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Sequential device-independent certification of indefinite causal order
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Indefinite causal order has found numerous applications in quantum computation, quantum communication,
and quantum metrology. Before its usage, the quality of the indefinite causal order needs to be first certified, and
the certification should ideally be device independent (DI) to avoid the impact of device imperfections. In this
work, we initiate the study of the sequential DI certification of an indefinite causal order. This can be useful in
experimental platforms where the generation of an indefinite causal order is difficult. We show that an arbitrary
number of sequential DI certifications of an indefinite causal order can be achieved with a quantum switch and
also analyze practical requirements for experimental implementations of the certifications. Our work opens the
possibility of reusing the resource of an indefinite causal order multiple times in device-independent quantum
information processing.
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I. INTRODUCTION

Indefinite causal order, which says there is no definite
causal order between several events, is a unique quantum
phenomenon that has attracted a lot of interest in recent
years [1–6]. The peculiar property of indefinite causal or-
der has found many applications, including lowering query
complexity [7–9], improving channel discrimination accuracy
[10], increasing quantum channel capacity [11–18], reduc-
ing communication complexity [19], improving the efficiency
of thermodynamics [20–22], and enhancing the precision of
metrology [23,24]. Currently, the quantum switch [2] is the
only example of indefinite causal order that has been exper-
imentally demonstrated [25–29]. The quantum switch, like a
classical switch, controls the wirings of a circuit. However, in
contrast to a classical switch, the quantum switch can be in a
superposition of the on and off states.

Before applying an indefinite causal order to applications,
it is necessary to first certify the existence and also the quality
of an indefinite causal order. Most certification of an indefinite
causal order is device dependent [4,30–32], where there are
certain assumptions on the device. In reality, these assump-
tions may or may not hold, putting doubt on the validity of
the certification. Hence, it is desirable to certify the indefinite
causal order in a device-independent (DI) way. By device
independence, we mean that the certification can be achieved
solely from the inputs and outputs of the devices, but not any
assumptions on the inner workings of the devices, which is
similar to the certification of nonlocality with Bell tests [33].
Recently, the first device-independent test of the indefinite
causal order of a quantum switch was developed [34]. It is
based on the violation of a local-causal inequality. The differ-
ence between a local-causal inequality and a normal causal
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inequality is that there are two spacelike separated parties,
called Charlie and Bob, involved in the local-causal inequality.

The objective of our research is to explore the fundamen-
tal limitations of the indefinite causal order, with a focus
on whether a long series of indefinite causal orders can be
sequentially and device-independently certified from a single
quantum switch. This approach may be practically valuable
in experimental platforms with inherent challenges in gen-
erating quantum switches, as observed in nitrogen-vacancy
centers [35]. The primary difficulty arises from the fact that a
quantum switch necessitates the utilization of one subsystem
from a maximally entangled state as a control qubit. However,
in the case of nitrogen-vacancy centers, the generation of a
single maximally entangled state is a time-consuming process,
limited to once per hour [35]. More precisely, we consider
the certification of the indefinite causal order in a quantum
switch by Charlie and k independent Bobs. Charlie performs
the certification with one of the Bobs sequentially. Here, the
Bobs are independent in the sense that they do not share their
measurement settings and outcomes.

We show that two sequential certifications of the indefinite
causal order in a quantum switch are possible with an explicit
instance of the certifications. We also give the maximum value
of the violation for the case of two sequential tests. The
margin is substantial, where the classical bound is 7/4 and
the quantum value for both rounds is more than 1.764. Next,
we check loopholes for two sequential tests, including the
detection loophole and randomness loophole. We show when
the detection efficiency is larger than 99.6% that there is no
detection loophole. For the randomness loophole, we show
that when the min-entropy of the randomness is at least 1.92,
there is no randomness loophole. We also examine the case
of k > 2 sequential certifications of an indefinite causal order.
We show that such certifications are possible for arbitrarily
large k. This in particular implies that one can indeed achieve
a long series of sequential device-independent certifications
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FIG. 1. (a) The causal relations between the parties. (b) The
setup of the sequential certification.

of an indefinite causal order with a single quantum switch.
For proving this result, we have given an explicit construction
for k sequential tests, where k is any positive integer. Our work
opens the possibility of reusing the resource of an indefinite
causal order multiple times in device-independent quantum
information processing.

II. SEQUENTIAL LOCAL-CAUSAL INEQUALITY

The sequential certification scenario is an extension of the
single certification scenario [34]. In the single certification
scenario, there are four parties, Alice 1, Alice 2, Bob, and
Charlie. Alice 1, Alice 2, Bob, and Charlie are given the inputs
x1, x2, y, and z (called settings), respectively, and outputs a1,
a2, b, and c, respectively. Here, Alice 1 is either causally
before Alice 2 or causally after Alice 2. Charlie is always
causally after Alice 1 and Alice 2. Bob is space separated from
Alice 1, Alice 2, and Charlie. The probability distribution to
be examined is p(a1a2bc|x1x2yz) in the single certification
scenario. There are certain restrictions on this probability dis-
tribution based on the causal orders between the four parties.

