PHYSICAL REVIEW A 108, 012430 (2023)

Direct generation of one-way Einstein-Podolsky-Rosen steering
with a self-phase-locked optical parametric oscillator

Zhan Zheng ®,' Mingyan Yao®,' Jianping Tong,' Qiang Lin,' and Yin Cai

2,%

1 Zhejiang Provincial Key Laboratory of Quantum Precision Measurement, College of Science, Zhejiang University of Technology,
Hangzhou 310023, China
2Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique,
School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China

M (Received 28 August 2022; revised 26 May 2023; accepted 6 July 2023; published 25 July 2023)

Einstein-Podolsky-Rosen (EPR) steering, that is, an intermediate form of quantum correlations with asymme-
try in between entanglement and Bell nonlocality, plays an essential role in quantum information processing,
such as one-sided device-independent quantum cryptography tasks. Here we theoretically study the direct
generation of EPR steering in x® nonlinear optical processes with cascaded crystals in a self-phase-locked
optical parametric oscillator. Based on a standard linearization method, we analyze different conditions for
generating EPR steering in Gaussian states with vanishing or nonzero mean fields, and also show bistable regions
for different types of EPR steering. In particular, such system can intrinsically generate asymmetry one-way EPR
steering, without introducing any postoperation. Our results suggest that the self-phase-locked optical parametric
oscillator is a good candidate to generate different types of EPR steering at will by varying the cavity detunings,

photon loss, or input pump power.
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I. INTRODUCTION

The nonlocality of entangled quantum states was first
pointed out by FEinstein, Podolsky, and Rosen (EPR) [1].
Schrodinger mentioned in his article [2] in 1935 an interesting
quantum phenomenon that can be described as follows: for
two subsystems, Alice and Bob, that are very far apart, the
local measurements performed on Alice seem to immedi-
ately affect the state of another distant Bob. In this article,
he called this nonlocal effect embodied in the EPR para-
dox as “steering.” Different from Bell nonlocality [3] and
entanglement [4] where the roles of the involved parties are
symmetric, steering is a directional form of nonlocality for
which the losses or noises can act asymmetrically [5-8].
For continuous-variable systems, the two subsystems shar-
ing entangled states share quantum correlations in phase and
amplitude quadrature, to test such phenomena. To quantify
the EPR steering, Reid introduced an experimental crite-
rion based on the inferred Heisenberg uncertainty relation
in 1989 [9]. Later Wiseman mathematically formalized the
concept of steering by violating the local hidden state model
[10]. EPR steering is an intermediate form of entanglement
with asymmetry [5,6,11-16] between the entanglement [4]
indistinguishability of quantum states and Bell nonlocality
[3]; that is, EPR steering allows one to verify entanglement
shared between Alice and Bob without the assumptions of
the full trust of their devices [17,18], which can be used for
one-sided device-independent quantum cryptography tasks
[19-26]. Recently, many efforts have been made in generating
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versatile EPR steering. Handchen et al. generated one-way
EPR steering via a squeezed light and vacuum setting [27].
Armstrong et al. [28] and Deng et al. [29] produced multipar-
tite EPR steering by mixing squeezing light via beam-splitter
networks, and Cai et al. generate a large-scale EPR steering
within a quantum frequency comb [30]. Four-wave mixing
processes of atoms were also proposed to generate multipar-
tite and collective EPR steering [7,8,31]. Moreover, there are
great prospects for applications in quantum information tech-
nology, e.g., quantum key distribution [19,20,22,23,25,26],
secure quantum teleportation [22,23,26], quantum cryptogra-
phy [19,20,32,33], and subchannel discrimination [24,34,35].

However, generally, if one wants to govern the EPR steer-
ing, passive postoperation of the linear optics is required,
which can involve the use of devices like beam splitters
and phase shifters [27]. It still lacks a quantum source that
can intrinsically generate asymmetry EPR steering with ac-
tive control within the generation process. Conventionally,
an entangled optical state of a continuous variable system
is generated in a parametric down-conversion (PDC) process
inside an optical parametric oscillator, on condition that the
photon energy conservation as well as the fixed initial-phase
relationship among the pump and the generated fields are
fulfilled [36]. However, the initial phases of generated fields
can take on any value, as long as their sum is fixed. It is
therefore a challenging task to acquire high-quality quantum
correlations in experiments [37] without locking the phases.
The difficulty is even more prominent for a nondegenerate
optical parametric oscillator. With the utilization of an ad-
ditional nonlinear interaction from another crystal in a
self-phase-locked optical parametric oscillator (SPLOPO), the
initial phases can be self-locked in a passive manner [38,39],
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and the phase diffusion should be small [40]. Therefore,
apart from adding an extra nonlinear crystal, this self-locking
technique does not introduce any additional complexity or
cost to the experimental setup, making it highly attrac-
tive for practical applications. Due to the robustness against
phase diffusion inside SPLOPOs, the passive locking scheme
has been widely used in frequency metrology [36,38,39],
and some schemes for obtaining high-quality two-mode en-
tanglement have been proposed [41,42] or demonstrated
[36,37].

In a divide-by-3 SPLOPO [38], the initial phases can be
locked to three possible discrete values [38,39], and the gener-
ation of robust two-mode entanglement has been theoretically
investigated in [42]. The nonlinear interaction coming from
the second crystal will give birth to the three types of effec-
tive interactions after linearization: the beam splitter (mixing
different frequencies), single-mode squeezer, and two-mode
squeezer, when the mean amplitudes are nonzero [see Eq. (6)
below]. It may also be observed that introducing cavity de-
tunings is equivalent to adding phase shifters inside to change
the effective cavity lengths. Therefore, it is expected that all
the linear operations required for generating EPR steering
from a two-mode entangled state can be implemented inside
the divide-by-3 SPLOPO. One is then led to an interesting
question: can EPR steering, or even one-way EPR steering, be
directly produced in the SPLOPO?

In this paper, we propose to use the SPLOPO system to
generate one-way and two-way EPR steering directly, without
the need for postoperation of the linear optics. We investigate
the variation of the steering and the corresponding quantum
properties via modifying the system parameters. Moreover,
we also investigate the controllability of the one-way steer-
ing direction in the bistable region. The direction of the
one-way steering can be tuned by adjusting the cavity de-
tunings, the photon loss, and the input pump power. Our
results show that one-way steering can be obtained in an active
way, which is useful for the secure transmission of quantum
information.

This paper is organized as follows. In Sec. II, we explain
the model of the system that achieves self-phase locking and
the existence of stable solutions in the system. In Sec. III, we
introduce the covariance matrix that can be used in the later
analysis of the steering and the EPR steering in the case of
stable solutions. In Sec. IV, the EPR steering for pure states
is analyzed, and the focus is on the bright-beam cases. The
first important scenario is related to the nil-cavity-detunings
condition, which is the most common situation in quantum
optical experiments. There, one knows that the steering is
symmetric, and that the amount of steering changes along with
the correlations. Based on this information, one-way EPR
steering can be produced by either introducing cavity detun-
ings or adding losses. Then, one is led to the most important
subsection of this paper, discussing steering for pure states
for the bright-beam case under nonvanishing cavity detunings.
The most important result of our paper is that the one-way
EPR steering can be produced directly by introducing cavity
detunings. In Sec. V, we study the effect of decoherence
effects on the steering when there is a photon-loss rate.
Finally, we summarize in Sec. VI. For relevance, some helpful
information can be found in the Appendices.
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FIG. 1. Sketches of a SPLOPO with cascaded crystals, and the
nonlinear optical processes in the PDC and the subharmonic genera-
tion crystals.

