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To perform reliable quantum computation, quantum error correction is indispensable. In certain cases, contin-
uous covariance symmetry of the physical system can make exact error correction impossible. In this work we
study the approximate error correction and covariance symmetry from the information-theoretic perspective. For
general encoding and noise channels, we define a quantity named infidelity to characterize the performance of
the approximate quantum error correction and quantify the noncovariance of an encoding channel with respect
to a general Lie group from the asymmetry measure of the corresponding Choi state. In particular, when the
encoding channel is isometric, we derive a trade-off relation between infidelity and noncovariance. Furthermore,
we calculate the average infidelity and noncovariance measure for a type of random code.
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I. INTRODUCTION

Errors are inevitable in quantum computing and quantum
error correction (QEC) provides a method to realize
fault-tolerant quantum computation [1,2]. The subject has
been studied for decades and various correcting codes have
been developed [3,4]. Beyond the quantum computation, QEC
is closely connected with a wide range of quantum topics,
such as quantum metrology [5–7] and quantum entanglement
[8–10].

Symmetry is a ubiquitous property of the physical system
and can put strong constraints on the QEC. A no-go the-
orem, also known as the Eastin-Knill theorem, claims that
there does not exist a local error-detecting code in a finite-
dimensional system that allows for a set of universal logical
gates to act transversally on the physical system [11]. This
theorem implies that the continuous covariance symmetry and
exact correction can be incompatible in certain cases [12,13],
which has motivated the exploration of the relation between
covariance symmetry and approximate QEC. Several studies
have focused on the performance of quantum codes that are
exactly covariant but correct errors approximately [14–17]. In
particular, when the symmetry group is the U(1) Lie group
and the corresponding generator in the physical system is a
Hamiltonian, covariant codes cannot correct errors perfectly if
the physical Hamiltonian satisfies the Hamiltonian-in-Kraus-
span (HKS) condition [18,19]. In this special case, the relation
between the covariance violation and the inaccuracy of the
approximate QEC has been investigated [18,20–22].

In this work we study the approximate QEC and the covari-
ance symmetry from an information-theoretic perspective. For
general encoding and noise channels in the form of the Kraus
representations, we evaluate the error-correcting capability of
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the codes via a defined quantity called infidelity, which is
related to entanglement fidelity. When infidelity is equal to
0, the errors caused by the noise channel can be corrected ex-
actly. We also quantify the violation of covariance symmetry,
which we term noncovariance, from the asymmetry measures
of the corresponding Choi state. We specifically explore the
infidelity and noncovariance measure for isometric encoding
codes. Moreover, we prove again that under the HKS condi-
tion, exact correctability and covariance are incompatible. In
addition, we investigate the generalized Wigner-Yanase skew
information and derive a sum uncertainty relation. By virtue
of the generalized skew information, we obtain a trade-off
relation between infidelity and noncovariance. Furthermore,
we also calculate the average infidelity and noncovariance
measure for a type of random code.

The paper is organized as follows. In Sec. II we review the
basic concepts including QEC, Wigner-Yanase skew forma-
tion, and asymmetry measures for states. In Secs. III and IV
we quantify the inaccuracy of the approximate QEC and the
noncovariance, respectively. In Sec. V we study the special
case for the isometric encoding channel. In Sec. VI we sum-
marize and offer a suggestion for future work.

II. PRELIMINARIES

In this section, to highlight the idea of our approach, we
briefly review the basic working knowledge and clarify some
notation.

A. Quantum error correction

In a QEC procedure, the logical state is encoded into a
higher-dimensional physical system and redundancy is intro-
duced to protect against errors. As a starting point, we denote
by L the logical system and by HL the relevant Hilbert space.
The dimension of the Hilbert space is assumed to be dL and
the state space is denoted by D(HL ). Similar definitions can
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be defined for other systems. The encoding is a channel E
from the logical system L to the physical system S. The
subspace of system S, C = E (D(HL )), is known as code space
and the projector on the code space is denoted by P. After
a noise channel N (ρ) = ∑n

i=1 AiρA†
i with

∑n
i=1 A†

i Ai = 1,
the encoding state is changed and we can perform a corre-
sponding decoding channel R to recover the original state.
An ideal QEC procedure can recover all states in the logical
system perfectly, that is,

R ◦ N ◦ E = I, (1)

with I the identity map on the logical system L.
The Knill-Laflamme condition is a necessary and sufficient

condition for a quantum code to achieve an exact correction
[23]. For a given code E with the projector on the code sub-
space P, the errors can be corrected if and only if

PA†
i A jP = λi jP (2)

holds for a corresponding non-negative Hermitian matrix
(λi j). Note that when the Kraus operators of a noise channel
can be described by a linear span of {Ai}, the errors caused by
this noise can also be corrected exactly.