For the sequential certification scenario, there are n + 3
parties: Alice 1, Alice 2, Charlie, Bob 1, Bob 2, . . ., Bob n,
which are given the inputs x1, x2, z, y1, . . ., yn, respectively,
and outputs a1, a2, c, b1, . . ., bn, respectively. When a definite
causal order exists, Alice 1 is either causally before Alice
2 or causally after Alice 2. Charlie is always causally after
Alice 1 and Alice 2. All Bob k (1 � k � n) are spacelike
separated from Alice 1, Alice 2, and Charlie. Bob k + 1 is
causally after Bob k (1 � k � n − 1). An illustration of the
causal relations between the parties is shown in Fig. 1(a).
These causal relations put constraints on the probability distri-
bution p(a1a2bkc|x1x2ykz) for 1 � k � n. which we formulate
in mathematical languages in the following.

For simplicity, below we use A1 to denote Alice 1, A2 to
denote Alice 2, C to denote Charlie, and Bk to denote Bob k.
Also for simplicity, we use a |� p y to denote the condition

p(a|xy) = p(a|xy′), ∀a, x, y, y′. (1)

We assume there is a hidden variable λ that controls the causal
order between Alice 1 and Alice 2. Let λ = 1 denote Alice 1
is before Alice 2 and λ = 2 denote Alice 2 is before Alice 1.
In other words,

a1 |� p1 x2, a2 |� p2 x1, (2)

where p1 (p2) denotes the probability distribution p(a1a2bkc|
x1x2ykz) in the case of λ = 1 (λ = 2).

The hidden variable is chosen before any party chooses its
setting; namely, we have

λ |� p x1x2ykz, ∀k. (3)

The condition that all Bob k (1 � k � n) are space separated
from Alice 1, Alice 2, and Charlie implies

a1a2c |� pλ yk, ∀λ, k, (4)

and

bk |� pλ x1x2z, ∀λ, k. (5)

The condition that Charlie is causally after Alice 1 and Alice 2
implies

a1a2 |� pλ z, ∀λ, k. (6)

Note here that by two parties, say A1 and C, being causally
ordered, we always mean that the output of the previous party
occurs before the latter party is given its input. Hence, two
parties may not be causally ordered in the following exam-
ple: the input and output of A1 and A2 are ordered in time
as x1 < x2 < a1 < a2. Hereafter, we assume all inputs and
outputs of the same party happen at the same time (or happen
within a very short time interval) and the events of different
parties happen at different times. In this case, all parties can
be ordered causally in the classical case, which justifies the
assumption that Alice 1 is either causally before Alice 2 or
causally after Alice 2.

We call the probability distributions p that satisfy the
causal constraints in Eqs. (2)–(6) “local-causal” correlations,
and denote the set of these distributions by LC.

To describe the local-causal (LC) bound, we first define the
following quantity for the kth round:

Ik = p(bk = 0, a2 = x1|yk = 0) + p(bk = 1, a1 = x2|yk = 0)

+ p(bk ⊕ c = ykz), (7)

where a1, a2, bk, c ∈ {0, 1}, ⊕ is addition modulo 2, and
x1, x2, yk, z are independently and uniformly chosen from
{0, 1}. When p ∈ LC, write Ik as Ik

LC . We have the following
local-causal bound.

Theorem 1. We have Ik
LC � 7/4 for all 1 � k � n.

Proof. Note that the conditions of Theorem 1 in Ref. [34]
are satisfied in any round k. Hence by applying Theorem 1 in
Ref. [34] to round k, we obtain that Ik

LC � 7/4 for any k. �

III. REVIEW OF THE QUANTUM SWITCH

As a prerequisite for the violation of the LC bound, we
review what is a quantum switch [2]. Its setting is as follows.
Initially, we have a quantum state t and we wish to apply two
gates A1 and A2 sequentially on this quantum state. There are
two obvious ways to do this. One is to apply A1 before A2,
as shown in Fig. 2(a). The other is to apply A2 before A1, as
shown in Fig. 2(b). For both of these two cases, there is a
definite causal order between the two quantum processes A1

and A2. The idea of the quantum switch is to add a control
qubit, denoted as c, to control the order between A1 and A2. A
control qubit |0〉 denotes A1 is before A2. A control qubit |1〉
denotes A2 is before A1. A control qubit (|1〉 + |0〉)/

√
2 then

represents an indefinite causal order between A1 and A2, as
illustrated in Fig. 2(c). We will use an alternative drawing of
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FIG. 2. A quantum switch. (a) A1 is causally before A2. (b) A2

is causally after A1. (c) The inner working of a quantum switch
that acts on A1 and A2. (d) A pictorial representation of a quantum
switch.

the quantum switch as depicted in Fig. 2(d) for visual clarity.
The inner working of Fig. 2(d) is exactly the same as that of
Fig. 2(c).

