ�U †

K,θ , one has [38]

Jθ (�; K ) = Jθ (�θ ; K )

= 4
|λ1 − λ2|2
λ1 + λ2

| 〈λ1|U †
K,θKUK,θ |λ2〉 |2

= 4|λ1 − λ2|2| 〈λ1|K|λ2〉 |2, (A9)

where we have used the fact that λ1 + λ2 = 1 and
U †

K,θKUK,θ = K . On the other hand, one can directly compute
the trace-norm asymmetry of � relative to the translation
group generated by K in the basis {|λ1〉 , |λ2〉} to get

4ATr(K ; �)2 = ‖[�, K]‖2
1

= 4|λ1 − λ2|2| 〈λ1|K|λ2〉 |2
= Jθ (�; K ), (A10)

where the last equality is just Eq. (A9). Hence, the inequality
in Eq. (13) is saturated for arbitrary state of a single qubit.

4. Normalized trace-norm asymmetry vs maximum nonreality
of KD quasiprobability of Eq. (22) for a single qubit

The Hermitian generator of the transla-
tion group can be in general written as
K = k+ |k+〉 〈k+| + k− |k−〉 〈k−|, k+, k− ∈ R.
Assume without loss of generality |k+| > |k−|, so that
‖K‖max = |k+|. Then, noting Eq. (A4), we have

ÃTr(�; K ) = |k+ − k−|
‖K‖max

| 〈k+|�|k−〉 |

= |k+ − k−|
|k+| | 〈k+|�|k−〉 |. (A11)

On the other hand, for a single qubit, we have

sup
{|x〉}∈Bo(C2 )

∑
k,x

∣∣ImPrKD(k, x|�)
∣∣ = 2| 〈k+|�|k−〉 |. (A12)

See Ref. [57] for a proof. Since we also have

|k+ − k−|
|k+| � 2, (A13)

Eqs. (A11) and (A12) satisfy the inequality of Eq. (22) of
Proposition 4:

ÃTr(�; K ) � sup
{|x〉}∈Bo(C2 )

∑
k,x

∣∣Im[PrKD(k, x|�)]
∣∣. (A14)

Next, notice that the equality in Eq. (A13) and thus the equal-
ity in Eq. (A14) are attained when |k+ − k−| = 2|k+|, which is
the case when k− = −k+. For example, assume that |k+| = 1.
Then, we may take K = 	n · 	σ , where 	n is a unit vector and
	σ = (σx, σy, σz )T is the vector of the three Pauli operators.

5. Normalized trace-norm asymmetry vs maximum average
noncommutativity of Eq. (35) for a single qubit

Without loss of generality, we can assume that the genera-
tor of the translation group in the case of a single qubit has the
following spectral decomposition: K = k0 |0〉 〈0| + k1 |1〉 〈1|,
k0, k1 ∈ R. Now, let us denote the eigenvalues of X as {x} =
{x+, x−}, x+, x− ∈ R, so that

X (α, β ) = x+ |x+(α, β )〉 〈x+(α, β )|
+ x− |x−(α, β )〉 〈x−(α, β )| , (A15)

where the eigenvectors {|x+(α, β )〉 , |x−(α, β )〉} are expressed
using the Bloch sphere parametrization as in Eq. (A2). Fur-
thermore, assume that |k0| > |k1| and |x+| > |x−|, so that
‖K‖max = |k0| and ‖X‖max = |x+|. Then, computing the aver-
age noncommutativity between K̃ and X̃ (α, β ) over the state
�, and taking the supremum over (α, β ) ∈ [0, π ] × [0, 2π ),
we obtain

sup
X (α,β )∈�{x0 ,x1}

|Tr([X̃ (α, β ), K̃]�)|/2

= max
(α,β )∈[0,π]×[0,2π )

|x+ − x−|
2|x+|

|k0 − k1|
|k0| | 〈1|�|0〉 |

× | sin α sin(β + φ01)|
= |x+ − x−|

2|x+|
|k0 − k1|

|k0| | 〈0|�|1〉 |
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� |k0 − k1|
|k0| | 〈0|�|1〉 |

= ÃTr(�; K ), (A16)

in accord with Eq. (35) of Lemma 1. Here, φ01 = arg 〈0|�|1〉,
the maximum is obtained for X (α, β ) having the form of
(A15) with α = π/2 and β = π/2 − φ01, the inequality is due
to the fact that |x+ − x−|/2|x+| � 1, and the last equality is
due to Eq. (A1). Again, the equality in Eq. (A16) is attained
when x− = −x+.