B. Wigner-Yanase skew information and its generalization

The conventional variance quantifies the total uncertainty
of the observable H in the state ρ and is defined as

V (ρ, H ) = tr(ρH2) − (trρH )2. (3)

As a counterpart to it, the quantity

I (ρ, H ) = − 1
2 tr[

√
ρ, H]2 = 1

2‖[
√

ρ, H]‖2
2, (4)

also known as the Wigner-Yanase skew information [24–26],
can quantify the quantum uncertainty of the observable H in
the state ρ. Here [X,Y ] = XY − Y X is the Lie product and
‖X‖p = [tr(XX †)p/2]1/p is the p-norm. For a pure state, the
skew information coincides with the variance.

The operator H in Eq. (4) is required to be Hermitian and
we can generalize to the non-Hermitian case [27]. For an arbi-
trary operator K which can be non-Hermitian, the generalized
skew information is defined as

I (ρ, K ) = 1
2 tr[

√
ρ, K][

√
ρ, K]† = 1

2‖[
√

ρ, K]‖2
2. (5)

In particular, for a pure state |φ〉,
I (|φ〉〈φ|, K ) = 1

2 〈φ|KK† + K†K|φ〉 − |〈φ|K|φ〉|2. (6)

In addition, the generalized skew information can be ex-
pressed as a sum of the original skew information

I (ρ, K ) = I (ρ, K†) = I (ρ, Re(K )) + I (ρ, Im(K )), (7)

where Re(K ) = 1
2 (K + K†) and Im(K ) = 1

2i (K − K†) repre-
sent the real and imaginary components, respectively. Note
that when K is Hermitian, the generalized skew information
degenerates to the original ones.

The original skew information satisfies a series of un-
certainty relations [28–30]. Here we give a sum uncertainty
relation based on the generalized skew information.

Lemma 1. Let K1, . . . , KN be a set of operators. For a state
ρ, there is

N∑
j=1

I (ρ, Kj ) �
1

N
I

⎛
⎝ρ,

N∑
j=1

Kj

⎞
⎠. (8)

Proof.

I

⎛
⎝ρ,

N∑
j=1

Kj

⎞
⎠ = 1

2

∥∥∥∥∥∥
⎡
⎣√

ρ,

N∑
j=1

Kj

⎤
⎦

∥∥∥∥∥∥
2

2

� 1

2

⎛
⎝ N∑

j=1

‖[
√

ρ, Kj]‖2

⎞
⎠

2

� N

2

N∑
j=1

‖[
√

ρ, Kj]‖2
2

= N
N∑

j=1

I (ρ, Kj ), (9)

where the first inequality is from the triangle inequality of the
norm and the second inequality is from the Cauchy-Schwarz
inequality. �

C. Asymmetry measures

Given a group G, for any group element g, let U (g) be
the unitary operator represented in the space H. If a state
ρ remains unchanged under unitary transformations induced
by G,

U (g)ρU †(g) = ρ ∀ g ∈ G, (10)

we say that the state is symmetric with respect to G. In
quantum resource theory, the quantification of how much a
state breaks this symmetry, or the measure of asymmetry, is
a significant problem. Different measures of asymmetry have
been proposed in the literature [31–34]. For example, some
commonly used measures of asymmetry are based on skew
information and von Neumann entropy. Here we mainly focus
on Lie groups and only review the asymmetric measure given
by skew information. Suppose the Lie algebra of the Lie group
G has an orthonormal base {Hp : p = 1, . . . , dG}, where dG is
the dimension of the Lie algebra. All generators can be written
as linear combinations of the elements in this base. The sum
of the skew information

NG(ρ) =
dG∑

p=1

I (ρ, Hp) (11)

quantifies the asymmetry of the state ρ with respect to the
group G [31,34]. The asymmetry measure possesses the fol-
lowing desirable properties.

(i) Here NG(ρ) � 0 and the equality holds if and only if
the state commutes with all generators, which indicates that
the state is symmetric with respect to G.