IV. SETUP FOR SEQUENTIAL VIOLATIONS

After defining the LC bound and reviewing the quantum
switch, we are ready to define the setting where we use
a quantum switch to enable sequential device-independent
certification of an indefinite causal order, as illustrated in
Fig. 1(b). First, a quantum state is prepared for the control
qubit (denoted as c and lying in the Hilbert space HC), the tar-
get qubit (denoted as t and lying in the Hilbert space HT ), and
the input qubit of Bobs (denoted as b). The control qubit and
the target qubit are fed into a quantum switch [2], which also
takes two quantum channels A1 and A2 as inputs and achieves
an indefinite causal order for a suitable choice of the control
qubit. More precisely, A1 and A2 are both quantum chan-
nels on the Hilbert space HT . The quantum switch S takes
the two quantum channels A1 = E (·)E† and A2 = F (·)F † as
inputs, where E and F are Kraus operators, and outputs a
quantum channel S(A1, A2) = W (·)W † acting on the Hilbert
space HT ⊗ HC , where W = |0〉〈0|c ⊗ FE + |1〉〈1|c ⊗ EF .
Here, |0〉〈0|c and |1〉〈1|c act on the Hilbert space HC . The
quantum output of S(A1, A2) is fed to Charlie, who then takes
a classical input z and gives a classical output c.

Bob 1 takes his input quantum state, measures it according
to his input setting y1, and obtains the classical outcome b1.
The postmeasurement state is given to Bob 2 who then repeats
the process of Bob 1. Bob 2 then forwards his output to Bob
3, Bob 3 to Bob 4, etc., and finally from Bob n − 1 to Bob
n. Crucially Bob k does not reveal his setting and classical
outcome to Bob k + 1. It is in this sense that different Bobs are
independent. When the probability distribution p is generated
by this setup, we write p ∈ Q. When p ∈ Q, we write Ik as Ik

Q.

V. EXISTENCE OF THE VIOLATION
OF TWO SEQUENTIAL TESTS

Before explaining the quantum strategy, let us first describe
the postmeasurement states of Bob k in more detail. Let us
denote the initial state that Charlie and Bob 1 get as ρ1

CB.
Suppose Bob 1 gets the measurement setting y and obtains
the outcome b. According to the Lüder rule [36], the postmea-
surement state of Bob 1 is

ρ1
CB → (

I ⊗
√

F 1
b|y
)
ρ1

CB

(
I ⊗

√
F 1

b|y
)
, (8)

where F 1
b|y is the positive operator-valued measure (POVM)

element corresponding to the measurement setting y and the
outcome b. Since we assume Bob 2 is ignorant of Bob 1’s

FIG. 3. The quantum strategy for sequential violations of the LC
bound.

measurement setting and outcome, the postmeasurement state
of Bob 2 is an average over all possible measurement settings
and outcomes, which has the form

ρ2
CB = 1

2

∑
b1,y1

(
I ⊗

√
F 1

b1|y1

)
ρ1

CB

(
I ⊗

√
F 1

b1|y1

)
. (9)

Here b1, y1 ∈ {0, 1}. The coefficient 1/2 is due to y1 having
two values. If y1 has, e.g., three values, the coefficient will be
1/3.

Next, we give a quantum strategy that violates the LC
bound for the case of two rounds, which is illustrated in
Fig. 3. Let us start from the target qubit T . The target qubit
is initialized as |0〉T . The channel of Alice i (i = 1, 2) is a
measure-and-prepare one. After getting the input xi, Alice
i measures the target qubit in the computational basis and
obtains |ai〉. She then prepares the output quantum state to
be |xi〉 for subsequent processing. The order of Alice 1 and
Alice 2 is controlled by the control qubit C. After Alice 1
and Alice 2 operate on the target qubit, the target qubit is
discarded.

We now give the measurement strategy for Charlie and
Bob. The initial quantum state between Charlie and Bob is
|00〉 + |11〉 where the normalizing factor is omitted for sim-
plicity. Denote Cc|z as the POVM element of Charlie when he
receives the measurement setting z and outputs the outcome c.
Denote Bk

b|y as the POVM element of Bob k when he receives
the measurement setting y and outputs the outcome b. We
then set the measurement strategy on Charlie and Bob k as
follows:

C0|0 = 1
2 (I + cos θσz + sin θσx ),

C0|1 = 1
2 (I + cos θσz − sin θσx ),

Bk
0|0 = 1

2 (I + σz ),

Bk
0|1 = 1

2 (I + γkσx ). (10)
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Here, I is a 2×2 identity matrix, and σx and σz are Pauli X and
Z matrices, respectively. There are n + 1 parameters θ and γk

(1 � k � n) in the POVM elements. These parameters are left
to be determined in later proofs.

With this strategy, we have the following theorem.
Theorem 2. Two sequential violations of the LC bound are

possible with the quantum switch.
Proof. Denote the quantum state that Charlie and Bob k

receive as ρk
CB. ρ1

CB is the initial state that Charlie and Bob
1 receive. By the measurement strategy in Eq. (10) and the
update rule of the postmeasurement state [Eq. (9)], we obtain
the relation between ρk

CB and ρk−1
CB as

ρk
CB =

2 +
√

1 − γ 2
1

4
ρk−1

CB + 1

4
(I ⊗ σz )ρk−1

CB (I ⊗ σz )

+ 1−
√

1−γ 2
1

4 (I ⊗ σx )ρk−1
CB (I ⊗ σx ). (11)

Let us examine the shared quantum states of the first two
rounds more carefully. In the first round, the shared state ρ1

CB
between Charlie and Bob is |00〉 + |11〉, where the normaliz-
ing factor is omitted for simplicity. In the second round, the
shared state between Charlie and Bob becomes

⎧⎪⎨
⎪⎩
⎛
⎜⎝2 +

√
1 − γ 2

1

4
, |00〉 + |11〉

⎞
⎟⎠,

(
1

4
, |00〉 − |11〉

)
,

⎛
⎜⎝1 −

√
1 − γ 2

1

4
, |01〉 + |10〉

⎞
⎟⎠
⎫⎪⎬
⎪⎭, (12)

where the normalizing factor is omitted for simplicity. The
first real number in each bracket is the probability and the
second quantity in each bracket is the quantum state with this
probability.