II. MODEL

Let us first make precise our model of the divide-by-3
SPLOPO sketched in Fig. 1. The ring cavity contains three
mirrors, one leaky and the other two perfectly reflective.
Inside the ring cavity, two crystals, called PDC and subhar-
monic generation (SHG), are concatenated on a path of beams.
Coupled with an intense classical field of central frequency
w3 at the leaky mirror, the nearest intracavity pump mode
w3 1s significantly excited. The pump detuning ws — w3, is
small so that the intracavity pump can be effectively converted
from the external one and treated as a classical wave with
a strong amplitude «3. In the PDC crystal, a pump photon
can be split into a signal photon of frequency w, near the
cavity mode w,. and an idler photon of frequency w; near
the cavity mode w.. In the SHG crystal, the pump is inactive,
while the signal and idler satisfy the phase-matching condi-
tions for the subharmonic generation process, i.e., a signal
photon can break into two identical idler photons or vice
versa, inducing a nonlinear self-injection locking of the signal
and idler subharmonics. The crystals, therefore, are named
after the involved nonlinear optical processes, PDC and SHG,
respectively. Because nonlinear crystals produce nonuniform
free spectral range, in any real experiments, the cavity should
be compensated by some intracavity dispersive elements if
necessary. We assume that the intracavity modes of pump,
signal, and idler waves well meet the 3:2:1 frequency ratio
conditions, i.e., w3, : Wy, : w1 =3 :2: 1, so that the pump,
signal, and idler photons satisfy the exact 3:2:1 frequency
ratios, w3 : wp : w; = 3 : 2 : 1. Hereinafter, the subscripts 3,
2, and 1 designate the pump, signal, and idler waves, respec-
tively, unless otherwise noted. We also call the signal and
idler waves as the (frequency) mode 2w and 1w, respectively,
when needed. The photons in the SPLOPO leak at the loss
rates y;(j = 3, 2, 1) of the pump, signal, and idler amplitude,
respectively. We consider a nonresonant pump(y3 > 2, Y1),
i.e., a doubly resonant optical parametric oscillator, in which
only the two subharmonics are resonantly enhanced. The in-
teraction Hamiltonian reads

V = in(xAJA] + kAA/2) + Hee., (1)

where x and k are two positive coupling coefficients, and yx is
proportional to the pump field amplitude. A, and A; are field
annihilation operators of the signal and idler, respectively,
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satisfying the canonical equal-time commutation relations, of
which the nonvanishing ones are

A~

[A>(1), AL ()] = [A1 (1), Al(t)] = 1. )

The field operators A, and A, are governed by the
Heisenberg-Langevin equation [42]:

A+ diAy = XA + kATAs + V20180 1, (3a)
z‘iz + oAy = A} — kAT/2 + 22802, (3b)

where d; = y; —iA; are complex loss rates, and A; =
w; — wj are the cavity detunings, for j = 1, 2. The Langevin
noise forces, ai,, preserve the canonical equal-time commu-
tation relations of Az,l and have vanishing values of the
mean and second-order moments except <am$2(t)ajn,2(r’)> =
(@in, 1(t)£z;,](t’)) =3(t —t'). For theoretical simplicity, we
take y1 =y, = y.

Stable properties of the SPLOPO at a long time are of great
interest, as the mean amplitudes become time independent,
known as the steady solution, and any small deviations from
the stable steady solution should converge to zero. To this
end, let us divide the field operators A;(t) = A; + a;(t) with
J =1, 2into two parts: the steady mean fields A; and the pure
quantum fluctuations @;(t). The steady mean fields satisfy

dlAl = XA; + KATAQ, (4a)
dAy = AT — kAl)2. (4b)

There exist three possible discrete phases, which are evenly
spaced, of the mean fields [42], and without loss of generality
we assume both the phases are in the range between —m /3
and 7 /3. If both sides of Eqs. (4) are multiplied by «, then
the new equations of kA and kA, become independent of the
parameter «, i.e., any acceptable solution (kAj, kA;) should
be independent of x. The nondepletion assumption of the
pump light requires the coupling strength x not to be too
small, as it is valid when the down-converted pump photons
should be much less than the pump photons converted from
the external pump light. But this restriction is weak, because
we have assumed that y3 is so great that the external pump
photons can be easily converted into the intracavity ones. For
instance, when « is comparable to the coupling strength x /o3
of the three waves in the PDC crystal, the assumption can be
safely applied.

If the quantum fluctuations are denoted by an
operator-valued vector a = col(a,, a;, &;, &I), and the
Langevin input noises are denoted by another one
ai, = col(ain 2, din 1, &iTn . &iTn 1), the linearized Heisenberg-
Langevin equations turn out to be

—d» —kKkA 0 X
. KA* —dl X KAZ
a=1La+.2ya, L= !
a=Latyaya 0 x  —d} —A]
X KAy kA, —df

®)

It suggests that the effective interaction Hamiltonian in the
two crystals turns out to be

Vet = ihlxaial + x(A2a]%/2 + Ataa)) + hec.,  (6)

which is a mixture of a two-mode squeezer, a single-mode
squeezer, and a beam-splitter-like interaction. The latter two
terms are adjustable because of A; and A,, and the role of
the beam splitter can be noticeable. It should be emphasized
that single-mode squeezing and two-mode squeezing can
be interconverted in the SPLOPO, indicating that entangle-
ment between two modes originates not only from two-mode
squeezing but also indirectly from the conversion of single-
mode squeezing, according to the effective Hamiltonian Ve
in Eq. (6).

Equation (4b) suggests that the mean field A, has a simple
solution in terms of A;. Because « and x are positive param-
eters, if (A}, Ap) is a solution of Egs. (4) for given detunings
(A1, Ay), then (A}, A3) should be a solution of Eqgs. (4) with
detunings (—Aj, —A;). Thus, when the detunings are both
zero, the mean fields A; and A, are both real. The stability
condition for the mean fields (A}, Ay) is that the real parts
of all eigenvalues belonging to matrix I should be less than
zero: max Re eig(LL) < 0. So, if the mean fields are stable for
the parameters (x, A, Ay), it should be equally stable for the
new parameters (x, —Aj, —Aj).

The mean field A} = A, = 0, called the dark-beam solu-
tion, is stable only when [42]

x> < Nose = >+ (A1 + Ar)?/4. (7)

Here, N, is the upper bound of x2 (which is proportional
to the pump power) derived from the stability condition max
Re eig(IL) < 0O for the dark-beam solution. According to [42],
when X2 > Ny with

4
Nor = 6[3/2 —9A1A; + \/(V2 +9A7) (2 +943)]. )

the SPLOPO allows for another solution, which can also be
stable. With

B = x[1 —d»/(2d;)],
the solution of A; reads [42]
k41| = VIBP + IC| — ReC + /|B]? — C| — ReC,
(10a)

C=dy(di — x*/d}), (9

1 B

argA; = 3 arg (K2|A1|2+2C)' (10b)
Because its elements A; and A, are nonvanishing, the new
solution is called the bright-beam solution. According to the
definition in Eq. (8), Nyr > 4y2/9 > 0; thus, the bright-beam
solution exists only when the pump field is sufficiently intense
(x? > Niy). In other words, M, is related to the lower bound of
the pump power needed to observe the bright beams. Figure 2
show two three-dimensional domains (colored) of parameters
(A, Ay, x) for the existence of the stable steady solution to
Eq. (4): Fig. 2(a) is for the dark-beam solution while Fig. 2(b)
is for the bright-beam solution. When Ny, > %2 = Ny, the
SPLOPO may allow for the existence of both the two solutions
and, therefore, the existence of the bistable region [42].