(ii) For all g, there is

NG(ρ) = NG(U (g)ρU †(g)). (12)
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(iii) Here NG(ρ) is convex in the sense that

NG

(∑
i

λiρi

)
�

∑
i

λiNG(ρi ), (13)

where λi � 0 and
∑

i λi = 1.
Items (i) and (iii) can be directly deduced from the prop-

erties of the skew information [34]. We only need to prove
item (ii). For all g, from the unitary invariance of the skew
information, we can obtain

I (U (g)ρU †(g), Hp) = I (ρ,U †(g)HpU (g)). (14)

For any unitary operator U (g) and the generator Hp,
U †(g)HpU (g) is also a generator in Lie algebra [35].
Consequently, {U †(g)HpU (g) : p = 1, . . . , dG} forms an or-
thonormal base of the Lie algebra. Since the sum of the skew
information does not depend on the choice of the orthonormal
base [36], item (ii) holds.

III. APPROXIMATE QUANTUM ERROR CORRECTION

The exact correctability is a strong restriction to practical
codes. As a result, we consider approximate QEC codes in
some cases and many quantifiers have been developed to
evaluate the performance of the approximate error correc-
tion [15,17,37–40]. In an approximate QEC process, we need
to find a proper recovery channel such that the composite
operation R ◦ N ◦ E is close enough to the identity map,
which demonstrates that all states can be nearly recovered. To
characterize the performance of the approximate QEC codes,
we first recall how to quantify the “distance” between two
channels.

For two states ρ and σ the distance is quantified by fidelity

F (ρ, σ ) = ‖√ρ,
√

σ‖1 = tr
√√

ρσ
√

ρ. (15)

The fidelity and the trace distance are closely related. The
two measures are qualitatively equivalent since they satisfy
the inequalities [41]

1 − 1
2‖ρ − σ‖1 � F (ρ, σ ) �

√
1 − 1

4‖ρ − σ‖2
1. (16)

For two channels � and �′ in the system L, the entanglement
fidelity

Fe(�,�′) = F ((�L ⊗ IR)(|ψ〉〈ψ |LR),

(�′
L ⊗ IR)(|ψ〉〈ψ |LR)) (17)

measures the closeness between these two channels, where
R is the reference system identical to system L and |ψ〉LR =
1/

√
dL

∑dL
k=1 |k〉L|k〉R is the maximally entangled state. As a

special case, we take �′ as the identity map and we obtain the
entanglement fidelity of the channel �,

Fe(�) = Fe(�, I )

=
√

〈ψ |LR(�L ⊗ IR)(|ψ〉〈ψ |LR)|ψ〉LR. (18)

With the above entanglement fidelity, now we can charac-
terize the performance of an encoding channel E under noise
N by the quantity defined as

fe(N ◦ E ) = max
R

Fe(R ◦ N ◦ E ). (19)

FIG. 1. The VL→SE is a Stinespring dilation of the channel
(N ◦ E )L→S with an environment system E . The input is a maximally
entangled state of the logical system L and the reference system R.
The output is denoted by |�〉RSE.

When fe(N ◦ E ) = 1, we can find a channel R such that all
states are recovered perfectly.

The maximization problem in Eq. (19) is generally difficult
since the optimization is over all channels. Fortunately, we can
study the problem from the view of leaking information to the
environment via the method of complementary channels [42].
As shown in Fig. 1, the channel (N ◦ E )L→S has an isometry
dilation VL→SE with environment system E such that

N ◦ E (ρL ) = trE (VL→SEρLV †
L→SE ). (20)

Then the complementary channel is defined as

̂N ◦ E (ρL ) = trS (VL→SEρLV †
L→SE ). (21)

The optimization problem (19) has an equivalent form [13]

fe(N ◦ E ) = max
|ζ 〉

Fe(̂N ◦ E, Tζ ), (22)

where Tζ (·) = tr(·)|ζ 〉〈ζ | is a constant channel.
With the method of complementary channels, we give a

lower bound of the entanglement fidelity fe for generalized
encoding and noise channels which extends the results in
Ref. [43].