Let us now examine the quantum value of the LC inequal-
ity of the first two rounds. The kth-round LC inequality Ik

Q

consists of two parts, which we denote by X k and Y k:

X k = p(bk = 0, a2 = x1|yk = 0)

+ p(bk = 1, a1 = x2|yk = 0),

Y k = p(bk ⊕ c = ykz|x1 = x2 = 0). (13)

We will first examine the value of X k , and then examine the
value of Y k for the two rounds k = 1, 2.

Let us first examine X 1. For the first round, the quantum
state is |00〉 + |11〉. Conditioned on y1 = 0, Bob 1 performs
a Z measurement on his share of the quantum state. When he
obtains b1 = 0, the control qubit becomes |0〉c which means
that A1 is before A2 in the time order. Hence, since both A1

and A2 are measure-and-prepare processes, we have a2 = x1.
Likewise, when Bob 1 obtains b1 = 1, the control qubit be-
comes |1〉c which means that A2 is before A1 in the time order.
Hence, a1 = x2. Since the probabilities that Bob 1 gets b1 = 0

and b1 = 1 are both 1/2, we have

X 1 = p(b1 = 0, a2 = x1|y1 = 0)

+ p(b1 = 1, a1 = x2|y1 = 0)

= p(b1 = 0|y1 = 0) + p(b1 = 1|y1 = 0)

= 1
2 + 1

2 = 1. (14)

Then let us examine X 2 in the second round. As mentioned
previously, there are three cases for the quantum state shared
between Charlie and Bob 2, namely, |00〉 + |11〉, |00〉 − |11〉,
and |01〉 + |10〉. For the first two cases, b1 = 0 corresponds
to |0〉c and b1 = 1 corresponds to |1〉c. Therefore, the X value
is still 1 according to the previous reasoning. For the third
case, b1 = 0 corresponds to |1〉c. This means that A2 is before
A1 on the time order. Hence a2 and x1 are independent. As
x1 is chosen uniformly randomly from {0, 1}, the probability
of a2 = x1 is 1/2. For b1 = 1 in the third case, by similar
reasoning we have that the probability of a1 = x2 is 1/2. As
in the previous two cases, the probabilities that Bob 1 gets
b1 = 0 and b1 = 1 are both 1/2. Hence, the X value in the
third case is

X = p(b1 = 0, a2 = x1|y1 = 0)

+ p(b1 = 1, a1 = x2|y1 = 0)

= 1
2 p(b1 = 0|y1 = 0) + 1

2 p(b1 = 1|y1 = 0)

= 1
4 + 1

4 = 1
2 . (15)

Overall, since the first two cases have probability (3 +√
1 − γ 2

1 )/4 and the third case has probability (1 −√
1 − γ 2

1 )/4, we have that the overall X value is

X 2 = 1 ×
3 +

√
1 − γ 2

1

4
+ 1

2
×

1 −
√

1 − γ 2
1

4

= 1 −
1 −

√
1 − γ 2

1

8
. (16)

Now let us turn to Y . We first define the following quantity,

Ik
CHSH = 2[q(c = bk|00) + q(c = bk|01)

+ q(c = bk|10) + q(c �= bk|11) − 2], (17)

which is called the kth-round Clauser-Horne-Shimony-Holt
(CHSH) value. Here q(c = bk|00) means the probability that
c = bk when z = 0, yk = 0. The other quantities are similar.
Importantly, in this definition, we assume that only two parties
are involved, namely, Charlie and Bob k. Alice 1 and Alice 2
do not show up in this inequality. By the result of Ref. [36],
the kth-round CHSH value is

Ik
CHSH = 22−k

⎛
⎝γk sin θ + cos θ

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)⎞⎠. (18)

We now relate Y k with Ik
CHSH. First note that when x1 =

x2 = 0, the target qubit always has the value of |0〉 at the
end, regardless of what is the order of A1 and A2. Hence, the
two probability distributions p(·|x1 = 0, x2 = 0) and q(·) are
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TABLE I. Comparison of the violation amount IQ − ILC .