The quantum properties measured at the output of the leaky
mirror can be completely characterized by the covariance
matrix of the field quadratures [43—45]:

colXy, X1, P>, P)) =Ma, M= L L (11)
—le 1]12
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FIG. 2. Regions for admissible steady solution with respect to
two cavity detunings A; and A, and the coupling strength x: (a) for
dark-beam solution and (b) for bright-beam solution.

with O, andl, being the null and identity matrices of n x n
type, respectively. For long-time behaviors, the covariance
matrix at zero Fourier frequency reads [42]

@2 ]IZ ]I4
Cout =2M | yL™ L~ M,
()8 a0 3)
(12

Recall that the parameter x always comes with the mean
amplitudes A; and A, [see Egs. (5)], and kA and xA, are
independent of «; the matrix I and therefore the covariance
matrix Coy are determined by parameters such as the cavity
detunings, but should be independent of x. One then con-
cludes that the coupling strength « of the SHG crystal does
not have a direct contribution to the quantum properties of the
system under the linearization approximation.

III. COVARIANCE MATRIX AND QUANTUM PROPERTIES

Before proceeding with the discussion, let us briefly intro-
duce the definition of the EPR steering of a Gaussian state and
how it relates to the covariance matrix.

A generic covariance matrix C can be partitioned as

| X Cxp
S

where submatrices X and [P represent the correlations of the
X quadratures and the P quadratures, respectively, and subma-
trix Cxp stands for the correlations between a X quadrature
and a P quadrature.

Due to the existence of bipartite correlations, one can make
an estimate of a local measurement O; on the mode j based
on the results from another local measurement (’53, ;j on the
remaining subsystem. The optimal inference variance is given
by

—vi! vz .o, (14)

AintOj = Vo, o, — 05,05 0,05

where V; 3 = (AB + BA)/2 — (A)(B) is the correlation be-
tween A and B. In this paper, we only consider field

quadratures X, X,, P, and P,. The inferred variances for the
field quadratures read (for j=1,2)

o - 2

AineXj = Vg, %, = VXz PR XK (15a)
5 -1 2

Aiani = ij’pj - Vl%—j,ﬁ}—/ PPy (15b)

The two inferred variances can be reexpressed as

Aol det X AP det P (16)

inf&j = —, infl] = —0—.

" ! VX3_,',X3_I' ! ! Vis}—fsp}—f
According to Reid’s criterion [9,46], when the amount of

EPR steering

A N det X det P
Ein—j = BintXjAjtPj = ——, (17)
Vs ks Ve by

the product of the two inferred variances is less than 1, the
mode jw can be steered by measurements performed on the
remaining mode, and the EPR paradox is demonstrated. For
the subsystem of the frequency mode jw (j = 1, 2), the de-
terminant of the reduced covariance matrix C; is detC; =
Vi 2, Ve .6 — sz, B and then the amount of steering can be
reexpressed as

Ejp-j = detXdetP/(detC3; + Vg 5 ). (18)

The monotone for the amount of EPR steering is guaranteed
for two-mode states [47]. So, the ability to steer the quantum
lights in two different ways (1|2 and 2|1) should be different,
if

Ve 5, Ve b 7 Ve, 5, Ve, 5, (19)

This inequality or its variants is the starting point for all
the discussions on symmetric or asymmetric steering. For
example, in the pure two-mode state cases, the condition
(19) becomes V. p, # £Vi. p , because the purity of the two
subsystems should be the same, the fact of which imposes that
det C; = det C,.

The quantum state and its correlations can be very simple
and easy to manipulate if the covariance matrix is block diag-
onal, C = X @ P; then the amount of EPR steering becomes

detC
Eipj=——, j=1,2. 20
Jj13—j det(C3_j J ( )

Reid’s criterion suggests that when a subsystem has poorer
purity than the total state has, then the remaining subsys-
tem can be steered. Because of the identity det(ABC) =
det A det BdetC, for any symplectic transformation S, one
should have det(SCST) =detC. Similarly, the purity of
the reduced systems, or det C;(j = 1, 2), is invariant under
any local symplectic transformations. Then, the amount of
EPR steering (20) is invariant under any local symplectic
transformation provided that the covariance matrix after trans-
formation is still a block-diagonal one.

IV. PURE TWO-MODE GAUSSIAN STATES

To be present, the lights generated from the SPLOPO
should be in pure two-mode Gaussian states, since no
additional loss scheme is introduced. The focus in this sec-
tion, therefore, is about the quantum properties of pure states,
especially the EPR steering.
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A. EPR steering: Stable dark-beam case
When the mean field belongs to the stable dark-beam so-

lution, its corresponding covariance matrix is already given in
[42], and the two related submatrices read

X]] X12 Xll _XIZ
X= , P= , 21
[XIZ X11i| |:—X12 X ] (21a)

2.,2 2 2
Yox Xty —AA
X =1+8 C Xp=dyy i ,
11 + ) 12 VX D
(21b)
D =y3 (A1 — M)+ (¥ + A1A — X (21c)

Subsequently, the amounts of EPR steering yield & =
51‘2 =¢&:

E=(Xn —X122/X11)2- (22)

B. EPR steering: Stable bright-beam case
1. Zero cavity detuning condition

Let us now consider the simplest situation that the cavity
detunings are zero for the signal and idler. In this case, the
SPLOPO allows for the stable dark-beam solution A;=A,=0
when x < y, and the stable bright-beam solution for y >

V8y/3,

X+ /9% —8y? A= X ++/9x*—8y?
N 2k '

K3y 4 /9x2 —8y2

(23)

Ay

then a bistable region for y > x > +/8y/3 [42].

When A, = A; =0, the matrix IL defined in Eq. (5) is
filled with real elements. Then, it begins to have the sym-
metry L = (07 ® I,)L(o1 ® 1), where o) is the first Pauli
matrix. So do L= and (L™")T, because (o7 ® I5)? = I,.
According to Eq. (12), the covariance matrices under the
zero-cavity-detuning condition can always be written in the
block-diagonal form C,, = X @ P due to the symmetry of
L, regardless of which solution set the mean fields (A, A})
belong to. See more mathematical details in Appendix B.
After direct calculations, one should have det C,,; = 1, which
reveals the fact that the Gaussian states are pure. It is not
surprising, as no decoherence schemes are considered to be
present.

Now that the covariance matrix is block diagonal, the
amount of single-mode squeezing SMS; in the mode jw and
the amount of two-mode squeezing TMS can be defined (see
more information in Appendix A) as

SMS; =5 lOglO(VXj,X,/VP,v,Pj ),

TMS = 10log,, (v/det Cou1 +/—Vg, £,V5,.5). (24b)

When the amount of single-mode squeezing SMS;_ , is
positive (negative), the single-mode squeezer of the mode jw
squeezes the variance of the 131- X ;) quadrature. The three
curves of squeezing are shown in Fig. 3(a), and one observes
that the single-mode squeezing of the idler is always stronger
than the one of the signal, and the two never vanish simul-
taneously, indicating that the corresponding Gaussian state is

j=12 (24a)

20

squeezing (dB): -- SMS,; --SMS, —TMS
10

1.0
0.5

0.0

D

=2

6 0 66 0 66 0 660 66 0 6-6 0 6-6 0 6

FIG. 3. (a) Squeezing and steering at different input pump field
amplitudes. (b) Rotation of Wigner functions in phase space. One ob-
serves that the EPR steering is strong at x = 0.95y, and is vanishing
at x = 1.05y.

not symmetric. This property is important for the discussion
in Sec. V.