Lemma 2. Suppose the channel (N ◦ E )L→S has a Stine-
spring dilation VL→SE , as shown in Fig. 1. Let

|�〉SER = (VL→SE ⊗ 1R)|ψ〉LR (23)

and denote by ρRE , ρR, and ρE the reduced states of |�〉RSE

on RE , R, and E , respectively. The quantity fe satisfies the
inequality

1 − fe(N ◦ E ) � 1

2
‖ρRE − ρR ⊗ ρE‖1

�
√

dLdE

2
‖ρRE − ρR ⊗ ρE‖2, (24)

where dE is the dimension of the environment system E . The
equality holds if and only if ρRE = ρR ⊗ ρE .
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Proof. From Eq. (22) we obtain

fe(N ◦ E )

= max
|ζ 〉

F (̂N ◦ E ⊗ I (|ψ〉〈ψ |LR), Tζ ⊗ I (|ψ〉〈ψ |LR))

= max
|ζ 〉

F

(
ρRE ,

1R

dL
⊗ |ζ 〉〈ζ |E

)

= max
|ζ 〉

F (ρRE , ρR ⊗ |ζ 〉〈ζ |E )

� F (ρRE , ρR ⊗ ρE )

� 1 − 1

2
‖ρRE − ρR ⊗ ρE‖1, (25)

where the last inequality is from Eq. (16). Recall that for an
operator A, the 1-norm and the 2-norm have the relation

‖A‖1 �
√

rank(A)‖A‖2. (26)

According to this relation and rank(ρRE − ρR ⊗ ρE ) � dLdE ,
we obtain the remaining inequality in Eq. (24). �

In general, the fidelity and the 1-norm are difficult to cal-
culate since we need spectral decomposition. In comparison,
the 2-norm is easier to calculate. After a tedious calculation of
the 2-norm in Eq. (24) presented in Appendix A, we obtain a
lower bound of fe.

Observation 1. Let EL→S and NS→S be the encoding and
noise channels, respectively. Suppose they have specific forms

E (ρ) =
m∑

s=1

EsρE†
s ,

N (σ ) =
n∑

i=1

AiσA†
i , (27)

where
∑m

s=1 E†
s Es = 1L and

∑n
i=1 A†

i Ai = 1S . Define O =∑m
s=1 EsE†

s . The entanglement fidelity fe has a lower bound

fe(N ◦ E ) � 1 − ε(N ◦ E ), (28)

where

ε(N ◦ E ) =
√

mn

4dL

(
n∑

i, j=1

tr(A†
i A jOA†

jAiO)

− 1

dL

n∑
i, j=1

m∑
s,t=1

|tr(A†
i A jEt E

†
s )|2

)1/2

(29)

and we call ε the infidelity.
This observation gives a quantitative description of the

performance of an approximate QEC. When ε � 1, the errors
can be corrected approximately. The defined infidelity ε also
characterizes the correlation between system R and system
E . As the environment becomes more correlated with the
reference system which contains the encoded quantum infor-
mation, more information leaks into the environment, which
can result in the degradation of the protected information.

IV. COVARIANCE SYMMETRY

A channel E from system L to system S is called covariant
with group G if for all g ∈ G and all ρ ∈ D(HL ) there is

E (UL(g)ρUL(g)†) = US (g)E (ρ)U †
S (g), (30)

where UL(g) and US (g) are unitary representations of group
element g on space HL and HS , respectively. We can also say
that the channel is symmetric with respect to G. The covariant
channel is intimately connected with the symmetric state and
the Choi representation builds this bridge. More explicitly, the
covariance symmetry of a channel is equal to the group sym-
metry of the corresponding Choi state [44]. Now we explain
this equivalence relation in detail.

Recall that there exists a one-to-one correspondence be-
tween the channel and the Choi state

�E = (IL ⊗ ER→S )(|ψ〉〈ψ |LR),

EL→S (ρ) = dLtrL
[(

ρT
L ⊗ 1S

)
�E

]
, (31)

where T represents the transposition. Suppose the channel E
is G covariant. Then for all ρ and all g we can obtain

0 = 1

dL
E (ρ) − 1

dL
U †

S (g)E (UL(g)ρU †
L (g))US (g)

= trL
[(

ρT
L ⊗ 1S

)
�E

]
− U †

S (g)trL
{[

U ∗
L (g)ρT

L U T
L (g) ⊗ 1S

]
�E

}
US (g), (32)

where ∗ is the conjugate operation. Therefore,

�E = [
U T

L (g) ⊗ U †
S (g)

]
�E [U ∗

L (g) ⊗ US (g)] ∀ g. (33)

This implies that the Choi state �E is symmetric with respect
to the unitary representation {U ∗

L (g) ⊗ US (g)}. Hence, we can
quantify the noncovariance of a channel from the asymmetry
of its Choi state. Concretely, noncovariance of the channel E
is defined as

NG(E ) = NG(�E ) =
dG∑

p=1

I (�E , Hp), (34)

which has been thoroughly studied as discussed in Sec. II.