Round 1 Round 2

Ref. [34] 0.1036 0
This work 0.0140 0.0140

equivalent. Next note that

Y k = p(bk ⊕ c = ykz|x1 = x2 = 0) = q(bk ⊕ c = ykz)

=
∑

u,v∈{0,1}
q(yk = u, z = v)q(bk ⊕ c = ykz|uv)

=
∑

u,v∈{0,1}

1
4 q(bk ⊕ c = ykz|uv)

= 1
4 (q(c = bk|00) + q(c = bk|01)

+ q(c = bk|10) + q(c �= bk|11)). (19)

Hence by combining Eqs. (17) and (19), we get

Ik
CHSH = 2[4Y k − 2]. (20)

Rearranging the terms, we get

Y k = 1
2 + Ik

CHSH/8. (21)

Combining the information of X k and Y k , we have that, in
the first round, the value of X 1 + Y 1 is

I1
Q = 3

2 + 1
4 (γ1 sin θ + cos θ ), (22)

while in the second round, the value of X 2 + Y 2 is

I2
Q = 1 −

1 −
√

1 − γ 2
1

8
+ 1

2

+ 1

8

(
γ2 sin θ + cos θ

(
1 +

√
1 − γ 2

1

))
. (23)

We now examine whether both of these quantities can violate
the classical bound 7/4. Indeed, by letting θ = 10−3, γ1 =
10−3, and γ2 = 1, we have I1

Q > 7/4 and I2
Q > 7/4. �

By optimizing the parameters, we have the following more
quantitative result.

Theorem 3. With the quantum switch, the minimum quan-
tum value of the two rounds min(I1

Q, I2
Q) is at least 1.7640,

larger than the classical upper bound 1.75.
Proof. We optimize θ and γ1 such that min(I1

Q, I2
Q) is max-

imized. First we assume θ = γ1 and let I1
Q = I2

Q, we obtain
that in this case θ = γ1 = 0.3312, I1

Q = I2
Q = 1.7633 > 7/4.

Next, we explore the case θ �= γ1 and maximize min(I1
Q, I2

Q)
around (θ, γ1) = (0.3312, 0.3312); we obtain θ = 0.411,
γ1 = 0.349, I1

Q = 1.7640, and I2
Q = 1.7641. �

We then compare our scheme with the scheme proposed
in Ref. [34]. Note that the scheme presented in Ref. [34] is
a special case of our scheme, with parameters θ = π/4 and
γ1 = γ2 = 1. The comparison is summarized in Table I. In
the first round, our scheme exhibits a smaller violation value
compared to the scheme described in Ref. [34]. However, in
the second round, our scheme achieves a larger violation value
in contrast to the scheme of Ref. [34]. Notably, the violation of
the scheme proposed in Ref. [34] completely vanishes during

FIG. 4. (a) The detector model. (b) The model of the randomness
loophole.

the second round, resulting in an infinite ratio of violation
when comparing our scheme to theirs.

VI. DETECTION LOOPHOLE

In reality, the detector in the device-independent test is
not perfect. In particular, photonic detectors do not have unit
efficiency, which may induce detection loopholes in the test
[37–42]. Therefore, in this section, we examine what is the de-
tection efficiency requirement of the detectors for a successful
sequential DI test of the indefinite causal order.

Let us start by describing the detector model, as illustrated
in Fig. 4(a). A detector with efficiency η has a probability of
1 − η of detecting nothing and a probability of η of function-
ing as an ideal detector. It is assumed that all detectors used in
the experiment have the same efficiency, although our method
can be extended to detectors with varying efficiencies. In the
latter case, we will obtain a range of permissible efficiencies
for each detector, rather than a single figure of merit.

The result of this section is summarized in the following
theorem.

Theorem 4. When the detection efficiency η is at least
99.6%, it is possible to sequentially device-independently cer-
tify the quantum switch two times.

Proof. Let pη denote the probability distribution where all
detectors have efficiency η. Let us first examine the quantity
pη(b = 0, a2 = x1|y = 0). For this quantity, there are two de-
tectors involved, i.e., Bob and Alice 2’s detectors. Since both
detectors have efficiency η, we have

pη(b = 0, a2 = x1|y = 0) = η2 p(b = 0, a2 = x1|y = 0).
(24)

By similar reasoning, we have pη(b = 1, a1 = x2|y = 0) =
η2 p(b = 1, a1 = x2|y = 0) and pη(b ⊕ c = yz)) = η2 p(b ⊕
c = yz)).

Let Iη
Q be the LC quantity when the detectors have effi-

ciency η. Then we have

Iη
Q = pη(b = 0, a2 = x1|y = 0)

+ pη(b = 1, a1 = x2|y = 0) + pη(b ⊕ c = yz)

= η2(p(b = 0, a2 = x1|y = 0)

+ p(b = 1, a1 = x2|y = 0) + p(b ⊕ c = yz))

= η2IQ > 7
4 . (25)
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In Theorem 3, we have that the maximum IQ for two rounds is
1.7640; hence the minimum detection efficiency for violating
the LC inequality two times is

η =
√

1.75/1.7640 = 99.6%. (26)

�

VII. RANDOMNESS LOOPHOLE

There is a free-will assumption in the derivation of the
LC bound, which may be violated in practice [43]. In this
section we examine to what extent this assumption can be
relaxed. Consider the model illustrated in Fig. 4(b). Here,
instead of z and yk being randomly chosen, there is a hidden
variable λ that controls the probability distribution of z and yk

by q(z, yk|λ). Below, we always consider the kth round, and
write yk as y for notation simplicity.