As shown in Eq. (5), the effective interaction Hamiltonian
consists of a “beam splitter,” a single-mode squeezer, and
a two-mode squeezer. It should be natural to observe con-
tributions from the single-mode and two-mode squeezers in
covariance matrices by making the Bloch-Messiah reduction
[48]. A necessary condition for a pure bipartite Gaussian
state is that the purities of the two reduced density matrices
are the same, i.e., det Coy,1 = det Coy o with Cou j(j = 1,2)
being the reduced covariance matrix of the mode jw. Because
the determinants of reduced covariance matrices det Coy j =
Vg%, Vs, p, (for j = 1,2), the necessary condition implies that

Ve 5 Ve = Va2, Ve, b, (25)
Similarly, because of the following two identities,
det Coye =detXdetP =1, as well as detCeyy ;=
V}?/_X/Vp/_,,sj (j=1,2), the amount of EPR steering (17)
turns out to be
1

Eipoj = ———, 26
JB3= det(cou[ﬁ_j ( )

which is the square of the purity of the mode (3 — j)w. Thus,
one arrives at the following conclusion: the amounts of EPR
steering for the two different ways share the same value:

Eip=En =€, 27)

due to the fact that det Coy 1 = det Coy2; the subsystems
are not steerable only when the two-mode system is
separable, detCgyy =detCoyr =1, or equivalently,
Va5 = Vop =0

For pure Gaussian states whose covariance matrix is
in block-diagonal form, its displaced Wigner distribution
WX, P) = Gx(X)Gp(P) can be decomposed as a prod-
uct of two Gaussian distributions Gx(X) and Gp(P) (see
Appendix A). The Gaussian distributions Gx (X) and Gp (P)
show correlations between X quadratures and the ones be-
tween P quadratures, respectively. Thus, the two Gaussians

012430-5



ZHENG, YAO, TONG, LIN, AND CAI

PHYSICAL REVIEW A 108, 012430 (2023)

are helpful to show how quantum properties of the states
evolve with the parameters.

It is known in the literature that by mixing a squeezed
state and a vacuum at a beam splitter, the two output beams
should be squeezed in the same direction, while for a two-
mode squeezed state after a rotation in the phase space by
a beam splitter the two squeezed directions should be per-
pendicular with each other. Therefore, according to Fig. 3(b),
the two-mode state can be essentially obtained from a two-
mode squeezed state rotated by a beam splitter, and the
two-mode squeezing is sensitive to the rotation of the dis-
placed Wigner distribution. When x is close to the start
point /8y /3(=~ 0.94y), the two-mode squeezing dominates
in the quantum fluctuations, and the strong correlations in both
the X quadratures and the P quadratures [see Fig. 3(b)] enable
the SPLOPO a very strong steerability.

According to the expressions in Appendix B2, the condi-
tions Vg ¢ = Vp p, = 0 are equivalent to

Q=yi*Aidr + x(KPAT—y* — x?) =0,  (28)

which has a single root

X0 = Y+ = — + —arcta

35 24577 T 1
— cos
27 27 33

2164/3687
n—-—|),
4481

(29)

and is approximately equal to 1.05y. When this condition is
satisfied, as shown in Fig. 3(a), at x = 1.05y, the amount of
two-mode squeezing is zero, and the amount of EPR steer-
ing is 1, i.e., entanglement and correlations between the two
modes disappear, and the SPLOPO loses its ability to steer
the quantum states. The physical origin is that the displaced
Wigner distribution rotates in phase space because of the
existence of the beam-splitter interaction Hamiltonian [see
Fig. 3(b)]. The SPLOPO goes from being strongly capable of
steering to a complete loss of the ability in a very small range:
0.95y < x < 1.05y.

The beam-splitter interaction Hamiltonian mainly plays
two roles: (1) to convert the photons of the two modes from
each other, including all possible components of the mean
fields and the fluctuations, and (2) to rotate the displaced
Wigner distribution. Because the interaction strength of the
beam splitter is proportional to the mean field amplitude A,
with the increasing of the pump power (o x?2), the mean field
amplitude A; increases accordingly, and in a general sense,
the squeezing in individual modes as well as correlations be-
tween modes attenuate and, finally, disappear [see Fig. 3(a)].
In more detail, when /8y /3(~ 0.94y) < x < 0.967y, the
beam splitter plays a more important role in converting the
single-mode squeezing from the mode w, and the effective
single-mode squeezers squeeze the variances in the same
direction; when y =~ 0.967y, the squeezing converted from
the single-mode squeezing from the mode w and the anti-
squeezing from the two-mode squeezing are balanced, and
thus no squeezing in mode 2w; when 1.05y > x > 0.967y,
the two-mode squeezing is gradually converted to enhance the
single-mode squeezing in the two modes, so the amounts of
the single-mode squeezing are improved; when y > 1.05y,
the correlations (two-mode squeezing) as well as the abil-
ity of steering improve noticeably because the single-mode

squeezing in the two modes is converted back into the two-
mode squeezing, and then worsens simultaneously with the
attenuation of the single-mode squeezing (see Fig. 3).

2. Nonzero cavity detunings

In the presence of cavity detunings, the bright-beam solu-
tion of the mean fields (A1, A;) is a pair of complex functions.
In this case, the stability of the mean fields relies on the
values of the parameters, and the region of the parameters
does not have a simple shape in general (see the right panel
of Fig. 2). However, from the right panel of Fig. 2, one ob-
serves that when |A;| < y, the mean fields (A, A,) are stable
in general, while the stability is weakly dependent with the
cavity detuning of the signal A,, because the mean field A,
quickly saturates to a small complex number as the pump
power increases [42]. In this paper, we tacitly assume that
the mean fields with cavity detunings have been verified to
be stable.

Recall that when the detunings both take opposite values,
(A1, Ay) = (—Ay, —Ay), the mean fields (A, Ay) change
into (A}, A}). Subsequently, the matrix I. — IL*, and the co-
variance matrix at the output port (12) yields

I O I O
Cout - |:© _H]Cout |:(O) —H] (30)

In other words, the correlations in X and P remain the same,
while elements of the X P correlations become their opposite
numbers, respectively. So, the amount of EPR steering (17)
remains when the cavity detunings both take opposite values.

One may also notice that the mean value A; + A% —
A%+ Aj is invariant, while i(A7 —A;) — i(A; — A}), which
is its opposite, for j =1, 2. Together with Eq. (30), one
knows that taking opposite values of both detunings is equiv-
alent to making a “mirror reflection” in the phase space,
which in fact reveals the property of time reversal [49], be-
cause the new covariance matrix obtained under time-reversal
operation follows the same transformation (30). When the
quantum lights and the cavity resonate, A} = A, = 0, the
right- and left-hand sides of Eq. (30) should be equal, suggest-
ing that all XP correlations disappear. Under this condition,
the covariaAncAe matrix is inva{iant updf:r time-reyersaleper-
ation, as (X;X,) = (+X))(+X0), (P;Po) = (—P)(—P0) =
(PiPy), as well as (X;P) =0 & (X;P) = (+X))(—=F)) =
—(Xjﬁk), for j,k =1,2. Thus, whether a covariance ma-
trix is invariant under the time-reversal operation should be
tightly linked to the existence of detunings. In a time-reversal
process starting at an infinite future, the mean fields A; —
A%(j = 1,2), which is not invariant in the presence of cavity
detunings, nor are the X P correlations: (X;P) # (X;(—B,))
and (X, ) # [(X; ) + (X;(—=P))1/2 =0, for j,k =1,2.In
other words, the X P correlations of a subsystem are not van-
ishing due to the presence of cavity detunings.

To some extent, introducing a cavity detuning is equiv-
alent to introducing a phase shifter in the cavity (changing
the effective cavity length), which effectively introduces an
extra symplectic matrix in the Williamson decomposition
of a covariance matrix, and leads to the appearance of the
XP correlations. For a bipartite pure state, the purities of
two subsystems are equal, thus det C; = det C,. Given that
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FIG. 4. Regions for different types of EPR steering with respect
to the three parameters A, A,, and x (normalized by y). (a) Region
for two-way EPR steering. (b) Two regions colored differently for the
two exclusive types of EPR steerings.

detC; = Vg 3 Vs, 5, — V)%,P, for j = 1, 2, one knows that ad-
justing the values of Vg 5 will cause corresponding changes
of Vx ¢ Vp 5. Since the X P correlations can be easily ma-
nipuléltejd bjy {ddjusting the cavity detunings, the condition (19)
can be easily realized, and it should be promising for the direct
generation of one-way EPR steering.