V. ISOMETRIC ENCODING

In this section we investigate infidelity, noncovariance, and
their trade-off relation of a particular example.

A. Infidelity of the QEC

The isometric encoding channel is of the form E (ρ) =
W ρW †, with W †W = 1L. The projector onto the coding space
is P = WW † and the Choi state is

�E = (IL ⊗ ER→S )(|ψ〉〈ψ |LR)

= |ψ̃〉〈ψ̃ |LS, (35)

where |ψ̃〉LS = (1L ⊗ WR→S )|ψ〉LR. The noise channel is as-
sumed to be of the general form NS→S (ρ) = ∑n

i=1 AiρA†
i .
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According to Observation 1, the square of infidelity is

ε2(N ◦ E ) = n

4dL

n∑
i, j=1

tr(PA†
jAiPA†

i A j ) − 1

dL
|tr(PA†

i A j )|2.

Notice that when the Knill-Laflamme condition is satisfied,
namely, P(A†

i A j )P = λi jP holds for all i and j with some
constants λi j , then infidelity ε = 0 and perfect error correction
can be realized. We define Ki j = PA†

i A jP and the infidelity
can be written in the form of the generalized skew information

4dLε2(N ◦ E )

n

=
n∑

i, j=1

1

2
tr(K†

i jKi j + Ki jK
†
i j ) −

n∑
i, j=1

1

dL
|trKi j |2

=
n∑

i, j=1

1

2
tr[W †(K†

i jKi j + Ki jK
†
i j )W ]

−
n∑

i, j=1

1

dL
|tr(W †Ki jW )|2

=
n∑

i, j=1

dL∑
k,l=1

1

2
〈k|W †(K†

i jKi j + Ki jK
†
i j )W |l〉〈k|l〉

−
n∑

i, j=1

∣∣∣∣∣∣
dL∑

k,l=1

〈k|W †Ki jW |l〉〈k|l〉
∣∣∣∣∣∣
2

= dL

n∑
i, j=1

[
1

2
〈ψ |1L ⊗ W †(K†

i jKi j + Ki jK
†
i j )1L ⊗ W |ψ〉

− |〈ψ |(1L ⊗ W †)(1L ⊗ Ki j )(1L ⊗ W )|ψ〉|2
]

= dL

n∑
i, j=1

I (|ψ̃〉〈ψ̃ |, 1L ⊗ Ki j ).

B. Trade-off relation between infidelity and noncovariance

Consider a general Lie group G and denote the Lie algebra
by LG. Here {U ∗

L (g)} is a unitary representation of G in the
logical space HL and we assume that the associated represen-
tation of the Lie algebra is πL, namely, {πL(X ) : X ∈ LG} is
the set of generators for {U ∗

L (g)}. Similarly, for the unitary
representation {US (g)} in the physical system, suppose the
associated representation of the Lie algebra is πS . Hence,
in the Hilbert space HL ⊗ HS , {πL(X ) ⊗ 1S + 1L ⊗ πS (X ) :
X ∈ LG} gives the representation of the Lie algebra with re-
spect to the unitary representation {U ∗

L (g) ⊗ US (g)} [35] and
we assume that the set {H p

L ⊗ 1S + 1L ⊗ H p
S : p = 1, . . . , dG}

constitutes an orthonormal base of the Lie algebra LG. The
sum of skew information

NG(ρ) =
dG∑

p=1

I
(
ρ, H p

L ⊗ 1S + 1L ⊗ H p
S

)
(36)

quantifies the asymmetry of state ρ with respect to G [34].
We can obtain the noncovariance measure of a channel E from
this asymmetry measure, as defined in Eq. (34). Moreover, we

find the following relation by combining Lemma 1 with the
expressions of infidelity and noncovariance.