Let P = maxz,y,λ q(z, y|λ). We also assume that Charlie
and Bob’s inputs are uncorrelated, namely,

q(z, y|λ) = q(z|λ)q(y|λ). (27)

Let us digest the meaning of P. In one extreme, P = 1 cor-
responds to that there is absolutely no free will for a certain
λ. For that λ, the values of z and y are deterministic. In the
other extreme, P = 1/4 corresponds to perfect free will, be-
cause it implies that for any z, y, λ, q(z, y|λ) = 1/4. Between
the extremes, the smaller P is, the more free will we have.
Therefore, we only need to find the maximum P such that
the indefinite causal order can still be certified. The following
theorem summarizes the main result of this section.

Theorem 5. The minimum free will required is P �
0.2640 for two successful sequential DI tests of the indefinite
causal order.

Proof. The quantity Ik
LC consists of two parts,

Ik
LC = αk + Y k, (28)

where

αk = p(bk = 0, a2 = x1|yk = 0)

+ p(bk = 1, a1 = x2|yk = 0),

Y k = p(bk ⊕ c = ykz|x1 = x2 = 0). (29)

Next we examine the effect of no free will on αk and Y k

separately.
We first start from αk . According to the definition of LC, it

is a convex combination of LC1 and LC2, where in LC1, A1 is
causally ordered before A2 and in LC2, A2 is causally ordered
before A1. Hereafter, we prove the case for LC1. The proof for
LC2 is similar. Then by a convex combination, we finish the
proof for LC.

For LC1, we have the following equation:

p(bk = 0, a2 = x1|yk = 0) � p(bk = 0|yk = 0). (30)

Moreover, since A1 is causally before A2 and we have assumed
A2 has perfect free will to choose her setting x2 (only Bob k
and Charlie are restricted in their free will), we have

p(bk = 1, a1 = x2|yk = 0) � 1
2 p(bk = 1|yk = 0). (31)

Combining these two equations, we obtain

p(bk = 0|yk = 0) � 2αk − 1. (32)

Combined with the fact

p(bk = 0|yk = 0) � 1, (33)

we have

αk � 1. (34)

Let us then examine Y k . As previously, we transform Y k to
Ik
CHSH, which are related by

Y k = 1
2 + Ik

CHSH/8. (35)

Here, Ik
CHSH has the expression

Ik
CHSH = 2[q(c = bk|00) + q(c = bk|01)

+ q(c = bk|10) + q(c �= bk|11) − 2]. (36)

Let us consider the classical local strategy that c and bk are
always assigned zero, regardless of the values of z and yk , and
show the upper bound of Ik

CHSH. Other classical strategies can
be similarly analyzed, and the upper bound remains the same.
With this strategy, we can write Ik

CHSH as

Ik
CHSH = 4[qC (0|λ)qB(0|λ) + qC (0|λ)qB(1|λ)

+ qC (1|λ)qB(0|λ) − qC (1|λ)qB(1|λ)]. (37)

For further analysis, we define two additional symbols PC

and PB, which satisfy

PC = max
x,λ

{qC (x|λ)}, PB = max
x,λ

{qC (x|λ)}. (38)

These two quantities are related with P by

P = PCPB. (39)

By the definition of PC and PB, we have

qC (1|λ) = 1 − qC (0|λ) � 1 − PC, (40)

and

qB(1|λ) = 1 − qB(0|λ) � 1 − PB. (41)

Therefore,

qC (0|λ)qB(0|λ) + qC (0|λ)qB(1|λ)

+ qC (1|λ)qB(0|λ) − qC (1|λ)qB(1|λ)

= 1 − 2qC (1|λ)qB(1|λ)

� 1 − 2(1 − PC )(1 − PB). (42)

Hence

Ik
CHSH � 4[1 − 2(1 − PC )(1 − PB)] = 8(PC + PB − P) − 4.

(43)

The maximum of the right-hand side of Eq. (43) is
achieved when PB = 1/2 and PC = 2P. The maximum value
achieved is

Ik
CHSH = 8P. (44)

By combining the value of αk and Y k , we have

Ik
LC � 1 + 1

2
+ 8P

8
. (45)
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When the classical bound Ik
LC reaches Ik

Q = 1.7640, no quan-
tum violation will be possible. Hence, by solving

1 + 1

2
+ 8P

8
= 1.7640, (46)

we obtain the maximum allowable P as

Pmax = 0.2640. (47)

This finishes the proof of the theorem. �
Equivalently, the minimum min-entropy of the inputs z and

y should be at least log2(1/0.2640) = 1.92 for two successful
sequential DI tests.

VIII. ARBITRARY LARGE NUMBER
OF SEQUENTIAL TESTS

In this section, we examine the possibility of an arbitrary
number of sequential DI tests of the indefinite causal order.
Essentially, we need to check whether for all 1 � k � n, the
term Ik

Q is larger than 7/4. To do so, we first need to get a lower
bound on Ik

Q. To this end, we have the following lemma.
Lemma 1. In the kth round, the value of Ik

Q satisfies

Ik
Q � 1 + 1

2

⎛
⎜⎝k−1∏

j=1

⎛
⎜⎝3 +

√
1 − γ 2

j

4

⎞
⎟⎠ − 1

⎞
⎟⎠ + 1

2

+ 1

8
22−k

⎛
⎝γk sin θ + cos θ

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)⎞⎠. (48)