Indeed, one observes from the left panel of Fig. 4 that in
the colored domain the EPR steering can be performed in
both two ways, while from the right panel one also observes
the existence of one-way EPR steering, though the region
allowing for one-way EPR steering & only is much larger
than the one for one-way EPR steering &), only. The result
is very interesting: Even when the whole state is pure, the
SPLOPO enables one to perform one-way EPR steering in
the presence of cavity detunings. For a pure two-mode state,
according to the Schmidt decomposition, the two quantities
of the purity of the reduced system should be the same. If
there are no X P correlations in each mode, for a given reduced
covariance matrix, the product of the field quadrature vari-
ances is exactly equal to the determinant; thus, one-way EPR
steering in a pure state should not exist. One then concludes
that the physical origin of one-way EPR steering of pure states
from the SPLOPO must be the asymmetric X P correlations in
each mode, Vi , # V¢ .

Figure 5 shows the amounts of EPR steering at five sets
of cavity detunings. When detunings are both zeros, the
amounts of EPR steering are the same, and in a small range
0.95y < x < 1.00y the two-way EPR steerings for bright
and dark beams are both allowed, and such a situation is
known as bistable. Under this situation, no matter which
solution the mean fields belong to, the amounts of steering
in both directions are the same. However, because of cav-
ity detunings, even when the values are small, the amounts
should become different in a bright-beam case, which
may give birth to one-way steering [see Fig. 5(b)]. When
]/71()(, Al, Az) ~ (116, —1.03, —0.21), 51‘2 ~ 1.0, 52‘1 ~
0.32, and when y~'(x, A1, Ay) ~ (1.16, —2.00, —0.76),
Eip = 0.71, &) =~ 1.0 [see Figs. 5(c) and 5(d)]. So, the
special quantum correlations, one-way EPR steering, are no-
ticeable.

The last diagram of Fig. 5 is of great interest since there
exists a bistable region, in which the one-way steering &; can
be realized by manipulating the frequency mode lw for the

Amounts of steering

L0 - o dark (a)
- - bright: 2|1
W 05 — bright: 1|2
0.0 L T  ENEEsscatees H 1
0.5 L0 1.5
X
oo dark )|l () - da.'rk
2F - - bright: 2|1 3 - - bright: 2|1
W — bright: 1|2 . — bright: 1|2
L= A N e
Ok e, + I L }
(d) | ----dark (e) ... dark
ol | - - bright: 2[1 | - - bright: 2|1
W ' — bright: 1|2 — bright: 1|2
Ok | } | L iR 4 }
0.5 1.0 1.5 0.5 1.0 15
—1 -1
Y X Y X

FIG. 5. Amounts of EPR steering with respect to the cou-
pling strength at different detunings. (a) A, = A; =0. (b) A, =
—0.2]/, Al = 02]/ (C) Az = —0.21)/, A] = —103)/ (d) A2 =
—0.76y, Ay = =2.0y. (e) A, =—0.07y, Ay =0.07y. In panels
(b)—(d), noticeable one-way EPR steerings can be observed for the
cases associated with the bright-beam solutions.

bright-beam case, while for the dark-beam case the two ways
are symmetric, having the same amounts of EPR steering. In
other words, the SPLOPO enables one to precisely control
the ability to steer the subsystems, one way or two way, by
increasing or decreasing the pump power to access the bistable
region.

V. DECOHERENCE EFFECTS: PHENOMENOLOGICAL
DESCRIPTION

In the previous section, we arrive at the important conclu-
sions for pure Gaussian states that one-way EPR steering can
be directly generated by introducing detunings, and further
that the manners of the one-way or two-way EPR steering
can be precisely controlled by the pump power in a bistable
region. The assumption of a pure Gaussian state is too limited.
It is natural to consider a more practical scenario: the case
of a mixed Gaussian state. On the other hand, by introduc-
ing additional vacuum noises, or equivalently photon losses
in the two modes, the symmetric EPR steering condition
Vs, £,Va,.8, = Vs,.%, Vs, p, can also be violated, even when the
detunings are zeros. This fact suggests that photon loss can
also play a role in producing one-way EPR steering. So, we
consider the generation of EPR steering in the presence of
losses in this section.

Losses in an experiment, such as intracavity losses and
detection loss, should contribute to the covariance matrix. For
simplicity, we treat all the lossy channels together as a beam
splitter after the SPLOPO, and assume that the reservoirs are
vacua; thus, the detected covariance matrix for ideal measure-
ment reads [42]

Cie = /It = TCouy/I4 = T + T, 31)
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where T = diag(n,, n1, 12, 11), With 1, and n; being photon-
loss coefficients, 0 < 1y, 72 < 1. One then gets the following
relations:

Ve, > A=np)Vg 2 +nj, J=1,2; (32a)
Vi s, = (L=n)WVp 5, +nj, j=1,2  (32b)
Vag, = V=) = m)Vx g, (32¢)
Ve g, = VA =011 —n2)Vp, p,. (32d)

One may verify that the amount of EPR steering &5_j;
is a nondecreasing function of 7;. In general, when Vg, ¢ =
Vg, p, =0, the SPLOPO should have no ability to steer
the quantum state. So, when Vg ¢ and Vp p are not both
equal to zero, the best EPR steering should be performed at
n; = 0(j =1, 2). It is comprehensive, because the purer the
mode jw is, the more information from the cross correlations
can be retrieved.

A. Dark-beam case

For the stable dark-beam case, the amounts of EPR steering
explicitly read

(1 -1 — m)XEzT
En =11 — X1+ no — 33
201 [( )X + n2 d =X+ (33a)
(1 —n)(1 — 772)X122:|2
Ein =101 — X — 33b
112 [( nXi +m =X +m (33b)

The amounts of EPR steering are expected to be different
unless the loss rates are the same. The expressions in the
brackets are positive; Reid’s criterion &_j; < 1 is equiv-
alent to \/&_j; <1 for j=1,2. One can verify directly

that \/&_jj; — 1 = —(1 = n3-;)9y,_,1/E3—jj;- As aresult, the

criterion is equivalent to

7]2 ,‘/53 —jlj >O (34)

whose left-hand side is monotone decreasing with n;.
With respect to the loss coefficient n3_; (j = 1,2), the
amount of EPR steering &_j; takes its extreme value under

the condition s &_j; =0at
__ 1 Y2(AL + Ay)?
n=n= [1 - > > . (35
2 (X? =y — A1Ay)* —4y2 Al Ay

Because 0 < n; < 1, the extreme value condition n; = 7 is
not always attainable. In any case, 7) must be greater than zero
for the existence of EPR steering, i.e.,

2 = A1Ar — yH) — 4y A A > YAH(AL+ A2 (36)

Then, Reid’s criterion £3_j); < 1 imposes n; < 7.

When the two conditions are satisfied, the SPLOPO has the
ability to steer the mode (3 — j)w by manipulating the mode
jw. Thus, 7 in fact defines an upper bound of photon-loss
coefficients for EPR steering, and when the SPLOPO enables
one to steer the mode (3 — j)w, by increasing the photon-loss
coefficient n;_;, the steerability should be weakened. Provid-
ing that the condition (36) is already satisfied, one-way EPR
steering can be observed when only one of 7, and n; is less
than 7; the two ways of EPR steering are allowable when both

n1 and 1, are less than 7. Otherwise, the SPLOPO has no
ability to steer the quantum state.