Observation 2. For an isometric encoding channel E and
noise channel N , noncovariance with respect to a Lie group
G and infidelity satisfy the trade-off relation

4ε2(N ◦ E )

n
+ NG(E ) � 1

n2 + dG
I (|ψ̃〉〈ψ̃ |, K ), (37)

where K = ∑n
i, j=1 1L ⊗ Ki j + ∑dG

p=1(H p
L ⊗ 1S + 1L ⊗ H p

S ).
Next we consider the special case of the U(1) group. In

this case, we assume that UL(g) = e−iH∗
L g and US (g) = e−iHSg,

where HL and HS are Hamiltonians. Then

U ∗
L (g) ⊗ US (g) = eiHLg ⊗ e−iHSg

= e−i(1L⊗HS−HL⊗1S )g. (38)

Thus, the corresponding generated Hamiltonian of U ∗
L (g) ⊗

US (g) is H = 1L ⊗ HS − HL ⊗ 1S . The noncovariance of the
isometric encoding channel can be quantified by the skew
information

NG(E ) = I (|ψ̃〉〈ψ̃ |, H ). (39)

For the U(1) group, the HKS condition is sufficient for the
nonexistence of covariant and exact QEC codes [19]. Explic-
itly, if

HS ∈ span{A†
i A j : i, j = 1, . . . , n}, (40)

all covariant codes cannot correct errors perfectly. Here we
prove again this no-go result.

Let HS = ∑n
i, j=1 αi jA

†
i A j , with αi j ∈ C, and suppose the

isometric encoding channel E is covariant and corrects errors
perfectly. Since NG(E ) = 0 and H is Hermitian, there exists a
constant λ such that

H (1L ⊗ W )|ψ〉 = λ(1L ⊗ W )|ψ〉. (41)

This implies that

(1L ⊗ P)H (1L ⊗ P)(1L ⊗ W )|ψ〉 = λ(1L ⊗ W )|ψ〉. (42)

Consequently,

0 = I (|ψ̃〉〈ψ̃ |, (1L ⊗ P)H (1L ⊗ P))

= I

⎛
⎝|ψ̃〉〈ψ̃ |,

∑
i, j

αi j1L ⊗ Ki j − HL ⊗ P

⎞
⎠.

(43)

In addition, ε(N ◦ E ) = 0 indicates that

I (|ψ̃〉〈ψ̃ |, αi j1L ⊗ Ki j ) = 0. (44)

Combining Eq. (43) with Eq. (44), we obtain

0 � (n2 + 1)I (|ψ̃〉〈ψ̃ |, HL ⊗ P)

� I

⎛
⎝|ψ̃〉〈ψ̃ |,−

n∑
i, j=1

αi j1L ⊗ Ki j + HL ⊗ P

⎞
⎠

+
n∑

i, j=1

I (|ψ̃〉〈ψ̃ |, αi j1L ⊗ Ki j ) = 0. (45)

Therefore,

(1L ⊗ W †)(HL ⊗ P)(1L ⊗ W )|ψ〉 = α|ψ〉 (46)
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holds for some constant α. After a direct calculation, we have

〈k|HL|l〉 = αδkl (47)

or, equivalently, HL = α1L. This contradicts the nontrivial
assumption of a logical Hamiltonian.

C. Average infidelity and noncovariance for random codes

We consider a type of random code in which the encoding
isometry has the expression

W = US (1L ⊗ |0〉A), (48)

where A is an ancillary system satisfying HS = HL ⊗ HA and
U is a random unitary under the Haar measure. Equivalently,
the projector can be written as

P = US (1L ⊗ |0〉〈0|A)U †
S . (49)

For this type of random code, the average infidelity satisfies

∫
U(dS )

ε2(N ◦ E )dμ(U )

= n
(
d2

L − 1
)

4dL
(
d2

S − 1
) n∑

i, j=1

(
tr(A†

jAiA
†
i A j ) − 1

dS
|tr(A†

i A j )|2
)

,

(50)

where U(dS ) represents the unitary group in system S and μ

is the Haar measure. When G is the U(1) group, the average
noncovariance is equal to

∫
U(dS )

NG(E )dμ(U )

= dLtr
(
H2

L

) − (trHL )2

d2
L

+
(
dLd2

S − dS
)
tr
(
H2

S

) − (dLdS − 1)(trHS )2

dLdS
(
d2

S − 1
) . (51)

We leave the detailed calculation to Appendix B. From
Eqs. (50) and (51) we can see that if the dimension of the phys-
ical system dS tends to infinity, the average infidelity tends 0
while the noncovariance tends to [dLtr(H2

L ) − (trHL )2]/d2
L .