Proof. As Ik
Q can be decomposed into two parts, X k and Y k ,

we examine these two parts one by one in the following.
First, let us examine X k . Note first that the postmeasure-

ment state of the kth round is related with the postmeasure-
ment state of the (k − 1)th round by

ρk
CB =

2 +
√

1 − γ 2
1

4
ρk−1

CB + 1

4
(I ⊗ σz )ρk−1

CB (I ⊗ σz )

+
1 −

√
1 − γ 2

1

4
(I ⊗ σx )ρk−1

CB (I ⊗ σx ). (49)

Let us understand the three terms on the right-hand side of the
above equation in more detail. Let us consider the case that the
initial state is |
+〉 = |00〉 + |11〉 or |
−〉 = |00〉 − |11〉. For
the first term, it keeps the state unchanged; i.e., |
+〉 remains
|
+〉 and |
−〉 remains |
−〉. For the second term, it applies
a Z gate on the second qubit of the quantum state. This, in
particular, implies that |
+〉 and |
−〉 are interchanged. For
the third term, it applies an X gate on the second qubit of the
quantum state. Then |00〉 + |11〉 becomes |�+〉 = |01〉 + |10〉
and |00〉 − |11〉 becomes |�−〉 = |01〉 − |10〉, which goes out
of the space spanned by {|
+〉, |
−〉}.

As analyzed previously, when the shared quantum state
between Charlie and Bob k is |
+〉 or |
−〉, X k has value 1,
and when the shared quantum state between Charlie and Bob k
is |�+〉 or |�−〉, X k has value 1/2. We now estimate the prob-
ability that the quantum state shared between Charlie and Bob
k is |
+〉 or |
−〉. According to the previous analysis, when
the initial state is |
+〉 or |
−〉, for the first two cases, after the

update, the state remains |
+〉 or |
−〉. The total probability
of the first two cases for the kth round is (3 +

√
1 − γ 2

k−1 )/4.
The probability that all k rounds stay in the first two cases is
at least

∏k−1
j=1(3 +

√
1 − γ 2

j )/4. Therefore, we have a bound
on X k as

X k �
k−1∏
j=1

⎛
⎜⎝3 +

√
1 − γ 2

j

4

⎞
⎟⎠ × 1

+

⎛
⎜⎝1 −

k−1∏
j=1

⎛
⎜⎝3 +

√
1 − γ 2

j

4

⎞
⎟⎠
⎞
⎟⎠ × 1

2

= 1 + 1

2

⎛
⎜⎝k−1∏

j=1

⎛
⎜⎝3 +

√
1 − γ 2

j

4

⎞
⎟⎠ − 1

⎞
⎟⎠. (50)

For Y k , we first use a result from Ref. [36], which states
that Ik

CHSH satisfies

Ik
CHSH = 22−k

⎛
⎝γk sin θ + cos θ

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)⎞⎠. (51)

Together with the relation

Y k = 1

2
+ Ik

CHSH

8
, (52)

we obtain

Y k = 1

2
+ 1

8
22−k

⎛
⎝γk sin θ + cos θ

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)⎞⎠.

(53)
Therefore, in the kth round, the value of Ik

Q = X k + Y k is

Ik
Q � 1 + 1

2

⎛
⎜⎝k−1∏

j=1

⎛
⎜⎝3 +

√
1 − γ 2

j

4

⎞
⎟⎠ − 1

⎞
⎟⎠ + 1

2

+ 1

8
22−k

⎛
⎝γk sin θ + cos θ

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)⎞⎠. (54)

�
Our task is then reduced to choosing γk (1 � k � n) and θ

such that Ik
Q > 7/4 for all 1 � k � n and any arbitrary large

n. The condition Ik
Q > 7/4 is equivalent to

γk >
1

sin θ

⎡
⎣2k−1 − cos θ

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)

+ 2k

⎛
⎜⎝1 −

k−1∏
j=1

⎛
⎜⎝3 +

√
1 − γ 2

j

4

⎞
⎟⎠
⎞
⎟⎠
⎤
⎥⎦. (55)
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Therefore, for constructing valid γk , we construct the follow-
ing sequence:

γk (θ ) = (1 + ε)
1

sin θ

⎡
⎣2k−1 − cos θ

k−1∏
j=1

(
1 +

√
1 − γ 2

j

)

+2k

⎛
⎜⎝1 −

k−1∏
j=1

⎛
⎜⎝3 +

√
1 − γ 2

j

4

⎞
⎟⎠
⎞
⎟⎠
⎤
⎥⎦. (56)

For positive ε > 0, we clearly have γk (θ ) satisfy Eq. (55).
Equation (56) only makes sense if for any j < k, we have

γ j < 1. Therefore, before proving our main theorem, we first
prove the following lemma.

Lemma 2. For any n, there exists a θ ∈ (0, π/4) such that
γk (θ ) < 1 for all 1 � k � n.