The value of the upper bound 7 can be small, even close
to zero when the inequality (36) almost saturates. Then, the
loss of a small amount of photons will make the SPLOPO
lose its ability to steer quantum states. In other words, the
correlations are poor, and the steerability is not robust. When
7 takes a larger value, the system needs to lose more photons
within a given period to disable the steerability. In this sense,
the conditions for large # should be of interest.

According to its definition in Eq. (35), the upper bound
7 reaches its maximum value 1/2, when A; + A, = 0. The
bound 1/2 of photon loss for steering in two-mode squeezed
vacuum states was pointed out in [18] when the cavity detun-
ings are vanishing, A} = A, = 0. It is a special case of our
result. What we need to emphasize is that 1/2 is the maximum
value of the upper bound 7, which means that in general the
upper bound given by 7 should be better. The value of 7
should be quite large when the detunings are small, in which
cases EPR steering should also be robust to be demonstrated.
In order to generate robust one-way EPR steering with the
SPLOPO in the dark-beam case, a good experimental condi-
tion is that the two detunings are taken as opposite values, and
only one of the photon-loss coefficients is no less than 1/2.

B. Bright-beam case: Zero cavity detunings

When the cavity detunings vanish, the covariance matrix
Cout, subsequently the detected covariance matrix Cgy., should
be in the block-diagonal form X @ P. Then, the amounts of
EPR steering read

det Cye
&G jjj=—m— j=1,2. 37
3—jlJj det (Cde,j J ( )
One can verify Reid’s criterion &_j; < 1 by checking the
sign of det C4. — det Cy j. Then, by removing the com-
mon positive factors 16y%(1 — n3,j)/(/c2A% + yKkAr + % —

X2 (k?AT — ykAy + y* — x?)?, as well as introducing the
following two positive expressions,
i XA 3—j)yA
Tj:JX 1+G =)y 2 o1 (38)
4ic—1y2
Reid’s criterion &5_;j; < 1 is equivalent to
1\*1 1-2n;
2 J o2
n3— ]|:T (77} 2) ] 16)/2 49 , (39)

where the symbol 2 is defined in Eq. (28). If (1—217_,~)Q2 <0
ie, nj =2 1/2 or x = xo [the single root of £ =0, see
Eq. (29)], inequality (39) requires that n; > 1/2+Y; or
nj <1/2—="7";. When x = xo, Y1 = 0.533, 1, >~ 0.701, i.e.,

12+7; >1 and 1/2 —7; <0 for any j =1, 2; thus, the
conditions (39) break down for both j =1, 2. It is expected,
as the SPLOPO already has no steerability for pure states
at x = xo. Likewise, the inequality (39) further implies that
n; < 1/2, because no (71, n2) can simultaneously satisfy the
inequalities (39) as well as n; > 1/2 4+ ;.

Together with the steerability conditions for the dark-beam
case, one concludes the following: the mode (3 — j)w cannot
be steered by manipulating the mode jw, if the photon loss of
the mode jw exceeds 1/2, when both detunings vanish.
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FIG. 6. (a) The amounts of EPR steering for the bright-beam
case at zero detunings vs photon-loss coefficients. (b) The slices at
different pump amplitudes. One observes that the regions of two-
way and one-way EPR steerings change from slice to slice, and the
boundaries are not sufficiently simple. However, if its photon-loss
coefficient exceeds 0.5, the subsystem loses its ability to steer the
other one.

The condition 0 < n; < 1/2 — Y; with j =1, 2 imposes

that
X <X =v8i+1 O+ 5V5)/22y5) (40)

with §; the Kronecker delta function; then the left-hand side
of (39) is negative, and the condition of whether the mode
(3 — j)w is steerable is very tolerant for the photon-loss coef-
ficient, 0 < n3_; < 1. Note that x; > x»; this is because the
squeezing in the frequency mode lw is stronger than the one
in the frequency mode 2w in the absence of photon losses.

When the inequalities (39) for both j = 1, 2 are satisfied
simultaneously, the SPLOPO enables one to perform EPR
steering in two ways; if only one inequality is satisfied, then
the EPR steering can be performed only in one way; oth-
erwise, the SPLOPO has no ability to steer quantum states.
According to Fig. 6, by choosing proper quantities of photon-
loss coefficients, one can easily perform the one-way and
two-way steerability with the SPLOPO when cavity detunings
are zeros.

If one photon-loss coefficient exceeds 0.5, while the other
one remains small, the SPLOPO can allow for a bistable re-
gion for one-way EPR steering. For example, when (11, n2) =
(0.1, 0.5), one observes a bistable region for one-way EPR
steering &1 in the left panel of Fig. 7. Likewise, in the right
panel, there exists a bistable region for one-way EPR steering
&2 when (11, n2) = (0.5, 0.1). By increasing or decreasing
the pump power around and inside the interval for bistability,
one also observes the hysteresis cycles in the two panels of
Fig. 7. What is more important, the amounts of EPR steering
in the bistable regions can be small; therefore, the SPLOPO
is a good device to directly generate one-way EPR steering in
both dark-beam and bright-beam cases.

The maximum value of the upper bound is once again
1/2, as the case in the previous subsection. The bound 1/2
of photon loss for steering in [18] was derived from a two-
mode squeezed vacuum state, which is symmetric. Because
the quantum properties are completely determined by the co-

steering

FIG. 7. The amounts of EPR steering at different photon losses.
In each panel, for given line style, the left curve represents the
steering for the dark-beam case, while the right one represents the
steering for the bright-beam case. The arrows show that the amount
of steering goes with the increase or decrease of y, and one observes
the hysteresis cycles in the bistable regions. For plots, A = A, = 0.

variance matrix of a Gaussian state, their conclusion can be
easily extended to the cases above threshold, provided that the
states are symmetric. So, the conclusion in this subsection is
better than the value 1/2 obtained by an analogy from [18].
On the other hand, from Fig. 3(a), one should observe that the
single-mode squeezings never vanish simultaneously, so the
Gaussian states above threshold are not symmetric when the
detunings are both vanishing. Mathematically speaking, when
the asymmetry among the diagonal elements of the covariance
matrix in a Gaussian state tends to be unnoticeable, the state
gradually turns into a symmetric Gaussian one. The Gaussian
states above threshold here are more complicated, so their
applicability should be more general.

C. Bright-beam case: Nonzero cavity detunings

Recall that our SPLOPO enables one to directly gener-
ate one-way EPR steering in the bright-beam case when the
cavity detunings are not both vanishing, due to the exis-
tence of XP correlations. Naturally, it is expected that the
steerability should be almost the same when the photon-loss
coefficients are small. For example, when n; = 1, = 0.05,
if y’l(x, Ay, Ay) = (1.36,1.53,0.14), one then should ob-
serve the one-way EPR steering by manipulating the lw
mode, since 52“ ~ 0.39, 51|2 ~ 1.11; if }/_](X, A, Ay) =
(1.98, 0.69, —0.22), one then should observe another one-
way EPR steering by manipulating the 2w mode, as & =~
1.00, &1j2 = 0.77. So, one can directly generate the one-way
EPR steering for small photon-loss coefficients.