VI. CONCLUSION AND OUTLOOK

In this work we defined a quantity termed infidelity to
characterize the inaccuracy of an approximate QEC and also
to quantify the noncovariance of an encoding channel with
respect to a general Lie group. With these two quantities, we
derived a trade-off relation between approximate QEC and
noncovariance in the special case that the encoding channel is
isometric. For a type of random code, we found that when the
dimension of the physical system is large enough, the errors
can be corrected approximately while noncovariance tends to
a constant.

The information scrambling can protect encoding infor-
mation against errors and hence is closely connected with
the capability of error correction [45–47]. For future work it
would be interesting to explore the QEC ability and the infor-
mation scrambling quantitatively in systems with particular
symmetry via the infidelity we defined, which may help us
design explicit covariant and approximate QEC codes from
scrambling circuits.
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APPENDIX A: PROOF OF OBSERVATION 1

The Stinespring isometry VL→SE of the composite channel

N ◦ E (ρ) =
∑

i,s

AiEsρE†
s A†

i (A1)

satisfies

VL→SE |ϕ〉L =
∑
i,s

AiEs|ϕ〉L ⊗ |is〉E . (A2)

Here {|is〉E } forms an orthonormal basis of the environment
system E and the dimension dE = mn, which is equal to the
number of the Kraus operators {AiEs}. Note that we omit the
upper bound of the index in the summation sign for conve-
nience in this Appendix.

The output state is

|�〉RSE = (1R ⊗ VL→SE )|ψ〉RL

= 1√
dL

∑
k

VL→SE |k〉L ⊗ |k〉R

= 1√
dL

∑
k,i,s

AiEs|k〉L ⊗ |is〉E ⊗ |k〉R. (A3)

The reduced state in system RE is

ρRE = trS|�〉〈�|RSE

= 1

dL

∑
i, j,k,l,s,t

trS[(AiEs|k〉〈l|E†
t A†

j )S ⊗ |is〉〈 jt |E ⊗ |k〉〈l|R]

= 1

dL

∑
i, j,k,l,s,t

〈l|E†
t A†

jAiEs|k〉|is〉〈 jt |E ⊗ |k〉〈l|R. (A4)

Then the reduced state in system R is the maximally mixed
state 1R/dL and

ρE = trRρRE

= 1

dL

∑
k,i, j,s,t

〈k|E†
t A†

jAiEs|k〉|is〉〈 jt |E

= 1

dL

∑
i, j,s,t

tr(E†
t A†

jAiEs)|is〉〈 jt |E . (A5)
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To calculate the 2-norm in Eq. (24), we map the states in system RE to states in system LE through the isometric channel

�

⎛
⎝ ∑

k,l,i, j,s,t

αkli jst |is〉〈 jt |E ⊗ |k〉〈l|R
⎞
⎠ =

∑
k,l,i, j,s,t

α∗
kli jst |is〉〈 jt |E ⊗ |k〉〈l|L (A6)

and then

‖�(ρRE ) − �(ρR ⊗ ρE )‖2 = ‖ρRE − ρR ⊗ ρE‖2. (A7)

If we let

D = �(ρRE ) − �(ρR ⊗ ρE ) = 1

dL

∑
i, j,s,t

(
E†

s A†
i A jEt − tr(E†

s A†
i A jEt )

1L

dL

)
⊗ |is〉〈 jt |E , (A8)

then we have

‖ρRE − ρR ⊗ ρE‖2
2 = trDD† = 1

d2
L

∑
i, j,s,t

(
tr(E†

s A†
i A jEt E

†
t A†

jAiEs) − 1

dL
tr(E†

s A†
i A jEt )tr(E†

t A†
jAiEs)

)

= 1

d2
L

∑
i, j

tr(A†
i A jOA†

jAiO) − 1

d3
L

∑
i, j,s,t

|tr(A†
i A jEt E

†
s )|2, (A9)

where O = ∑
t Et E

†
t .