6. Normalized quantum Fisher information vs maximum
average noncommutativity of Eq. (42) for a single qubit

Writing the density operator in terms of its spectral
decomposition, i.e., � = λ1 |λ1〉 〈λ1| + λ2 |λ2〉 〈λ2|, λ1, λ2 ∈
R+, λ1 + λ2 = 1, we have

J̃θ (�, K ) = Jθ (�; K )/‖K‖2
max

= 4|λ1 − λ2|2| 〈λ1|K|λ2〉 |2/‖K‖2
max, (A17)

where we have used Eq. (A9). For the case of a single qubit,
let us express the Hermitian operator X (α, β ) as in Eq. (A15),
where α ∈ [0, π ], β ∈ [0, 2π ) are the angular parameters of
the Bloch sphere. Then, the maximum average noncommu-
tativity between X̃ (α, β ) and K̃ in � over (α, β ) ∈ [0, π ] ×
[0, 2π ) on the right-hand side of Eq. (42) can be computed
directly, in the basis given by the complete set of orthonormal
eigenvectors of �, to obtain

sup
X (α,β )∈�{x}

|Tr([X̃ , K̃]�)|

= max
(α,β )∈[0,π]×[0,2π )

|x+ − x−|
|x+| |λ2 − λ1| | 〈λ2|K|λ1〉 |

‖K‖max

× | sin α|| sin(β − ϕ12)|
= |x+ − x−|

|x+| |λ2 − λ1|| 〈λ2|K|λ1〉 |/‖K‖max

� 2|λ2 − λ1|| 〈λ2|K|λ1〉 |/‖K‖max

=
√
J̃θ (�, K ). (A18)

Here, without loss of generality, we have assumed ‖X‖max =
|x+|, ϕ12 = arg 〈λ1|K|λ2〉, and the inequality is due to |x+ −
x−|/|x+| � 2. Notice that equality in Eq. (A18) is again at-
tained when x+ = −x−.

APPENDIX B: PROOF OF EQ. (11)

First, from the definition of Eq. (4) we have

Aw(�; K ) = sup
{|x〉}∈Bo(H)

∑
x

|ImKw(�x|�)|Tr(�x�)

� sup
{|x〉}∈Bo(H)

(∑
x

[ImKw(�x|�)]2Tr(�x�)

)1/2

,

(B1)

where we have made use of the Jensen inequality. Next, noting
that [ImKw(�x|�)]2 = |Kw(�x|�)|2 − [ReKw(�x|�)]2, and
inserting into Eq. (B1), we get

Aw(�; K )

�
( ∑

x∗

(∣∣∣Tr(�x∗K�)

Tr(�x∗�)

∣∣∣2
− Re

(
Tr(�x∗K�)

Tr(�x∗�)

)2
)

(B2)

× Tr(�x∗�)

)1/2

�

⎛
⎝∑

x∗

|Tr(�x∗K�)|2
Tr(�x∗�)

−
[∑

x∗

ReTr(�x∗K�)

]2
⎞
⎠

1/2

,

(B3)

where we have used the definition of the weak value
of Eq. (3) to get Eq. (B2), {|x∗〉} is a basis which
achieves the supremum, and to get Eq. (B3) we have
applied the Jensen inequality, i.e., [

∑
x∗ ReTr(�x∗K�)]2 =

[
∑

x∗
ReTr(�x∗ K�)

Tr(�x∗ �) Tr(�x∗�)]2 � ∑
x∗ ( ReTr(�x∗ K�)

Tr(�x∗ �) )2Tr(�x∗�).
Finally, applying the Cauchy-Schwartz inequality to the
numerator in the first term on the right-hand side of Eq. (B3),
i.e., |Tr(�x∗K�)|2 = |Tr[(�1/2

x∗ K�1/2)(�1/2�1/2
x∗ )]|2 �

Tr(�x∗K�K )Tr(�x∗�), and using the completeness relation∑
x∗ �x∗ = I, we obtain

Aw(�; K ) � (Tr(K2�) − [Tr(K�)]2)1/2

= �K (�), (B4)

as claimed. �

[1] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod. Phys.
79, 555 (2007).

[2] I. Marvian and R. W. Spekkens, Phys. Rev. A 94, 052324
(2016).

[3] G. Gour and R. W. Spekkens, New J. Phys. 10, 033023 (2008).
[4] J. A. Vaccaro, F. Anselmi, H. M. Wiseman, and K. Jacobs, Phys.

Rev. A 77, 032114 (2008).
[5] I. Marvian and R. W. Spekkens, New J. Phys. 15, 033001

(2013).

[6] I. Marvian and R. W. Spekkens, Nat. Commun. 5, 3821
(2014).

[7] I. Marvian and R. W. Spekkens, Phys. Rev. A 90, 062110
(2014).

[8] I. Marvian, R. W. Spekkens, and P. Zanardi, Phys. Rev. A 93,
052331 (2016).

[9] D. Mondal, C. Datta, and S. Sazim, Phys. Lett. A 380, 689
(2016).

[10] J. Åberg, Phys. Rev. Lett. 113, 150402 (2014).

012431-11

https://doi.org/10.1103/RevModPhys.79.555
https://doi.org/10.1103/PhysRevA.94.052324
https://doi.org/10.1088/1367-2630/10/3/033023
https://doi.org/10.1103/PhysRevA.77.032114
https://doi.org/10.1088/1367-2630/15/3/033001
https://doi.org/10.1038/ncomms4821
https://doi.org/10.1103/PhysRevA.90.062110
https://doi.org/10.1103/PhysRevA.93.052331
https://doi.org/10.1016/j.physleta.2015.12.015
https://doi.org/10.1103/PhysRevLett.113.150402


AGUNG BUDIYONO PHYSICAL REVIEW A 108, 012431 (2023)

[11] M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, Phys.
Rev. X 5, 021001 (2015).

[12] M. Lostaglio, D. Jennings, and T. Rudolph, Nat. Commun. 6,
6383 (2015).
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