When a photon-loss coefficient becomes large, the
quantum correlations should be seriously waned. However,
one can still observe the one-way EPR steering; e.g., when
y ' (x, A1, Ay)=(1.16, —1.03, —0.21), 7, = 0.5, n; = 0.1,
the detected covariance matrix reads

2.2969 —-9.0301 —1.3365 —0.87501
—9.0301 55.284 10.268 6.6190

Cae = —1.3365 10.268 3.5636 1.6863 |’
—0.87501  6.6190 1.6863 1.1122

(41)

and subsequently, the amounts of EPR steering are

52‘1 x>~ 083, 51|2 ~ 6.22.
Due to the photon loss and the existence of X P correla-
tions, it should be true in general that the SPLOPO loses its
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ability to steer the (3 — j)w mode if n; > 0.5, for j =1, 2.
The upper bound 0.5 should be lowered in principle. So, a
first attempt to directly generate one-way EPR steering could
make one photon-loss coefficient greater than 0.5.

From all the discussions about the role of loss in this
subsection one concludes that the subsystem should definitely
lose its ability to steer the other subsystem if the photon-loss
coefficient of a subsystem is larger than 0.5. However, it is
still unknown whether the other subsystem has the steerability.
The edges of the one-way EPR steering are quite compli-
cated in general (see Fig. 6 for example). Furthermore, if the
photon-loss coefficient of one subsystem, say the mode lw,
is larger than 0.5, the subsystem cannot steer the mode 2w,
and very likely, the mode 2w has the ability to steer the mode
lw when its photon-loss coefficient is small (e.g., 0.1, see
Fig. 6). In order to observe the one-way EPR steering, it is
a good starting point to make the photon-loss coefficient of
one subsystem greater than 0.5.

Finally, one arrives at the following conclusions from the
previous discussions in Sec. V.

(1) One-way EPR steering due to cavity detunings can be
still observed in the presence of photon loss such as intracavity
and detection loss.

(2) For both dark-beam and bright-beam cases, the two
types of EPR steering, one way and two way, can be directly
produced in the SPLOPO in the presence of photon loss from
detection inefficiency or intracavity loss, whether the cavity is
detuned or not.

The upper bound to lose steerability for photon-loss coef-
ficients is less than 1/2 in general. Even when the maximum
value 1/2 is reached, the applicability is more general than
the one in [18], since the Gaussian states involved here are not
symmetric in general.

VI. CONCLUSION

In summary, we have theoretically studied the direct gen-
erations of one-way EPR steering using the SPLOPO, taking
into consideration that all Gaussian operations required to
produce EPR steering can be manipulated in the SPLOPO.
We first analyze the relationship between the steering and
the input pump amplitude (or the coupling strength x) in the
absence of cavity detunings and photon losses. For the dark-
beam case, the two ways of EPR steering are symmetric. In
the bright-beam case, we show that two-mode squeezing and
single-mode squeezing are convertible into each other, hence
they are both quantum resources for generating steering. We
then find that the amounts of EPR steering for both ways are
the same, and the value can be dramatically changed by ro-
tations of the Wigner distributions from the beam-splitter-like
Hamiltonian. In the presence of cavity detunings, we arrive
at our main conclusion that one-way EPR steering in a pure
Gaussian state can be directly generated, because of nonzero
X P correlations.

We then investigate Reid’s criterion for EPR steering in
mixed Gaussian states (in the presence of photon loss such
as intracavity loss and detection loss), in both dark-beam
and bright-beam cases with and without cavity detunings. We
show one-way EPR steering can be directly generated due to
cavity detunings even with photon loss, and obtain the upper

bound for the photon-loss coefficient when one subsystem
loses its ability to steer the other. The maximum value of the
upper bound is 1/2. Generally speaking, one-way EPR steer-
ing can be directly generated if one photon-loss coefficient
exceeds its upper bound, or even 1/2, while the other one
remains small.

Regarding the upper bound of photon-loss coefficients with
a maximum value of 1/2, it can be achieved when the two
detunings are opposite in the dark-beam case, as well as when
the quantum state is asymmetric in the bright-beam case.
Therefore, the applicability conditions of this maximum value
of 1/2 have been extended compared to those in [18]. We also
show that it is possible to find a bistable region where one-way
EPR steering can be performed both for the dark-beam and
the bright-beam cases. Therefore, by controlling the cavity
detunings or/and the photon loss 5, or changing the input
pump power, the SPLOPO enables one to directly generate
one-way and two-way EPR steering at will.

Because the phases of the quantum lights are frozen by
the SPLOPO, direct generation of EPR steering in this sys-
tem should be quite robust against phase diffusion. Thus, the
SPLOPO should be a good candidate for directly generating
EPR steering, especially the one-way EPR steering.

ACKNOWLEDGMENTS

We acknowledge Jean-Jacques Zondy for his kind guid-
ance on the subject of SPLOPO. This work is supported by
National Natural Science Foundation of China (Grants No.
61727821, No. 11904279, and No. 12174302) and Key Scien-
tific and Technological Innovation Team of Shaanxi Province
(Grant No. 2021TD-56).

APPENDIX A: GAUSSIAN STATE
AND COVARIANCE MATRIX

A state p is called Gaussian, when its Wigner function or
distribution is Gaussian. The corresponding Wigner distribu-
tion [43—45] of the Gaussian state p reads

exp[—(XT, PT)C~col(X, P)/2]

WX, P) = , (Al
& NI (A1
X = col(X; — (Xa), X1 — (Xi)), (Alb)
P = col(P, — (B), P, — (P})), (Alc)

in terms of the X and P quadratures of the phase space.
Here, C is the covariance matrix, and (X ;) and (15j) (with
Jj =1, 2) are means of the field quadrature operators defined
in Eq. (11). Following the standard linearization procedure,
the steady solutions of the mean amplitudes can be ob-
tained independently. The quantum properties of a Gaussian
state p are completely determined by its covariance matrix
C [43-45], e.g., the purity of a Gaussian state is trp’> =
1/+/detC. So in this respect, the Wigner distribution can
always be displaced to the origin for visualization, therefore
the name of the displaced Wigner distribution.
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If the covariance matrix is block diagonal, C =X & P,
then the displaced Wigner distribution can be decomposed as
WX, P) = Gx(X)Gp(P)/~/det C, where

2 1 »
Gx(X)= —exp _EXTX X, (A2a)
T

Gp(P) = 2 exp (—lPTPlP). (A2b)
4 2

The correlations of X quadratures can be observed from the

Gaussian function Gx(X), and the correlations of P quadra-
tures can be observed from Gp (P).

If the elements in the vector of field quadratures are ar-

ranged in the order (X, P», X1, P1), then the new form of the

covariance matrix V = ZCZ with Z = 1 @ oy @ 1, and can

be partitioned as
& - ! .

v oG "

Here, C, and C; are covariance matrices of the reduced
systems, the signal and idler, respectively, and Vi, reveals
correlations of the two modes. By performing the Williamson
decomposition to the 2 x 2 matrices C; [43],

(C_,' = l)ijS}-, ] = 1, 2, (A4)

one gets two local symplectic transformation matrices
S, and §; and two symplectic eigenvalues v, and v;. The ma-
trix V under the local symplectic transformation (S, & §;)7
turns out to be

1)2]12 S; V]zS]
. A
V= |:SIV1T252 1)1]12 ( 5)
The singular value decomposition yields
STViS1 = U, AU, (A6)

where U, and U; are unitary matrices, and A = diag(A;, A})
is a diagonal one. At this point, one can introduce a lo-
cal symplectic transformation matrix S, = (U»S2) @ (U1 S)),
such that

(AT)

L A
STVS, = ["2 2 }

A U]Hz

The form of the covariance matrix on the right-hand side of
Eq. (A7) is called the normal form [43] or the standard form I
[50]. When v, = vy, itis called symmetric. For pure states, the
purities of the two reduced systems should be the same, then

vi = vy = v. Thus, |As| = |A1| = Vv2 — 1 [50], as detC=1.
1

Y )\.1 Vv )\.2 B
Furthermore, the fact that [ " 1)] = [)\2 v] for pure
Gaussian states [51] implies that A, = —A;. A covariance

matrix of such a form represents a pure two-mode squeezed
state. At this point, one can define the amount of the two-mode
squeezing as 10log o (v + v/ 12 — 1).