APPENDIX B: CALCULATION OF AVERAGE INFIDELITY
AND NONCOVARIANCE

In a Hilbert space H with dimension d , the uniform Haar
measure μ over unitary operator group U(d ) remains invariant
under both left and right multiplication of any unitary operator
V ∈ U(d ) [48–50]. Mathematically,

μ(A) = μ(AV ) = μ(VA) (B1)

holds for an arbitrary Borel subset A and arbitrary unitary V .
Here we recall some integral formulas over unitary groups,
referring to Ref. [48] for detailed proofs.

Lemma 3. For Haar measure μ, it holds that∫
U(d )

UAU †dμ(U ) = trA

d
1d , (B2)∫

U(dA )
(UA ⊗ 1B)XAB(UA ⊗ 1B)†dμ(UA) = 1A

dA
⊗ trAXAB,

(B3)∫
U(d )

(U ⊗ U )A(U ⊗ U )†dμ(U )

=
(

trA

d2 − 1
− tr(AF )

d (d2 − 1)

)
1d2 −

(
trA

d (d2 − 1)
− tr(AF )

d2 − 1

)
F,

(B4)where F is the swap operator.∫
U(d )

UAU †XUBU †dμ(U )

= d tr(AB) − trA trB

d (d2 − 1)
(trX )1d + d trA trB − tr(AB)

d (d2 − 1)
X.

(B5)

We first calculate the average infidelity. According to
Lemma 3, we have∫

U(dS )
tr(PA†

jAiPA†
i A j )dμ(U )

= tr
∫

U(dS )
U (1L ⊗ |0〉〈0|)U †A†

jAiU (1L ⊗ |0〉〈0|)

× U †A†
i A jdμ(U )

= dSdL − d2
L

dS
(
d2

S − 1
) |tr(A†

jAi )|2 + dSd2
L − dL

dS
(
d2

S − 1
) tr(A†

jAiA
†
i A j )

(B6)

and∫
U(dS )

|tr(PA†
i A j )|2dμ(U )

= tr
∫

U(dS )
U (1L ⊗ |0〉〈0|)U †A†

i A j ⊗ U (1L ⊗ |0〉〈0|)

× U †A†
jAidμ(U )

= dSd2
L − dL

dS
(
d2

S − 1
) |tr(A†

i A j )|2 − d2
L − dSdL

dS
(
d2

S − 1
) tr(A†

jAiA
†
i A j ).

(B7)

Thus, we can obtain∫
U(dS )

4dLε2(N ◦ E )

n
dμ(U )

= d2
L − 1

d2
S − 1

∑
i, j

(
tr(A†

jAiA
†
i A j ) − 1

dS
|tr(A†

i A j )|2
)

. (B8)

Next we calculate the average of noncovariance

NG(E ) = 〈ψ̃ |H2|ψ̃〉 − 〈ψ̃ |H |ψ̃〉2. (B9)
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The first term is equal to ∫
U(dS )

〈ψ̃ |H2|ψ̃〉dμ(U ) =
∫

UdS

〈ψ ′|(1L ⊗ U )†H2(1L ⊗ U )|ψ ′〉dμ(U )

= 1

dL
tr
(
H2

L

) + 1

dS
tr
(
H2

S

) − 2trHLtrHS

dLdS
, (B10)

where |ψ ′〉 = 1/
√

dL
∑

k |k〉L|k0〉S . The second term is equal to∫
U(dS )

〈ψ̃ |H |ψ̃〉2dμ(U ) = 1

d2
L

∫
U(dS )

{−trHL + tr[U †HSU (1L ⊗ |0〉〈0|)]}2dμ(U )

= (trHL )2

d2
L

− 2 trHL

d2
L

tr
∫

U(dS )
(U †HSU )(1L ⊗ |0〉〈0|)dμ(U )

+ 1

d2
L

tr
∫

U(dS )
(U †)⊗2H⊗2

S U ⊗2(1L ⊗ |0〉〈0|)⊗2dμ(U )

= (trHL )2

d2
L

− 2 trHLtrHS

dLdS
+ dLdS − 1

dLdS
(
d2

S − 1
) (trHS )2 + dS − dL

dLdS
(
d2

S − 1
) tr

(
H2

S

)
. (B11)

Thus, the average noncovariance can be expressed as∫
U(dS )

NG(E )dμ(U ) = dLtr
(
H2

L

) − (trHL )2

d2
L

+
(
dLd2

S − dS
)
tr
(
H2

S

) − (dLdS − 1)(trHS )2

dLdS
(
d2

S − 1
) . (B12)
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