Proof. By substituting the inequalities ∀x ∈
[0, 1],

√
1 − x2 � 1 − x2, ∀θ ∈ (0, π/4], cos θ � 1 − θ2/2,

and ∀θ ∈ (0, π/4], sin θ � θ/2, we get

γk (θ ) � 2k (1 + ε)
θ2/2 + ∑k−1

j=1 γ 2
j /2 + 2

∑k−1
j=1 γ 2

j /4

θ
,

(57)

the derivation of which can be found in the Appendix.
Define

pk (θ )=
{

2k (1+ε)
θ2/2+∑k−1

j=1 p2
j/2+2

∑k−1
j=1 p2

j/4

θ
if pj ∈ (0, 1), ∀ j < k

∞ otherwise.
(58)

Since the right-hand side of Eq. (58) increases with p j for
any j < k, then pk � γk .

We now prove that there exists θk ∈ (0, π/4] such that for
all 1 � j � k and any θ ∈ (0, θk ), p j (θ ) < 1.

By direct calculation, we obtain

p1(θ ) = (1 + ε)θ. (59)

By taking θ1 = 1/(2 + ε), the statement above Eq. (59) holds
for k = 1.

We now prove by induction that

pk (θ ) = Ck,εθ (60)

holds for any k, where Ck,ε is a positive constant that depends
only on k and ε but not θ . Clearly, the statement holds for
k = 1, by choosing C1,ε = 1 + ε. Now assuming the state-
ment holds for all j � k − 1, we now consider the case k. By
Eq. (58), we have

pk (θ ) = 2k (1 + ε)
θ2/2 + ∑k−1

j=1 p2
j/2 + 2

∑k−1
j=1 p2

j/4

θ

= 2k (1 + ε)
θ2/2 + ∑k−1

j=1 C2
j,εθ

2/2 + 2
∑k−1

j=1 C2
j,εθ

2/4

θ

= 2k (1 + ε)(θ/2 +
k−1∑
j=1

C2
j,εθ/2 + 2

k−1∑
j=1

C2
j,εθ/4).

(61)

FIG. 5. The number of LC violations as a function of θ for
different values of ε.

By letting

Ck,ε = 2k (1 + ε)

⎛
⎝1/2 +

k−1∑
j=1

C2
j,ε/2 + 2

k−1∑
j=1

C2
j,ε/4

⎞
⎠, (62)

we have pk (θ ) = Ck,εθ .
Now choosing θk = max{π/4, 1/(2 max1� j�k Cj,ε )}, we

have p j (θ ) < 1 for all 1 � j � k and all θ ∈ (0, θk ). Com-
bined with the fact that p j � γ j for any 1 � j � k, we have
that γ j < 1 for all 1 � j � k, which finishes the proof. �

Now we are ready to prove the main theorem.
Theorem 6. For any n, there exists a suitable choice

of θ and 0 < γk � 1 (1 � k � n) such that Ik
Q > 7/4 for

all 1 � k � n.
Proof. Choose θ according to Lemma 2 and let γk = γk (θ ).

By the definition of γk (θ ), we have Ik
Q > 7/4 for any 1 � k �

n and this concludes the proof. �
We next explore the relation between θ and the maximum

number of allowable violations, n. By numerical simulations,
the result is shown in Fig. 5. It can be seen that θ decreases
more than exponentially with respect to n for any choice of
the positive constant ε. Therefore, the margin of violation also
decreases more than exponentially with respect to n.

IX. DISCUSSION

In this work, we studied sequential DI certification of the
indefinite causal order in a quantum switch. We examined the
case of two sequential violations and showed its possibility.
We subsequently gave the maximum violation value for two
sequential violations. We then moved on to examine potential
loopholes in the test. We showed that the detection loophole
can be avoided as long as the efficiency of the detectors is at
least 99.6%. We also showed that the randomness loophole
can be avoided when the min-entropy of the inputs is at least
1.92. Finally, we showed that an arbitrary number of sequen-
tial certifications of an indefinite causal order is also possible
by constructing an explicit strategy.
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There are a few interesting future directions. First,
it is interesting to explore sequential DI tests of other
indefinite causal order phenomena, such as the one in
[1]. Second, in this work, we examined the case that
one side of the spacelike separated parties is sequentially
tested to obtain repeated violations. It is also interesting
to explore the case where both sides of the spacelike
separated parties are sequentially tested to obtain repeated
violations. Third, since the margin of two sequential
violations of the local-causal inequality is substantial, an
experimental demonstration of this sequential DI test is worth
pursuing.
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APPENDIX: DERIVATION OF EQUATION (57)

Following is the derivation of Eq. (57) from the proof of
Lemma 2:

γk (θ ) � (1 + ε)
2k−1 − (1 − θ2/2)

∏k−1
j=1

(
2 − γ 2

j

) + 2k
(

1 − ∏k−1
j=1

(
4−γ 2

j

4

))
θ/2

= 2k (1 + ε)
1 − (1 − θ2/2)

∏k−1
j=1

(
1 − γ 2

j /2
) + 2 − 2

∏k−1
j=1

(
1 − γ 2

j /4
)

θ

� 2k (1 + ε)
θ2/2 + ∑k−1

j=1 γ 2
j /2 + 2

∑k−1
j=1 γ 2

j /4

θ
. (A1)
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[30] J. Bavaresco, M. Araújo, Č. Brukner, and M. T. Quintino,
Quantum 3, 176 (2019).

[31] M. Zych, F. Costa, I. Pikovski, and Č. Brukner, Nat. Commun.
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