In [50], the standard form II is defined as

ni Cl
ny Co

. o (A8)

whose elements can be different in general. If one introduces
two local squeeze operators with r, and r; being the squeezing
parameters, then the covariance matrix in the normal form
turns out to be

|: diag(rva, v2/12)
diag(\/ririz, A1/4/1112)

whose form, in fact, is the standard form II. If a covariance
matrix is given in the standard form II, then one should have

r=+/ni/hy, 1 =/m/my, (A9)

which can be used to characterize single-mode squeezing in
two-mode pure states.

The standard form I is a special case of the standard form
II. If a covariance matrix is in the standard form II (there
exists no X P correlation), then the covariance matrix should
be in the block-diagonal form when the field quadratures are
arranged in the order (X», Xj, P>, P;), and vice versa.

diag(\/r1r2A2, M/«/’”lrz)]
diag(rlvl,vl/rl) ’

APPENDIX B: CONDITIONS FOR NO XP CORRELATIONS

In this Appendix, we derive some general conditions on the

absence of the X P correlations by doing some linear algebra.

Let us consider a generic block matrix K = [é g], then

one can verify that
A+B+C+D

. i(A-B+C—D)
MIEM _[i((C—HD)—A—]B) ’

A-B-C+D
(BI)

where the matrix M is defined in Eq. (11). If the ma-
trix K can be block diagonalized by the matrix M/~/2,
then one shouldhave A — B+ C -D=C+D—-A—-B =
O, which are equivalent to B = C, and A = D. Then, the
block-diagonalizable matrix K has the symmetry K = (o7 ®
I,)K (o7 ® I). The unitary matrix (o] ® I,) is transpose in-
variant (o7 ® 1,)T = o ® I, and satisfies (o; @ 1,)? = L.
For simplicity, let us introduce the following matrix:

(L LY
F =2(yL +2 (o1 @ )| yLL +2 .

Because of the relation (o7 ® I,)MT = M, the covariance
matrix in Eq. (12) can be reexpressed as
Cout = MFMT = MF (0, ® I,)’MT = MF(0; ® I,)M".
(B3)

(B2)

1. Covariance matrix for A; = A, =0

Let us consider a special condition when the cavity de-
tunings are zero. In this case, the stable steady solutions
A; and A, are real, and the matrix IL turns out to be

_|L L _ |y KA _10 X
L= |:L2 L11|’ Ll - |:I(A1 4 ’ L2 - X KA2 ’
(B4)

Now, the matrix L is filled with real elements.

Because 01 ® [; is the permutation matrix for the blocks,
one should get . = (07 ® [)L(07 ® I,). By taking the in-
verse operation, one gets L' = [(07 ® I,)L(07 ® I)]™! =
01 @)L (1 ®L), a  (01®L)" = (01 ®L).
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Similarly, L HT =1 @LIL (o1 ®I)]T = (01 ®
L)L HT(o; ®1). As a result, (o7 ®@L)yL™!'+
I,/2)T = (yL™ '+ 14/2)T(01 ®5), and F(o1 QD)=
2(yL™" 4+ 14/2)(01 @ I)(yL™' + 14/2)T(0y ® Ih) =

(01 ®@ L)2(yL™" +14/2)(01 @ L)(yL ™' +14/2)T =

(01 @ IL)F = (01 ® I,)F (07 ® I,)>, which suggests the
covariance matrix C,, is block diagonalized, and has no X P
correlation.

2. Some elements of the covariance matrix

In this case, the covariance matrix is simple enough to
calculate manually. After some algebras, one has

(KA1 — )[K2A1Ay + x (kAs — 2y)]

Vo ¢ =144y ,

X2,Xy (K2A% _ )/KAZ + ]/2 . X2)2
(B5a)

2x (kA1 + x) + yKAs
2
VX]7X]:1+4'}/ a2 5 22,
(K Al —yKkAy +y*— % )

(B5b)

(kA1 + )X (kA2 +2y) — K*A1As]

Vi 5 =1 +4y ,
PP (KzA% + ]/I(Az + J/z _ X2)2
(B5¢)
2 Al — A
Vﬁl,ﬁ1=1—472 X (KA1 — x) + yKAz . (B5d)
(KZA% + yKkAr +y? — X2)
v, AL (B5e)
0% = T s €
: (KZA% —yiAy +y? — X2)2
4yQ
Vi p = v : (B5)
(A 4 kA 4y — x2)
24+ ykAy +y? — x?)
Q = k2yA1A; + x (KPAT — y? = XP). (B5g)

For pure states, Coy = X @ X! when A} = A, = 0[51].
If 2 = 0, then Vg, ¢, = Vp, p, = 0, and vice versa.

3. The inverse problem

Now, let us assume that there is no X P correlation in the
covariance matrix Cy, then IF(oy ® I,) should be invariant
under the unitary transformation o ® I,

F(o1 ® o) = (01 ® )[F (01 ® [2)](01 ® [2) = (01 ® [)F,
(BO)

which imposes that F should also be invariant:
F=F(o1®h)(o1®) = (01 ®h)F(01 ®12). (B7)

Because of the relations MTM = 20 ® I, the matrix [F can
be decomposed as

;
F = [(y]L_] + %)MT} [(;/L—‘ + %)MT] . (BY)

Taking into account the symmetry of L in Eq. (B7), and
introducing a rotation matrix R(RRT = I4), one has

I I
<y]L1 + 3“>MTR = (0 ® 112)<yIL1 + §>MT. (B9)

Plugging the left product with oy ® I and the right product
with R into Eq. (B9), one has

i I
(o ® H2)<y]L‘1 T §>MTR2 = <y]L—1 + E“)MTR.

(B10)
Compared with Eq. (B9), one gets R? = I4. As a result,

R = R(RRT) = R’RT = RT. (B11)

The matrix L in Eq. (5) satisfies L* = (o7 ® [5)L(o; ®

I,). From Eq. (BY9) and the relation R = RT, one

gets 2yL~ VL7 + L7174 L~ =2y L1 4+ L1 +
L~'. By comparing the coefficients, one has

LML " =L7'L™" & LTL* = L'L, (Bl2a)

L4 L =L 4L (B12b)

Let L be partitioned as [2% Z%], then Eq. (B12a) implies

LiL +LIL; = LIL, + LTL},
LiL, +L]L} = LiL, + LTL;.

(B13a)
(B13b)

By substitution of explicit expressions of the blocks L; and
L,, one should have

Ay =A%, (B14a)

di A% = diA,, (B14b)
2i(Ar + ADA; = x(Ay — AD), (Bl4c)
K2AL(Ay — AL) = 2i(Ag + Ay (B14d)

For the dark-beam solution A; = A, = 0, Eq. (B14d) im-
plies Ay, = —A|. Then, the corresponding covariance matrix
can be block diagonalized only when Ay = —Aj.

For the bright-beam solution, Eqs. (Bl4c) and (B14d)
suggest

(A1 + M) (k*AT — x*) = 0. (B15)

If k2A7 = x?, together with Egs. (4b) and (B14c), one finds
that d1d, = (d1d,)*, which is equivalent to A, = —A;. So, in
any case, Eq. (B15) is equivalent to

Ay = —A. (B16)

Then, Eq. (Bl4c) suggests A, = A3, and Eq. (B14b) sug-
gests that d; =d, i.e., A; =0. One then concludes that
the covariance matrix can be block diagonalized only when
Ay = A1 = 0 for the steady bright-beam solution.

It may be observed that such a conclusion can also be ob-
tained from the analysis in Sec. IV B 2 based on the properties
of time reversal.
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